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We develop and apply an efficient multiscale method for simulating a large class of low-
speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–
continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano
flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid
compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC)
method for dilute rarefied gas flows, and (3) application to a broader range of geometries,
including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal
flows. The multiscale method is applied to micro-scale gas flows through a periodic
converging–diverging channel (driven by an external acceleration) and a non-periodic
channel with a bend (driven by a pressure difference), as well as the flow between
two eccentric cylinders (with the inner rotating relative to the outer). In all these
cases there exists a wide variation of Knudsen number within the geometries, as well
as substantial compressibility despite the Mach number being very low. For validation
purposes, our multiscale simulation results are compared to those obtained from full-scale
DSMC simulations: very close agreement is obtained in all cases for all flow variables
considered. Our multiscale simulation is an order of magnitude more computationally
efficient than the full-scale DSMC for the first and second test cases, and two orders of
magnitude more efficient for the third case.

© 2013 The Authors. Published by Elsevier Inc.

1. Introduction

The flow of gases through micro-scale internal geometries (e.g. micro channels) is critical to a range of future tech-
nologies, including: micro heat exchangers for cooling integrated circuits, micro-jet actuators for flow control in aerospace,
hand-held gas chromatography systems, micro-reactors to generate small quantities of chemicals, and a host of other ‘lab-
on-a-chip’ devices.

Numerical simulation of the gas flow through such non-trivial internal geometries is, however, extremely challenging.
This is because conventional continuum fluid dynamics, which assumes that locally a gas is close to a state of thermo-
dynamic equilibrium, becomes invalid or inaccurate as the smallest characteristic scale of the geometry (e.g. the channel
height) approaches the mean distance between molecular collisions, λ [1]. An accurate and flexible modelling alternative
for these cases is the direct simulation Monte Carlo method (DSMC) [2]. However, DSMC can be prohibitively expensive
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Fig. 1. Schematic of different types of hybrid methods applied to (a) a generic internal-flow problem: (b) the domain-decomposition (DD) method, e.g. [3],
(c) the heterogeneous multiscale method (HMM), e.g. [18] and (d) the internal-flow multiscale method (IMM) [28].

for internal-flow applications, which typically have a geometry of high-aspect ratio (i.e. are extremely long, relative to their
cross-section). The high-aspect ratio creates a formidable multiscale problem: processes need to be resolved occurring over
the smallest characteristic scale of the geometry (e.g. a channel’s height), as well as over the largest characteristic scale of
the geometry (e.g. the length of a long channel network), simultaneously.

To tackle such multiscale flow problems, simulation methods that combine a molecular treatment with a continuum
description are often employed: these are known as hybrid methods. The main hybrid techniques developed so far can be
grouped as follows: (a) domain-decomposition methods (e.g. for liquids [3–8] and for gases [9–17]) and (b) heterogeneous
multiscaling (e.g. for liquids [18–21] and for gases [22]). Note, in this paper we restrict our attention to steady flows, but
for transient problems temporal scale separation is also possible, see e.g. [23–25].

Domain decomposition (DD) is a methodology that applies a molecular-based model where non-equilibrium/non-
continuum effects are located (statically or dynamically); for example, in the vicinity of boundaries, interfaces and moving
shock waves. This localised molecular treatment is coupled to a continuum model applied over the rest of the domain
(often an Euler solver for rarefied gas flows); the coupling is typically performed by matching hydrodynamic flux or state
properties in an overlapping region (see Fig. 1(a), (b)). Despite their demonstrated success in a number of applications,
DD methods have some disadvantages in certain classes of flow [26]. For example, a major disadvantage of using domain
decomposition to solve the kind of highly-confined micro-/nano-channel problems we investigate in this paper is that the
majority (if not all) of the flow can be considered ‘near-wall’, and thus highly non-equilibrial. As illustrated in Fig. 1(b) for a
generic flow geometry, the molecular component (e.g. DSMC) would need to describe the entire length of the channel walls
in order to capture the slip and other near-wall phenomena. As a consequence this severely restricts the maximum channel
lengths (and the minimum channel heights) that can be usefully tackled by DD-type methods.

The heterogeneous multiscale method, known as HMM [27], is the main hybrid alternative to DD (see Fig. 1(c)). In HMM
a continuum description is regarded as applicable in the whole domain and defined everywhere (although no assumptions
regarding constitutive models or boundary conditions are made). Small ‘micro elements’ (individual molecular solvers) are
dispersed on the nodes of the continuum computational grid, with the sole objective to provide the microscopic information
that the macro model requires for closure (i.e. constitutive and boundary information). For a flow in a channel or pipe, for
example, molecular micro elements would be placed on the bounding surfaces and in the fluid region, as illustrated in
Fig. 1(c). Molecular simulations are performed using the local continuum strain-rate as a constraint, and from which only
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the necessary information close to the continuum governing equations is measured and supplied to the macro model. The
shear stress measured in the micro elements located in the bulk of the fluid replaces any form of constitutive model or
requirement for transport properties, while the wall micro elements produce accurate slip velocities and shear stresses,
replacing any need for phenomenological slip boundary conditions [18].

