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Abstract

In this paper we estimate the parameters in the stochastic SIS epidemic model
by using pseudo-maximum likelihood estimation (pseudo-MLE) and least squares
estimation. We obtain the point estimators and 100(1−α)% confidence intervals as
well as 100(1 − α)% joint confidence regions by applying least squares techniques.
The pseudo-MLEs have almost the same form as the least squares case. We also
obtain the exact as well as the asymptotic 100(1 − α)% joint confidence regions for
the pseudo-MLEs. Computer simulations are performed to illustrate our theory.

Key words: Stochastic SIS epidemic model, pseudo-maximum likelihood estima-
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1 Introduction

In general parameter estimation in stochastic differential equations (SDEs) is a non-trivial
problem [2, 9]. Many SDEs are non-linear, making simpler approaches to estimation im-
possible to implement. Young [27] reviews parameter estimation methods for continuous
time models. Nielsen et al. [21] updates this to include newer methods for discretely
observed SDEs. Timmer [26] discusses the relation between Maximum Likelihood Esti-
mators (MLEs) and quasi-MLEs and compares the quasi-MLE approach with the ∆t = δt
approach in simulations. Kristensen et al. [11] considers the stochastic ’grey box’ model
and presents the approximate MLE approach based on normal approximation and use
of the extended Kalman filter and a software package CTSM. Bishwal [2] discusses the
asymptotic properties of MLEs and Bayes estimators of real valued drift parameters in
SDEs. Parameter estimation for stochastic delay differential equations (SDDEs) in par-
ticular has been studied for the last ten years, see e.g. [7, 12, 13, 14, 23, 24, 25].

In this paper we estimate the parameters in the stochastic SIS (susceptible-infected-
susceptible) epidemic model as formulated in [6] as an SDE model. This SDE is non-linear,
and pseudo-Maximum Likelihood Estimation and least squares parameter estimation will
be applied. Our main contribution in this paper is variance estimation. We obtain not
only the point estimators but also the interval estimators for parameters and also the joint
confidence regions taking the correlation among the parameters and the overall degree of
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confidence into account. Also, we investigate the factors which influence the width of the
confidence intervals and the area of the confidence regions both analytically and in our
simulation examples.

The well-known SIS model is one of the simplest epidemic models and is often used
to model diseases for which there is no immunity, including gonorrhea [8], pneumococcus
[15, 17] and tuberculosis.

In our previous paper [6], we derived an Itô SDE SIS model from the deterministic
one

{

dS(t) = [µN − βS(t)I(t) + γI(t) − µS(t)]dt − σS(t)I(t)dB(t),
dI(t) = [βS(t)I(t) − (µ + γ)I(t)]dt + σS(t)I(t)dB(t)

(1.1)

with initial values S0 + I0 = N , where S0 and I0 are initial numbers of susceptible and
infected individuals in a population of size N . S(t) and I(t) are the numbers of susceptible
and infected individuals at time t and B(t) is a scalar Brownian motion. This model has
parameters β, γ, µ and new parameter σ. Here µ is the per capita death rate, and γ
is the rate at which infected individuals become cured, so 1/γ is the average infectious
period. The parameter β is the disease transmission coefficient, so that β = λ/N where
λ is the per capita disease contact rate. The parameter λ is the average number of
adequate contacts of an infective per day. An adequate contact is one which is sufficient
for the transmission of an infection if the contact is between a susceptible and an infected
individual. Regarding the parameter σ, σ2dt quantifies the size of the variance of the
number of potentially infectious contacts that a single infected individual makes with
another individual in the small time interval [t, t + dt).

As S(t) + I(t) = N , it is sufficient to study the SDE for I(t)

dI(t) = I(t)
(

[βN − µ − γ − βI(t)]dt + σ(N − I(t))dB(t)
)

(1.2)

with initial value I(0) = I0 ∈ (0, N), and in the rest of the paper we will concentrate on
this SDE only.

