Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A spline wavelet collection method for the optimal control of flexible spacecraft

Zhang, Qingbin and Feng, Zhiwei and Tang, Qiangang and Macdonald, Malcolm (2015) A spline wavelet collection method for the optimal control of flexible spacecraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 299 (1). pp. 163-171. ISSN 0954-4100

[img] PDF (Macdonald M et al - A spline wavelet collection method for the optimal control of flexible spacecraft Mar 2014)
Macdonald_M_et_al_A_spline_wavelet_collection_method_for_the_optimal_control_of_flexible_spacecraft_Mar_2014.pdf
Accepted Author Manuscript

Download (466kB)

    Abstract

    A spline wavelet collocation method is presented to solve optimal control problem (OCP) of flexible spacecraft, which is often required to reorient and reposition with minimum manoeuvre time or fuel consumption. It is very difficult and computationally expensive to determine the open-loop optimal control inputs for flexible spacecraft, because the optimal control profile is often characterised by discontinuities or switching in the control variables. In our approach, the state and control variables are expanded via cubic spline wavelet decomposition, and then an OCP would be converted into a nonlinear programming problem where the wavelet coefficients are treated as the optimisation variables. As opposed to the usual pseudospectral method based on polynomial approximation, the wavelet advantageous properties of compact representation would inherently make it efficiently and accurately to solve nonlinear programming problem using standard solver. The novel approach is demonstrated by two typical optimal problems. The results show that our approach outperforms Gauss pseudospectral method for discontinuous OCPs arising from the flexible spacecraft.