The main drawback of HMM that makes it unsuitable for highly-confined micro channels (where the molecular scale
is comparable to the transverse scale) is that micro elements, which have a minimum size of the order of the molecular
scale (e.g. the mean free path in a gas flow), will be forced to overlap (illustrated in Fig. 1(c)). This is less efficient and
less accurate than a full molecular treatment. It is less accurate for gases, for example, because micro elements in the bulk
(whose state is dictated by local continuum variables) would not be able to capture non-equilibrium Knudsen-layer effects,
which typically extend one or two mean free paths into the channel from the walls.

To tackle this problem the internal-flow multiscale method (IMM) has been developed [28] (see Fig. 1(d)). The IMM
is a hybrid method tailored to flows in high-aspect-ratio channels. The exploitable multiscale feature of this type of flow
configuration is the existence of length-scale separation between hydrodynamic processes occurring along the direction of
the flow, and molecular processes occurring on scales transverse to the flow direction. As such, in this method every micro
element covers the entire cross-section of the channel/tube, enabling the use of simple parallel-wall molecular simulations.
In IMM, micro elements do not communicate directly with each other, instead they interact indirectly via constraints applied
by the macroscopic conservation laws. No constitutive or slip models are required in the continuum formulation because
this is provided (indirectly) by the micro elements. The IMM algorithm consists of a series of iterations, involving a two-way
exchange of information between the macro domain and micro sub-domains, until convergence is obtained.

In this paper we extend the IMM to compressible fluids and dilute gas flows. A substantial modification to the method-
ology is needed in order to account for fluid compressibility, and to capture streamwise variations in density in order to
predict mass flow rates and velocity profiles accurately. Even in low Reynolds number and low Mach number micro-scale
flows, to which we restrict our attention, significant compressibility can occur [29], particularly in dilute gases. In fact,
in the original IMM paper [28] a significant error due to the incompressibility assumption was identified, even though a
dense Lennard-Jones fluid was considered. A simple explanation for this very low-Mach compressibility is that in high-
aspect-ratio geometries, significant variations in density are generated from a combination of high viscous losses and long
channel lengths. Examples of such compressibility effects are provided below.

This paper is structured as follows. In Section 2, the modified IMM is introduced alongside details of a new numerical
solution procedure. In Section 3 results obtained from the multiscale method for three examples cases are presented. These
results are compared to equivalent results obtained using a full DSMC simulation, serving as a validation of the new IMM
method. In Section 4, recommendations are made and conclusions drawn.

2. Multiscale and numerical methodology

In the internal-flow multiscale (IMM) approach [28], individual micro sub-domains, covering the full cross-section of the
channel or tube, are distributed in the streamwise direction with a spacing sufficient to resolve any streamwise variation
in the channel/tube geometry. The key assumption in the IMM — and in fact what it is designed to exploit — is that there
is a degree of scale separation between hydrodynamic variation along streamlines (i.e. in the s-direction, see Fig. 2(a)) and
microscopic processes transverse to the flow direction (i.e. in the y and z directions). For this scale separation to exist, the
section geometry must vary slowly in the streamwise direction. A dimensionless number indicating the degree of such scale
separation can be developed:

S = min

{∣∣∣∣dL y

ds

∣∣∣∣
−1

,

∣∣∣∣dLz

ds

∣∣∣∣
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,
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L y

∣∣∣∣,
∣∣∣∣ Rz

Lz

∣∣∣∣
}
, (1)

where L y and Lz are length scales in the transverse directions that characterise the cross-section geometry, and R y and
Rz are the radii of curvature of the centre streamline. Provided S � 1, it can safely be assumed that, in small streamwise
sections of the tube/channel, the walls are approximately parallel to the centre streamline (and consequently all other
local streamlines). This is referred to in [28] as a local parallel-flow assumption, and it enables the representation of small
sections of the channel/tube geometry by micro sub-domains with exactly parallel walls, as illustrated in Fig. 2(b). These
sub-domains are otherwise identical to the full geometry in terms of the cross-section dimensions of the channel at that
location. In terms of boundary conditions for the sub-domains, again, these are the same as for the full geometry, except
that periodicity is imposed in the streamwise direction (the consequences of this are discussed later).

The objective of the method is for the flow conditions in these otherwise independent micro sub-domains to represent
the conditions that would be occurring at the same point in the whole flow geometry, i.e. in the macro domain. To do this
a coupling needs to occur between the micro sub-domains and an appropriate macroscopic representation of the flowfield.