The organization of this paper is as follows: In section 2 we apply the least squares
estimation approach to our problem and obtain the point estimators, interval estimators
and confidence regions for the model parameters β, η = µ + γ and σ2. We consider the
cases of parameter estimation for both one sample of data and multiple samples. We
also investigate the factors which influence the width of the confidence intervals and the
areas of the confidence regions. Simulation examples are given to illustrate our theory.
In section 3 we discuss the pseudo-MLE method. We obtain the maximum likelihood
estimators and exact and approximate confidence regions, and again consider the case of
multiple samples. Also we compare the pseudo-MLEs with the least squares estimators
both analytically and in our simulation examples. In section 4 we summarise the findings
in the paper and indicate further ongoing work to be reported.

2 Least Squares Estimation

We will use the Euler-Maruyama (EM) scheme [18, 19] to approximate the path of the
process such that the discretized form of the process can be rearranged as a regression
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model. Then the regression theory can immediately be applied to estimate the model
parameters. In this section point estimators, 100(1 − α)% confidence intervals as well as
100(1−α)% joint confidence regions will be obtained for our model parameters. Simulation
examples will be given to illustrate our theory.

2.1 Regression Model

Let {Ik}n
k=0 be observations from process (1.2). Given a stepsize ∆t and setting I0 = I(0),

the EM scheme produces the following discretization over small intervals [k∆t, (k +1)∆t]

Ik+1 − Ik = Ik(βN − µ − γ − βIk)∆t + σ(N − Ik)Ik∆Wk, (2.1)

where ∆Wk = Wk+1 − Wk.

Equation (2.1) can be rewritten as

yk+1 = ηuk+1 + c + σZk+1, (2.2)

where yk+1 = Ik+1−Ik

Ik(N−Ik)
√

∆t
, η = µ + γ, uk+1 = −

√
∆t

N−Ik

, c =
√

∆tβ and Zk+1 ∼ N(0, 1). We

can get the observations (yi, ui)
n
i=1 if data points {Ik}n

k=0 and stepsize ∆t are provided. We
then write the model as yi = ηui + c + εi (i = 1, 2, ..., n), where εi ∼ N(0, σ). This looks
like a simple linear regression model but with the difference that y = (y1, y2, ..., yn) is a
random variable instead of a response variable which is conditional on u = (u1, u2, ..., un).
However we still can use the regression theory to estimate η and β since estimation is
based on the least squares method, i.e. to minimize

∑n
i=1 (yi − ηui − c)2, which is not

affected by whether y is a random variable or not.

Rawlings (1998) [22] discusses multiple linear regression in the general matrix form

Y = Xθ + ε, (2.3)

where

Y =











y1

y2
...

yn











, X =











1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp











, θ =











θ0

θ1
...
θp











, ε =











ε1

ε2
...
εn











.

The calculations work equally well for (2.2), which can be written in the matrix form
(2.3), where Y and ε remain the same while X and θ become

X =











√
∆t u1√
∆t u2
...

...√
∆t un











, θ =

(

β
η

)

.
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2.2 Point Estimators

We use the formulae in the multiple linear regression theory to derive the estimators for
η and β as

(

β̂
η̂

)

= θ̂ = (XTX)−1(XTY)

=
1

n∆t
∑

u2
k − ∆t (

∑

uk)
2

(√
∆t
∑

u2
k

∑

yk −
√

∆t
∑

uk

∑

ukyk

n∆t
∑

ukyk − ∆t
∑

uk

∑

yk

)

.

(2.4)

Here
∑

represents
∑n−1

k=0 as does the
∑

below.

Then we have point estimators as

β̂ =

∑

u2
k

∑

yk −
∑

uk

∑

ukyk

n
√

∆t
∑

u2
k −

√
∆t (

∑

uk)
2 (2.5)

and

η̂ =
n
∑

ukyk −
∑

uk

∑

yk

n
∑

u2
k − (

∑

uk)
2 , (2.6)

which are equal to

β̂ =

∑

1
(N−Ik)2

∑ Ik+1−Ik

Ik(N−Ik)
−
∑

1
N−Ik

∑ Ik+1−Ik

(N−Ik)2Ik

n
∑

∆t
(N−Ik)2

−
(

∑

√
∆t

N−Ik

)2 (2.7)

and

η̂ =

∑ Ik+1−Ik

Ik(N−Ik)

∑

1
N−Ik

− n
∑ Ik+1−Ik

(N−Ik)2Ik

n
∑

∆t
(N−Ik)2

−
(

∑

√
∆t

N−Ik

)2 . (2.8)

We consider a time interval of total length T divided into n subintervals each of length
∆t so n∆t = T . Hence as n → ∞ and ∆t → 0 with n∆t = T , the sums approach the
integrals, i.e.

n−1
∑

k=0

∆t

(N − Ik)
2 →

∫ T

0

1

(N − I)2 dt

n−1
∑

k=0

Ik+1 − Ik

Ik(N − Ik)
→
∫ I(T )

I(0)

1

I(N − I)
dI etc.

Hence we have that as n → ∞, β̂ and η̂ tend to

β̂ =

∫ T

0
1

(N−I(t))2
dt ·

∫ I(T )

I(0)
1

(N−I)I
dI −

∫ T

0
1

N−I(t)
dt ·

∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2

and

η̂ =

∫ I(T )

I(0)
1

(N−I)I
dI ·

∫ T

0
1

N−I(t)
dt − T

∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2 .
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2.3 Variance of Estimated Parameters

Confidence interval estimators of parameters give more information than simple point
estimators. To obtain interval estimators for the parameters β and η, we need to calculate
the variance of θ̂ using the formula

var(θ̂) = (XTX)−1σ2, (2.9)

where σ2 can be estimated using the residual mean square

σ̂2 =
(Y − Xθ̂)T (Y − Xθ̂)

n − p
, (2.10)

where p is the number of parameters and is 2 in this case. Equation (2.10) can be
simplified as

σ̂2 =
YTY − YTXθ̂

n − 2
(2.11)

if we substitute θ̂ = (XTX)−1(XTY) in (2.10).

Then equation (2.11) can be written as

σ̂2 =
1

n − 2

(

∑

y2
k −

(√
∆t
∑

yk

)

β̂ −
(

∑

ykuk

)

η̂

)

. (2.12)

Substituting (2.4) in (2.12) we get

σ̂2 =

n
∑

y2
k

∑

u2
k −

∑

y2
k (
∑

uk)
2 −∑ u2

k (
∑

yk)
2 − n (

∑

ykuk)
2 + 2

∑

uk

∑

yk

∑

ykuk

(n − 2)
(

n
∑

u2
k − (

∑

uk)
2 ) ,

(2.13)

which is

1

n

(

n
∑

∆t
(N−Ik)2

− ∆t
(

∑

1
N−Ik

)2
)

(

n
∑ (Ik+1 − Ik)

2

Ik
2 (N − Ik)

2

∑ 1

(N − Ik)
2 −

∑ (Ik+1 − Ik)
2

Ik
2 (N − Ik)

2

(

∑ 1

N − Ik

)2

−
∑ 1

(N − Ik)
2

(

∑ Ik+1 − Ik

Ik(N − Ik)

)2

− n

(

∑ Ik+1 − Ik

Ik (N − Ik)
2

)2

+ 2
∑ 1

N − Ik

∑ Ik+1 − Ik

Ik(N − Ik)

∑ Ik+1 − Ik

Ik (N − Ik)
2

)

.

(2.14)

Theorem 2.1 The estimator σ̂2 in (2.12) is an asymptotically unbiased estimator for σ2

in (2.2), i.e.
σ̂2

n → σ2 a.s.

as n → ∞.
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Proof.

σ̂2 =
RSS

n − p
=

1

n − 2

∑

(yk − ŷk)
2 , (2.15)

where RSS is the sum of squares of residuals for model (2.2) and p is the number of
parameters to be estimated.

After substituting for β̂ and η̂ using (2.5) and (2.6)

yk − ŷk = yk

−
∑

i u
2
i

∑

i yi −
∑

i ui

∑

i uiyi

∆

− (n
∑

i uiyi −
∑

i ui

∑

i yi)uk

∆
,

where ∆ = n
∑

i u
2
i − (

∑

i ui)
2 and

∑

i represents
∑n−1

i=0 here and throughout the rest of
the paper.