2.1. The hydrodynamic conservation equations

Attention is restricted here to low-speed (low Reynolds number, low Mach number), steady-state flows, as these are of
primary importance to the majority of applications outlined in Section 1. In such conditions the equation for conservation
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Fig. 2. Schematics of (a) a generic internal-flow configuration with non-stationary walls and imposed longitudinal pressure difference, and (b) domain
partitioning in the internal-flow multiscale method, where Φi is a corrective body force applied to the ith micro simulation.

of momentum for the generic channel/tube configuration of Fig. 2(a) is, in coordinates aligned with the local flow direction
(with a local parallel-flow assumption):

∂ p

∂s
= ∂τsy

∂ y
+ ∂τsz

∂z
+ ρaext, (2)

where τsy and τsz are perpendicular components of shear stress, p is the hydrostatic pressure, ρ is the mass density, and
aext is an external acceleration (ρaext is a body force per unit volume in the flow direction).

For individual decoupled micro sub-domains (i.e. which do not involve, as yet, any macro connection) a different momen-
tum balance is formed:

0 = ∂τsy

∂ y
+ ∂τsz

∂z
+ ρaext. (3)

The difference between Eqs. (2) and (3) is the existence of a local pressure-gradient term, which in the macro domain is
generated by a combination of the applied pressure difference (pB –p A , in Fig. 2(a)), and the requirement for mass continuity
through the entire geometry — this term does not feature in Eq. (3) because of the streamwise periodicity of the micro
sub-domains. To facilitate a coupling mechanism between the micro and macro domains, the missing pressure gradient can
be emulated within the micro sub-domain by a fictitious body force, Φ , which is referred to as a pressure-gradient correction:

Φ = ∂τsy

∂ y
+ ∂τsz

∂z
+ ρaext. (4)

Provided the difference in pressure over the streamwise length of a micro domain is relatively small, the pressure-gradient
correction force, Φ , is hydrodynamically equivalent to the effects of the missing pressure gradient, i.e.

Φ ≡ dp

ds
. (5)

Note, because of the locally-parallel-flow assumption, the pressure gradient (and consequently Φ) is constant across the
cross-section.

The aim of the incompressible IMM presented in [28] is to find (by iteration) values of Φ for each micro sub-domain that
collectively ensure: (a) the boundary conditions on pressure are correctly imposed (pB –p A ), and (b) mass conservation is
satisfied, i.e. the same mass flow rate is generated in each of the micro simulations. Where the method in this present paper
differs is that it must also obtain, as part of the iterative procedure, values of gas density in each micro sub-domain (ρi).
Gas density directly affects viscosity, rarefaction effects, and mass flow rate, and so obtaining these values accurately is
essential for the prediction of compressible flows, even at very low Mach numbers.

2.2. Compressible IMM

The aim of the IMM is to find individual sub-domain states that collectively satisfy macroscopic mass conservation, i.e.
all sub-domains should have the same mass flow rate:

ṁi = ṁ, for i = 1,2, . . . ,Π, (6)

where ṁi is the mass flow rate in the ith of Π sub-domains and ṁ is a target value (an output of the multiscale simulation).
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The body forces (Φi) and density states (ρi) in each sub-domain are found via an iterative algorithm, with the target
of satisfying Eq. (6). In order for this iterative process to be efficient, we need to make some prediction of the general
response of the mass flow rate to changes in Φ and ρ . To this end we assume that the difference between the total mass
flow rate and the mass flow rate due directly to wall motion is proportional to the net momentum flux introduced by
external acceleration (aext, e.g. gravity) and the pressure-gradient correction, i.e.

ṁi = ρi Q wall, i + ki(ρiaext − Φi), (7)

where Q wall is the volumetric flow rate that is due to wall motion alone (i.e. the volumetric flow rate in the absence of any
pressure gradient or body force). The constants of proportionality ki can be estimated at the beginning of the algorithm by
performing initial simulations for which ρi and Φi are known (or which can be chosen arbitrarily) and from which mass
flow rate is measured; ki are then calculated from Eq. (7).

Note, the prediction in Eq. (7) is exact for near-equilibrium flows at the macro scale, but only approximate at the micro
scale for rarefied gas flows. However, the accuracy of this prediction only determines the convergence characteristics of the
method and does not affect the accuracy of the final solution (provided one can be found).

Eq. (7) is then used to estimate the change in mass flow rate between successive iterations:

ṁl+1
i − 〈

ṁl
i

〉 = Q wall, i
(
ρl+1

i − ρl
i

) + ki
(
ρl+1

i aext − ρl
iaext − Φl+1

i + Φl
i

)
, (8)

where l is the iteration index and angular brackets denote a value measured from the sub-domains. To move the mass flow
rates in each sub-domain towards the same single value, we substitute ṁl+1

i for ṁ, to obtain, after rearrangement:

ṁ − ρl+1
i (kiaext + Q wall, i) + kiΦ

l+1
i = 〈

ṁl
i

〉 − ρl
i(kiaext + Q wall, i) + kiΦ

l
i . (9)

As Φ and ρ converge (ρl+1 → ρl and Φl+1 → Φl), Eq. (9) ensures mass conservation (6) is satisfied, i.e. 〈ṁi
l〉 → ṁ.