Since yk = β
√

∆t + ηuk + σZk,

yk − ŷk = β
√

∆t + ηuk + σZk

−
∑

i u
2
i

∑

i(β
√

∆t + ηui + σZi) −
∑

i ui

∑

i ui(β
√

∆t + ηui + σZi)

∆

− [n
∑

i ui(β
√

∆t + ηui + σZi) −
∑

i ui

∑

i(β
√

∆t + ηui + σZi)]uk

∆
.

Therefore σ̂2 can be simplified as

σ2

n − 2

∑

(

Zk −
ukn

∑

i uiZi − uk

∑

i Zi

∑

i ui +
∑

i ui
2
∑

i Zi −
∑

i ui

∑

i uiZi

∆

)2

,

which is equal to

σ2

n − 2

∑

(

Zk
2 +

(

nuk

∑

i uiZi − uk

∑

i Zi

∑

i ui

∆

)2

+

(

∑

i ui
2
∑

i Zi −
∑

i ui

∑

i uiZi

∆

)2

− 2Zk
nuk

∑

i uiZi − uk

∑

i Zi

∑

i ui

∆
− 2Zk

∑

i ui
2
∑

i Zi −
∑

i ui

∑

i uiZi

∆

+ 2
(ukn

∑

i uiZi − uk

∑

i Zi

∑

i ui) (
∑

i ui
2
∑

i Zi −
∑

i ui

∑

i uiZi)

∆2

)

.

This can be simplified as

σ2

n − 2

(

∑

Zk
2 +

1

∆2

(

∑

uk
2
(

∑

Zk

)2 (∑

uk

)2

− n2
(

∑

ukZk

)2∑

uk
2

− n
(

∑

uk
2
)2 (∑

Zk

)2

+ n
(

∑

ukZk

)2 (∑

uk

)2

− 2
(

∑

uk

)3∑

Zk

∑

ukZk + 2n
∑

uk

∑

ukZk

∑

uk
2
∑

Zk

)

)

,
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which equals

σ2

n − 2

(

∑

Zk
2 +

−n (
∑

ukZk)
2 −

∑

uk
2 (
∑

Zk)
2 + 2

∑

uk

∑

ukZk

∑

Zk

n
∑

uk
2 − (

∑

uk)
2

)

.

This can be written as

σ2

n − 2

(

∑

Zk
2 − A · (

∑

ukZk)
2

∑

uk
2

− A · (
∑

Zk)
2

n
+ B ·

∑

ukZk
√
∑

uk
2
·
∑

Zk√
n

)

, (2.16)

where

A =
n
∑

u2
k

n
∑

u2
k − (

∑

uk)
2 , B = 2 ·

√
n
√
∑

u2
k

∑

uk

n
∑

u2
k − (

∑

uk)
2 .

Note that
∑

Zk√
n

∼ N(0, 1) and

∑

ukZk
√
∑

u2
k

∼ N(0, 1),

since Zk ∼ N(0, 1) and the Zk are independent. Moreover (
P

Zk)2

n
and (

P

ukZk)2
P

u2
k

have mean

1 and variance v, where v can be worked out and is independent of n (it is the variance
of the square of a standard normal random variable).

Therefore

σ2

n − 2

(

− A · (
∑

ukZk)
2

∑

uk
2

− A · (
∑

Zk)
2

n
+ B ·

∑

ukZk
√
∑

uk
2
·
∑

Zk√
n

)

→ 0 a.s.

as n → ∞.

Also Z2
k has mean 1 and variance v2 independent of n since Zk ∼ N(0, 1). Therefore

1
n

∑

Z2
k → N(1, v2

n
) as n → ∞ by the Central Limit Theorem.

Hence σ̂2 → σ2 with probability one as n → ∞ as required. 2

Using σ̂2 to estimate σ2 in (2.9) we have

var(θ̂) = var

(

β̂
η̂

)

=
1

n∆t
∑

u2
k − ∆t (

∑

uk)
2

( ∑

u2
k −

√
∆t
∑

uk

−
√

∆t
∑

uk n∆t

)

σ̂2. (2.17)

2.4 Interval Estimation

The distribution of the parameter estimators β̂ and η̂ if σ2 is known is exactly multivariate
(actually bivariate) normal by the least squares regression theory [22]. However we are
estimating σ2 by σ̂2. Hence if the number of observations n is large, the approximate
100(1 − α)% confidence intervals (CIs) for β and η respectively are

β̂ ± zα/2

√

var(β̂) =

∑

u2
k

∑

yk −
∑

uk

∑

ukyk

n
√

∆t
∑

u2
k −

√
∆t(
∑

uk)2
± zα/2

√

∑

uk
2σ̂2

n∆t
∑

u2
k − ∆t(

∑

uk)2
(2.18)
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and

η̂ ± zα/2

√

var(η̂) =
n
∑

ukyk −
∑

uk

∑

yk

n
∑

u2
k − (

∑

uk)2
± zα/2

√

n∆tσ̂2

n∆t
∑

u2
k − ∆t(

∑

uk)2
, (2.19)

where zα/2 is the upper α/2 value of the standard normal random variable, e.g. z0.025 =
1.96 for a 95% CI.

We notice that as n → ∞, the 100(1 − α)% CIs tend to

∫ T

0
1

(N−I(t))2
dt ·

∫ I(T )

I(0)
1

(N−I)I
dI −

∫ T

0
1

N−I(t)
dt ·

∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2

± zα/2

√

√

√

√

√

∫ T

0
1

(N−I(t))2
dt · σ2

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2

and

∫ I(T )

I(0)
1

(N−I)I
dI ·

∫ T

0
1

N−I(t)
dt − T

∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2

± zα/2

√

√

√

√

Tσ2

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2 ,

respectively.

Theorem 2.2 The asymptotic widths of the CIs for both β and η, which are

2 × zα/2

√

√

√

√

√

∫ T

0
1

(N−I(t))2
dt · σ2

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2

and

2 × zα/2

√

√

√

√

Tσ2

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2 ,

are strictly decreasing as T increases.

Proof. Considering first the width of the CI for β,

∫ T

0
1

(N−I(t))2
dt

T
∫ T

0
1

(N−I(t))2
dt −

(

∫ T

0
1

N−I(t)
dt
)2 =

1

T − (
R

T

0
1

N−I(t)
dt)

2

R

T

0
1

(N−I(t))2
dt

. (2.20)
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Then the derivative of the denominator is equal to

d

dT






T −

(

∫ T

0
1

N−I(t)
dt
)2

∫ T

0
1

(N−I(t))2
dt







= 1 −
2
∫ T

0
1

N−I(t)
dt 1

N−I(T )

∫ T

0
1

(N−I(t))2
dt − 1

(N−I(T ))2

(

∫ T

0
1

N−I(t)
dt
)2

(

∫ T

0
1

(N−I(t))2
dt
)2

=

(

∫ T

0
1

(N−I(t))2
dt − 1

N−I(T )

∫ T

0
1

N−I(t)
dt
)2

(

∫ T

0
1

(N−I(t))2
dt
)2 ≥ 0.

Given a sample path I(t) defined on the interval [0, T ] with I(0) > 0, we deduce that
I(T ) ∈ (0, N) [6]. The only way that the denominator of (2.20) is not strictly decreasing
is if

∫ T

0

1

(N − I(t))2 dt =
1

N − I(T )

∫ T

0

1

N − I(t)
dt

on an interval [T, T + ε] for some ε > 0.

So if ∆T is small enough

(N − I(T + ∆T ))

∫ T+∆T

0

1

(N − I(t))2 dt =

∫ T+∆T

0

1

N − I(t)
dt (2.21)

and

(N − I(T ))

∫ T

0

1

(N − I(t))2 dt =

∫ T

0

1

N − I(t)
dt. (2.22)

Subtracting (2.22) from (2.21) we have

[(N − I(T + ∆T )) − (N − I(T ))]

∫ T+∆T

0

1

(N − I(t))2 dt

+ (N − I(T ))

(

∫ T+∆T

0

1

(N − I(t))2 dt −
∫ T

0

1

(N − I(t))2 dt

)

=

∫ T+∆T

0

1

N − I(t)
dt −

∫ T

0

1

N − I(t)
dt,

which is equal to

(−I(T + ∆T ) + I(T ))

(

∫ T

0

1

(N − I(t))2 dt +
∆T

(N − I(T ))2
+ o(∆T )

)

+ (N − I(T ))

(

∆T

(N − I(T ))2
+ o(∆T )

)

=
∆T

N − I(T )
+ o(∆T ).
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This equals

− I(T )
(

(βN − η − βI(T ))∆T + σ(N − I(T ))[B(T + ∆T ) − B(T )] + o(∆T )
)

∫ T

0

1

(N − I(t))2 dt = o(∆T ).