For simplicity, we focus on ideal gases, for which an equation of state exists, allowing the re-expression of Eq. (5) as:

Φl+1
i = RT

dρ

ds

∣∣∣∣
l+1

i
, (10)

where R is the specific gas constant and T is the temperature (here assumed to be constant in the streamwise direction).
At each iteration, Eqs. (9) and (10) are solved simultaneously. We therefore need a discrete representation of the deriva-

tive of density in Eq. (10) (which is not required in the incompressible IMM formulation of [28]). Sub-domain simulations
are very expensive, and the discrete representation of Eq. (10) should be as spatially accurate as is practical to implement.
To this end we adopt a spectral collocation method. Spectral methods have extremely good error characteristics, exhibiting
so-called spectral convergence (the fastest possible). Spectral convergence means that increasing resolution (i.e. increasing
then number of sub-domains per streamwise length, Π/Ls) decreases the error exponentially (i.e. ε ∝ (Ls/Π)Π ) as opposed
to algebraically as for finite-difference methods (i.e. ε ∝ (Ls/Π)r , where r depends on the order of the scheme). In fact, even
though it is more accurate, the implementation of the spectral method is not significantly more complex than a standard
finite-difference scheme for the IMM.

2.2.1. Spectral collocation scheme
The most suitable polynomial type for the collocation scheme for Eq. (10) depends on the configuration of the particular

problem.1 In this paper we consider periodic and non-periodic problems, but here we present the scheme for periodic
configurations (used in Section 3.1 and Section 3.3), for which the most natural choice is Fourier polynomials. An equivalent
scheme for non-periodic configurations (used in Section 3.2) is presented in Appendix A.

The density variation in a periodic domain is represented by the following Fourier polynomial:

ρ(s) = ρ̂1 +
(Π−1)/2∑

j=1

ρ̂2 j sin(2π s j/Ls) +
(Π−1)/2∑

j=1

ρ̂2 j+1 cos(2π s j/Ls), (11)

where ρ̂1,..,Π are the Fourier coefficients (note, Π must be odd) and Ls is the total streamwise length of the geometry. From
Eq. (10) we can directly obtain a Fourier polynomial description of Φ:

Φ(s) = 2π RT

Ls

(Π−1)/2∑
j=1

j ρ̂2 j cos(2π s j/Ls) − 2π RT

Ls

(Π−1)/2∑
j=1

j ρ̂2 j+1 sin(2π s j/Ls). (12)

Eqs. (11) and (12) are evaluated at the sub-domain locations (collocation points):

si = Ls(i − 1)/Π, for i = 1, . . . ,Π, (13)

1 A mapped spatial variable can also be used to redistribute resolution of the chosen polynomial.
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to give variables in physical space at the new iteration:

ρl+1
i = ρ̂1 +

(Π−1)/2∑
j=1

ρ̂2 j sin(2π si j/Ls) +
(Π−1)/2∑

j=1

ρ̂2 j+1 cos(2π si j/Ls), (14)

Φl+1
i = 2π RT
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where iteration indices for the Fourier coefficients are omitted for clarity. These expressions are substituted into Eq. (9) to
obtain:
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)
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i
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i(kiaext + Q wall, i) + kiΦ

l
i . (16)

Eq. (16) represents Π equations for Π + 1 unknowns (ρ̂1,..,Π and ṁ). The additional required equation comes from knowl-
edge of the total mass within the system, M (for periodic systems, this is fixed from the outset):

M =
∫ ∫ ∫

V

ρ ds dy dz ≈ Ls

Π

Π∑
i=1

Aiρ
l+1
i

≈ Ls

Π

Π∑
i=1

(
Aiρ̂1 + Ai

(Π−1)/2∑
j=1

ρ̂2 j sin(2π si j/Ls) + Ai

(Π−1)/2∑
j=1

ρ̂2 j+1 cos(2π si j/Ls)

)
, (17)

where Ai are the local sectional areas of the geometry at the Π sub-domain positions. The integration here is using the
trapezoidal rule (i.e. the mean of the variables at the collocation points multiplied by Ls), which is very accurate for periodic
systems. The set of linear equations (16) and (17) can be solved at each iteration using LU decomposition, or similar. After
each iteration, the variables at collocation points (in physical rather than Fourier space) can be obtained from Eqs. (14)
and (15).

2.2.2. Compressible IMM algorithm
The solution to the multiscale problem is an iterative one. Once converged, it enforces macroscopic mass conservation

(momentum is automatically conserved at every iteration). The algorithm stops once a convergence criterion (e.g. on stan-
dard deviation of the mass flow rates in the micro simulations) is satisfied. The iterative procedure has the following steps:

(0) Initial setup. Set the density states in all Π sub-domains to a constant value that satisfies the total mass constraint (17)
for periodic cases, or satisfies boundary conditions on pressure/density for non-periodic cases. Since the first iteration
is primarily used to obtain an estimate of ki for each micro sub-domain, the initial values of Φi are arbitrary, provided
Φi 
= ρiaext (see Eq. (7)).