Dividing by
√

∆T we have

−I(T )

(

(βN − η − βI(T ))
√

∆T + σ(N − I(T ))
B(T + ∆T ) − B(T )√

∆T

)

= o(
√

∆T ).

Letting the time step ∆T be very small and choosing ε0 > 0, ∃ ∆T0 ≤ 1 such that for
∆T < ∆T0 the o(

√
∆T ) term is between −ε0σI(T )(N − I(T ))

√
∆T and +ε0σI(T )(N −

I(T ))
√

∆T , hence must lie between −ε0σI(T )(N − I(T )) and ε0σI(T )(N − I(T )).

Hence the term

B(T + ∆T ) − B(T )√
∆T

∈
(

− βN − η − βI(T )

σ(N − I(T ))
− ε0,−

βN − η − βI(T )

σ(N − I(T ))
+ ε0

)

.

But B(T+∆T )−B(T )√
∆T

∼ N(0, 1) so the probability that it lies in the above interval tends to
zero as ε0 → 0. Hence

P

(

∫ T

0

1

(N − I(t))2 dt =
1

N − I(T )

∫

1

N − I(t)
dt on [T, T + ε] for some ε > 0

)

= 0.

So the denominator of (2.20) is strictly increasing and the width of the CI for β is
strictly decreasing in T . Similarly we can prove the case for η. 2

In the same way as for the simple linear SDE case, the asymptotic widths of the CIs
here do not depend on the size of time step ∆t but only on the total time period T , and
are decreasing as T increases.

2.5 Joint Confidence Region

We have obtained univariate CIs for each parameter β and η in the last section. However
individual CIs do not take into account the correlation among the parameters. Also, they
do not reflect the overall degree of confidence. Joint confidence regions take both issues
into account. So we will obtain a joint confidence region for β and η in this section.

A 100(1−α)% joint confidence region for the general regression model (2.3) is obtained
from the following inequality [22]

(θ − θ̂)T (XTX)(θ − θ̂) ≤ pσ2Fα,p,ν (2.23)

where Fα,p,ν is the value of the F -distribution with degrees of freedom p and ν that leaves
probability α in the upper tail, p is the number of parameters and ν is the degrees of
freedom associated with σ2.

10



Our case only involves two parameters so the 100(1−α)% joint confidence region for
β and η can be written as

((

β̂
η̂

)

−
(

β
η

))T

(var(β̂, η̂))−1

((

β̂
η̂

)

−
(

β
η

))

≤ 2Fα,2,n−2. (2.24)

After substituting (2.17) in (2.24), it can be easily calculated as

n∆t
(

β̂ − β
)2

+ 2
√

∆t
∑

uk(β̂ − β)(η̂ − η) +
∑

uk
2 (η̂ − η)2 ≤ 2σ̂2Fα,2,n−2, (2.25)

where β̂ and η̂ are known in (2.4).

We compute that

4∆t
(

∑

uk

)2

− 4n∆t
∑

u2
k = 4∆t

(

(

∑

uk

)2

− n
∑

u2
k

)

. (2.26)

Defining the vectors in R
n

a = (1, 1, ..., 1) and b = (u1, u2, ..., un) .

then |a|2|b|2 ≥ |a ·b|2 as |a ·b| = |a||b|cosθ, where θ is the angle between a and b. Then
we have |a|2 = n, |b|2 =

∑

u2
k and |a · b| = (

∑

uk)
2. So (2.26) is strictly negative since

the angle between a and b is not 0. Therefore the boundary of the 100(1 − α)% joint
confidence region is an ellipsoid.

Example 2.5.1 Assume that the parameters are given by T = 1, I(0) = 10, β =
0.5, µ = 20, γ = 25, N = 100, and σ2 = 0.03 for the model (1.2). T = 1 is scaled
to represent one year and N = 100 represents 100 million people. We will use the same
scaling for the rest of the examples.

We simulate I(t) using the above parameters by the EM method with a very small
step size ∆t = 0.001 and save these I(t) as our true data set. Then we sample every 10th
data point in the data set to obtain the sample for our parameter estimation, so n = 100
observations and ∆t = 0.01 for our sample.

With the sample we obtained, with α = 0.05 we find the boundary of the 95% joint
confidence region for β and η by using (2.25) and the univariate 95% CIs for each of them
by using (2.18) and (2.19), and also the point estimators by using (2.5) and (2.6), which
are shown in Figure 1a. The ellipsoid in the figure represents the 95% joint confidence
region while the grey lines represent the univariate CIs. We see that most of the ellipsoid
lies in the square which represents the univariate CIs, but the area of the ellipsoid is much
smaller than the square. It indicates the advantage of the joint confidence region that it
drops out many of the extreme values in the univariate CIs and is more efficient. We
see that the ellipsoid is centered at the point estimators of β and η. The red point which
represents the true value of β = 0.5 and η = 45 lies in the ellipse.

Example 2.5.2 Assume that the parameters are given by I(0) = 10, β = 0.5, µ =
20, γ = 25, N = 100, and σ2 = 0.03 for the model (1.2), as in Example 2.5.1.
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Figure 1: (a) is the 95% joint confidence region for β and η obtained using the parameter
values in Example 2.5.1 with T = 1. The ellipsoid in the figure represents the 95% joint
confidence region, while the grey vertical and horizontal lines represent the univariate CIs
for each of β and η. The black point marked in the figure is the point estimate for β and
η, and the red point represents the true values of β = 0.5 and η = 45; (b) is the 95% joint
confidence region for β and η using the parameter values in Example 2.5.2, with T = 5
(black), T = 20 (grey) and T = 50 (blue). The red point represents the true value of
β = 0.5 and η = 45.

In order to see the influence of different interval lengths T on the 95% joint confidence
region, we now vary the value of the interval length T as T = 5, T = 20 and T = 50 and
use the same method as in Example 2.5.1 to simulate a data set for each T and sample
from each of them. When we increase T we increase the number of observations n in
proportion to T to keep ∆t fixed. We then obtain the three 95% joint confidence regions
for the different values of T , which are shown in Figure 1b. We see that the area of the
95% joint confidence region becomes smaller with larger T (larger sequence of observations
n). The red point which represents the true value of β = 0.5 and η = 45 lies in all the
ellipses.

2.6 Estimation from Improved Regression Model with More

Data Sets

The CIs for both β and η are dependent on the sample path. If more data sets are available,
we can expand the original regression model to get better parameter estimation.

Assuming that we have m data sets each of size n, we can put all these data sets in
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the regression model (2.2), so that Y, X, θ and ε become

Y =



















































y11

y12
...

y1n

y21

y22
...

y2n
...

ym1

ym2
...

ymn



















































, X =





















































√
∆t u11√
∆t u12
...

...√
∆t u1n√
∆t u21√
∆t u22
...

...√
∆t u2n
...

...√
∆t um1√
∆t um2
...

...√
∆t umn





















































, θ =

(

β
η

)

, ε =



















































ε11

ε12
...

ε1n

ε21

ε22
...

ε2n
...

εm1

εm2
...

εmn



















































,

using the same formula as in (2.4) we have

(

β̂
η̂

)

= θ̂ = (XTX)−1(XTY)

=
1

mn∆t
∑∑

u2
ij − ∆t (

∑∑

uij)
2

(√
∆t
∑∑

u2
ij

∑∑

yij −
√

∆t
∑∑

uij

∑∑

uijyij

mn∆t
∑∑

uijyij − ∆t
∑∑

uij

∑∑

yij

)

,

(2.27)

where
∑∑

=
∑m

i=1

∑n−1
j=0 and similarly below.