(1) Initialise all micro (DSMC) simulations with the density and pressure-gradient correction values for the current iteration:
ρl

i , Φl
i .

(2) Simulate all Π micro simulations in two stages: a transient period and an averaging period. The transient period must
be long enough for the flow in the micro sub-domains to reach steady state, and the averaging period must be long
enough so that a satisfactorily noise-free mass flow rate measurement can be obtained: 〈ṁi〉.

(3) For periodic problems, solve the set of simultaneous linear equations (16), (17) (using LU decomposition, say) to obtain
a mass flow rate prediction, ṁ, and Fourier coefficients for density, ρ̂1,..,Π . For non-periodic problems, solve the set of
simultaneous linear equations (A.4), (A.5), (A.6), to obtain a mass flow rate prediction, ṁ, and polynomial coefficients
for density, ρ̂1,..,Π+1.

(4) Using Eqs. (14) and (15) for periodic cases, or Eqs. (A.2) and (A.3) for non-periodic cases, calculate values at collocation
points (at each micro sub-domain) for density and pressure-gradient correction for the next iteration: ρl+1

i , Φl+1
i .

(5) Repeat from (1) until macroscopic mass conservation is attained (i.e. mass flow rates in each sub-domain are equal).
As a convergence criterion, we take:∣∣st dev{ṁi}/ṁi

∣∣ < ζtol, (18)

where ζtol is a predetermined tolerance. For the simulations in this paper we choose ζtol = 0.025.
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Fig. 3. The converging–diverging channel geometry. Locations and relative sizes of the micro sub-domains are shown (Π = 9).

2.3. Micro simulation model

For simulating the rarefied gas flow in each of the micro sub-domains (Fig. 2(b)) we use the direct simulation Monte
Carlo (DSMC) method [2]. The DSMC code used in the present work has been implemented in OpenFOAM, an open-source
C++ tool box for computational fluid dynamics which is free to download from [30]. This solver, called dsmcFoam, has been
validated for a variety of benchmark cases including hypersonic and micro-channel flows [31–33].

3. Results and discussion

In this section we apply the compressible IMM described in Section 2 to three rarefied, low-speed, high-aspect-
ratio, micro-channel flow configurations: streamwise-periodic converging–diverging channel flow (Section 3.1); non-periodic
pressure-driven channel flow around a corner (Section 3.2); and eccentric cylindrical Couette flow (Section 3.3). For vali-
dation purposes, in each case the multiscale results are compared to results obtained from a full DSMC simulation of the
complete geometry using the same DSMC code. From this perspective, the full-scale DSMC simulations are considered the
‘accurate’ results, but are, as will be shown later, far more computationally expensive than our compressible IMM. Note,
DSMC has itself been extensively validated against experiment for a range of applications.

The DSMC simulations presented in this paper are two-dimensional for both the sub-domain and the full-scale simula-
tions.

3.1. Test case: converging–diverging channel

Our first test case is a converging–diverging channel flow, with periodicity in the streamwise direction, driven by a
uniform and constant acceleration; the configuration is shown in Fig. 3. The length of the geometry is Ls = 24 μm, and
the thickest and narrowest points of the channel are 1 μm and 0.4 μm, respectively. The temperature of the walls is kept
constant at T = 300 K, and the average density in the domain is ρ = 0.442 kg/m3. The simulated gas is argon.

For reference, a full DSMC simulation of the flow in the configuration is performed with ∼6 × 105 DSMC particles
(P full), chosen to give ∼100 particles per cell on average, with each cell having dimensions considerably smaller than
the mean free path, λ. The flow has a maximum Reynolds number Re = 0.44 (based on local centreline velocity and local
channel thickness, h), a maximum Mach number Ma = 0.13, and Knudsen numbers ranging from Kn = 0.4 to 1.1 (Kn = λ/h).
The applied acceleration is aext = 1010 m/s2; this large value is used so that a manageable signal-to-noise ratio from the
expensive full DSMC simulation can be obtained. The measured mass flow rate is ṁ = 60.05 ± 0.2 × 10−15 kg/s.

A compressible IMM simulation of the geometry is then performed with Π = 9 sub-domains. Their streamwise positions
are given by Eq. (13); sub-domain positions and scales are illustrated in Fig. 3. The minimum value of the scale separation
number, as defined in Eq. (1), is S = 7.8, which means that the local parallel-flow assumption used in the multiscale
simulation is reasonable (i.e. S � 1). The total number of DSMC particles used in the multiscale simulation (i.e. summed
over all 9 sub-domains) is P IMM ∼ 2.8 × 104 which is more than 20× fewer than the full DSMC simulation. The number of
DSMC particles has been chosen, as with all multiscale simulations presented in this paper, to give comparable resolution to
the full DSMC in terms of simulated particles per cell (∼100). Based on the convergence criterion given in Eq. (18), the IMM
reaches a solution after the third iteration (i.e. after three separate simulations of the Π = 9 sub-domains). The predicted
mass flow rate from the compressible IMM is ṁ = 60.3 × 10−15 kg/s, which is within 0.5% of the prediction of the full-scale
reference DSMC.

Fig. 4 shows velocity profiles (across the channel) at different streamwise locations, as calculated by the full DSMC and
compressible IMM (at positions corresponding to sub-domains i = 1,4 and 7). Fig. 5 shows the streamwise variation of
density through the channel. In both figures, excellent agreement is seen between the compressible IMM and the full-scale
DSMC calculation.

The two figures show an acceleration and expansion of the gas through the throat of the geometry (between positions
i = 4 and 7), with slip velocity increasing concomitantly. What is also obvious from Fig. 5 is that the density within the
domain varies substantially (the highest density is almost 2.5× greater than the lowest value), demonstrating the need for
our new compressible extension to the IMM. Note, this compressibility occurs despite the low Mach number conditions
(maximum Ma = 0.13) due to a combination of high viscous forces and long channel lengths, as discussed in [29].
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Fig. 4. Velocity profiles across the converging–diverging channel, u(y), at streamwise locations: (a) s/Ls = 0 (i = 1); (b) s/Ls = 0.33 (i = 4); and (c) s/Ls =
0.67 (i = 7). Comparison of the full-scale DSMC solution (—) and our compressible IMM (– –). Wall locations are: (a) y = ±0.5 μm; (b) y = ±0.23 μm; and
(c) y = ±0.23 μm.

Fig. 5. Streamwise variation of mass density along the converging–diverging channel. Comparison of the full DSMC solution (—) and the compressible IMM:
collocation values (×) and Fourier polynomial (– –).

To accurately estimate the computational saving that the IMM has afforded us, we can compare the total particle-
timesteps (G) computed in each method. For the full-scale reference DSMC this is straightforward:

G full = P full(Tsu,full + Tav,full), (19)

where P full is the total number of DSMC particles simulated, Tsu is the number of timesteps required for the flow to become
developed (a ‘start-up’ time), and Tav is the number of timesteps used in the averaging phase of the simulation. For the
compressible IMM:

G IMM = P IMM(Tsu,IMM + Tav,IMM)I , (20)

where I is the number of iterations of the multiscale algorithm performed (here I = 3). The ratio of Eqs. (19) and (20)
provides the total computational savings factor:

C = P full(Tsu,full + Tav)
. (21)
P IMM(Tsu,IMM + Tav)I
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Fig. 6. Streamwise variation of mass density along the converging–diverging channel. Comparison of the full DSMC solution (—) and the compressible IMM
for different numbers of sub-domains: Π = 9 (×), Π = 7 (�), and Π = 5 (!).

For consistency, we set our averaging times to be equal: Tav,full = Tav,IMM = Tav (the timestep is also kept the same). In the
converging–diverging test case of this section, the development times for both the multiscale simulations and the full-scale
simulation are much smaller than the chosen averaging time, and thus: C ≈ P full/(P IMM I). From this we can calculate that
the overall computational cost of the compressible IMM is approximately 6× less than the full-scale DSMC.

To investigate the influence of the number of sub-domains on the accuracy of the compressible IMM, the same
converging–diverging channel simulation has been performed for Π = 5,7 and 9 sub-domains. The calculated mass flow
rates are: ṁ = 60.54 × 10−15 kg/s (Π = 5); ṁ = 60.48 × 10−15 kg/s (Π = 7); and ṁ = 60.3 × 10−15 kg/s (Π = 9) — all
these are within 1% of the full DSMC value. Streamwise variation of density through the geometry is plotted in Fig. 6 for
each of the multiscale simulations. It is clear that the accuracy of the method is still very good when as few as Π = 5
sub-domains are employed, for which the computation is over 10× cheaper than the full DSMC.

3.2. Test case: pressure-driven channel flow around a corner

The second test case is also a converging–diverging channel flow, but unlike in Section 3.1 the flow is driven by a
pressure difference and the geometry turns smoothly through 90 degrees. This non-periodic configuration is shown in
Fig. 7. The length of the geometry is Ls = 24 μm, and the thickest and narrowest points of the channel are 1 μm and
0.4 μm, respectively. The inlet pressure is p1 = 46.3 kPa (Kn = 0.12) and the outlet pressure pΠ = 8.9 kPa (Kn = 0.6). The
temperature of the walls, and the inlet/outlet, are kept constant at T = 300 K. The simulated gas is argon.

A full DSMC reference simulation of the configuration is performed with ∼18×105 DSMC particles (P full), chosen to give
∼100 particles per cell on average, with each cell having dimensions considerably smaller than the mean free path, λ. The
flow in the geometry has a maximum Mach number Ma = 0.056, and Knudsen numbers ranging from Kn = 0.12 to 0.72.
The measured mass flow rate is ṁ = 18.9 ± 0.2 × 10−15 kg/s.

A compressible IMM simulation of the non-periodic geometry is performed with Π = 9 sub-domains, their streamwise
positions given by Eq. (A.1); sub-domain positions and scale are illustrated in Fig. 7. The minimum value of the scale
separation number, as defined in Eq. (1), is S = 7.8 (a large enough value for the local parallel-flow assumption to be
reasonable). The total number of DSMC particles used in the multiscale simulation (in all sub-domains) is P IMM ∼ 18 × 103,
which is approximately 100× fewer than the full DSMC simulation. Based on the convergence criterion given in Eq. (18), the
IMM reaches a solution after the second iteration (i.e. after two separate simulations of each of the Π = 9 sub-domains).
The predicted mass flow rate from the compressible IMM is ṁ = 18.8 × 10−15 kg/s, which is again extremely close to the
prediction of the full-scale DSMC (within 0.6%).

Fig. 8 shows velocity profiles (across the cornering channel) at different streamwise locations, as calculated by the full
DSMC and compressible IMM (at positions corresponding to sub-domains i = 2,5 and 8). Fig. 9 shows the streamwise vari-
ation of density through the channel. The results show an acceleration and expansion along the channel, and an increasing
level of slip as the Knudsen number increases with decreasing density. Again, as in Section 3.1, excellent agreement is found
between the compressible IMM and the full-scale DSMC calculation.

For this test case, the compressible IMM is approximately 50× cheaper than the full-scale DSMC — as calculated from
Eq. (21).
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Fig. 7. The converging–diverging channel geometry with a 90-degree turn. Locations and relative sizes of the micro sub-domains are shown (Π = 9).

Fig. 8. Velocity profiles u(y) across the cornering converging–diverging channel, at streamwise locations: (a) i = 2 (s/Ls = 0.11); (b) i = 5 (s/Ls = 0.44);
and (c) i = 8 (s/Ls = 0.78). Comparison of the full-scale DSMC solution (—) and our compressible IMM (– –). Wall locations are: (a) y = ±0.38 μm;
(b) y = ±0.2 μm; and (c) y = ±0.38 μm.

3.3. Test case: eccentric-cylinder Couette flow

Now we consider the flow generated in a gas contained between two eccentric cylinders (the outer stationary, the inner
rotating at a constant rate), as in Fig. 10; this is representative of a plain bearing configuration. The inner and outer cylinders
have diameters of 40 μm and 38 μm, respectively, and the inner cylinder’s axis is offset by 0.5 μm, making the maximum
and minimum gap between the two cylinders 1.5 μm and 0.5 μm, respectively. The constant angular velocity of the inner
cylinder creates a tangential wall velocity of 19 m/s. The contained gas is argon, and the average density in the domain is
ρ = 0.354 kg/m3. Both walls are held at a constant temperature of T = 300 K.

A full reference DSMC simulation of this configuration is performed using 2.88 × 106 DSMC particles. The flow has
a maximum Reynolds number Re = 0.16 (based, again, on local centreline velocity and local channel thickness), a maxi-
mum Mach number of Ma = 0.042, and Knudsen numbers ranging from Kn = 0.35 to 0.6. The measured mass flow rate is
ṁ = 27.27 ± 0.54 × 10−15 kg/s.

A compressible IMM simulation of the geometry is also performed with Π = 11 sub-domains, whose circumferential
positions (si ) are given by Eq. (13) where Ls = 122.5 μm (the circumference of the centre streamline); sub-domain positions
and scale are illustrated in Fig. 10. The minimum value of the scale separation number in the geometry, as defined in Eq. (1),
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Fig. 9. Streamwise variation of mass density along the cornering converging–diverging channel. Comparison of the full DSMC solution (—) and the com-
pressible IMM: collocation values (×) and Fourier polynomial (– –).

Fig. 10. Configuration of eccentric cylindrical Couette flow (a plain bearing). Positions of micro elements (sub-domains) used in the multiscale simulation
are indicated (total number of sub-domains Π = 11). Note, s = 0 is the narrowest point of the channel geometry; increasing s corresponds to moving
clockwise around the cylinder centreline in the direction of the inner-cylinder rotation (ω).

is S = 13. The total number of DSMC particles used in the multiscale simulation (i.e. summed over all 11 sub-domains) is
44 × 103, which is roughly 65× fewer than the full DSMC simulation. Here, again, the number of DSMC particles has been
chosen to give comparable resolution.

Based on the convergence criterion given in Eq. (18), the IMM reaches a solution after just two iterations (i.e. af-
ter two separate simulations of the Π = 11 sub-domains). The predicted mass flow rate from the compressible IMM is
ṁ = 27.16 × 1015, which is within 0.5% of the prediction of the full-scale DSMC. Fig. 11 shows velocity profiles at a num-
ber of circumferential positions and Fig. 12 shows the circumferential variation of density. In the narrower portion of the
configuration there is a negative curvature (at around i = 2) due to a favourable pressure gradient; this curvature becomes
positive in the wider regions as the pressure gradient becomes adverse. As in the previous cases, very close agreement
is found between the compressible IMM and the full-scale DSMC calculation. The noise in the full DSMC velocity profiles
appears larger than that in the multiscale simulations because a smaller bin size is used to create the velocity profile;
however, the DSMC cell sizes are comparable.
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Fig. 11. Velocity profiles u(y) across the eccentric bearing channel at streamwise locations: (a) i = 2 (s/Ls = 0.09); (b) i = 5 (s/Ls = 0.36); (c) i = 7
(s/Ls = 0.55); (d) i = 9 (s/Ls = 0.73); and (e) i = 11 (s/Ls = 0.91). Comparison of the full-scale DSMC solution (—) and our compressible IMM (– –). Wall
locations are: (a) y = ±0.29 μm; (b) y = ±0.66 μm; (c) y = ±0.74 μm; (d) y = ±0.54 μm; and (e) y = ±0.29 μm. The lower wall is moving at 19 m/s, the
upper wall is stationary.

Fig. 12. Circumferential variation of mass density in the eccentric bearing case. Comparison of the full DSMC solution (—) and the compressible IMM:
collocation values (×) and Fourier polynomial (– –).

Eq. (21) is used to evaluate the computational saving of the IMM. In this test case the development time (i.e. the time
to reach steady state) for the full-scale geometry is far longer than the development time of the slowest micro element
(Tsu,full ∼ 200Tsu,IMM), and greater than the chosen averaging time (Tsu,full ∼ 8Tav). This relatively long development time
of the full-scale configuration is due to the high scale separation and the weak gradients in the streamwise direction as
compared to gradients across the channel. It is the streamwise gradients in mass flow rate that promote temporal changes
in density, but because these gradients are weak this occurs very slowly relative to viscous-driven development across the
channel. Not having to simulate this lengthy development period is a major computational advantage of the compressible
IMM for steady-state flows, and results from having coupled the micro sub-domains to a steady-state form of the continuum
conservation equations. We find the total computational cost of the IMM, as calculated from Eq. (21), is approximately 300×
less than the full-scale DSMC.

4. Conclusions

In this paper we have presented a major extension to the internal-flow multiscale method (IMM) [28] to take into ac-
count fluid compressibility (which can be very significant in micro-channel geometries at low Mach numbers). We have ap-
plied the method to dilute gas flows (using DSMC as a micro model) for periodic and non-periodic internal-flow geometries.
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In all three test cases we considered, the compressible IMM gives flow predictions that are in very close agreement with
those of a full-scale DSMC of the same geometry. Most importantly, the compressible IMM is approximately 6×, 50× and
300× more efficient than full-scale DSMC simulations of these cases.

The major savings afforded by our multiscale treatment of the final case (the eccentric cylindrical Couette flow of Sec-
tion 3.3) is in part due to the extremely long development time of the flow in the full-scale simulation. The IMM avoids this
lengthy development period because the macro conservation equations used in the coupling algorithm are all steady-state.
The IMM is currently not appropriate for transient problems. However, in principle a time-accurate macro/micro coupling
could be developed, with the time-stepping in each model controlled to exploit time-scale separation where it exists, as de-
scribed in [25]. This is for future work.
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Appendix A. Collocation scheme for non-periodic configurations

For non-periodic configurations, the sub-domain positions (the collocation points) are:

si = Ls(i − 1)/(Π − 1), for i = 1, . . . ,Π, (A.1)

which encompass the full length of the geometry. A polynomial representation for density is:

ρl+1
i =

Π∑
j=0

ρ̂ j s
j
i , (A.2)

where there are Π + 1 coefficients for the degree Π polynomial. The polynomial for Φ is thus:

Φl+1
i = RT

Π∑
j=1

jρ̂ j s
j−1
i . (A.3)

Eqs. (A.2) and (A.3) are substituted into Eq. (9) to obtain the equivalent of Eq. (16) for non-periodic geometries, i.e.

ṁ − (kiaext + Q wall, i)

Π∑
j=0

ρ̂ j s
j
i + ki RT

Π∑
j=1

jρ̂ j s
j−1
i = 〈

ṁl
i

〉 − ρl
i(kiaext + Q wall, i) + kiΦ

l
i . (A.4)

Eq. (A.4) represents Π equations containing Π + 2 unknowns. The two remaining equations required for its solution are
obtained from the boundary conditions on pressure at the entrance and exit:

p1 = RT ρ̂0, (A.5)

and

pΠ = RT
Π∑

j=0

ρ̂ j L
j
s . (A.6)

Eqs. (A.4), (A.5) and (A.6) can be solved using LU decomposition, or similar, at step (3) of the compressible IMM algorithm
described in Section 2.2.2.
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