In the same way, we can get

σ̂2 =
YTY − YTXθ̂

mn − 2

=
1

mn − 2

(

∑∑

y2
ij −

(√
∆t
∑∑

yij

)

β̂ −
(

∑∑

yijuij

)

η̂

)

=
1

(mn − 2)
(

mn∆t
∑∑

u2
ij − ∆t (

∑∑

uij)
2 ) ·

(

mn∆t
∑∑

y2
ij

∑∑

u2
ij

− ∆t
∑∑

y2
k

(

∑∑

uij

)2

− ∆t
∑∑

u2
ij

(

∑∑

yij

)2

− mn∆t
(

∑∑

yijuij

)2

+ 2∆t
∑∑

uij

∑∑

yij

∑∑

yijuij

)

.

(2.28)

When proving σ̂2 is an asymptotically unbiased estimator of σ2, the procedure is
similar to the one we used before. We use an equation similar to (2.15),

σ̂2 =
1

mn − 2

∑∑

(yij − ŷij)
2 .

13



After almost identical working to that used before, we can simplify σ̂2 as in (2.16), except
that the

∑

now represents
∑m

i=1

∑n−1
j=0 and the denominator under σ2 is mn − 2. We

know that n → ∞ implies mn → ∞.

So following almost the same procedure for the proof as before, we can prove that
σ̂2 → σ2 with probability one as n → ∞.

Using formula (2.9) and σ̂ in (2.28) to estimate σ we have

var(θ̂) = var

(

β̂
η̂

)

=
1

mn∆t
∑∑

u2
ij − ∆t (

∑∑

uij)
2

(∑∑

u2
ij −

√
∆t
∑∑

uij

−
√

∆t
∑∑

uijmn∆t

)

σ̂2.

(2.29)

If the number of observations is large, the 100(1 − α)% CIs for β and η estimated
from the regression model with m data sets are

β̂ ± zα/2

√

var(β̂)

=

∑∑

u2
ij

∑∑

yij −
∑∑

uij

∑∑

uijyij

mn
√

∆t
∑∑

u2
ij −

√
∆t (

∑∑

uij)
2 ± zα/2

√

∑∑

uij
2σ̂2

mn∆t
∑∑

u2
ij − ∆t (

∑∑

uij)
2

and

η̂ ± zα/2

√

var(η̂)

=
mn

∑∑

uijyij −
∑∑

uij

∑∑

yij

mn
∑∑

u2
ij − (

∑∑

uij)
2 ± zα/2

√

mn∆tσ̂2

mn∆t
∑∑

u2
ij − ∆t (

∑∑

uij)
2 ,

respectively.

As n → ∞, the 100(1 − α)% CIs tend to

∑
∫ T

0
1

(N−Ii(t))2
dt ·∑

∫ Ii(T )

Ii(0)
1

(N−Ii)Ii

dIi −
∑
∫ T

0
1

N−Ii(t)
dt ·∑

∫ Ii(T )

Ii(0)
1

(N−Ii)2Ii

dIi

mT
∑
∫ T

0
1

(N−Ii(t))2
dt − (

∑
∫ T

0
1

N−Ii(t)
dt)2

± zα/2

√

√

√

√

∑
∫ T

0
1

(N−Ii(t))2
dt · σ2

mT
∑
∫ T

0
1

(N−Ii(t))2
dt − (

∑
∫ T

0
1

N−Ii(t)
dt)2

(2.30)

and
∑
∫ Ii(T )

Ii(0)
1

(N−Ii)Ii

dIi ·
∑
∫ T

0
1

N−Ii(t)
dt − mT

∑
∫ Ii(T )

Ii(0)
1

(N−Ii)2Ii

dIi

mT
∑
∫ T

0
1

(N−Ii(t))2
dt − (

∑
∫ T

0
1

N−Ii(t)
dt)2

± zα/2

√

mTσ2

mT
∑
∫ T

0
1

(N−Ii(t))2
dt − (

∑
∫ T

0
1

N−Ii(t)
dt)2

,

(2.31)

respectively. Here
∑

represents
∑m

i=1 .

Example 2.6.1 Assume that the parameters are given by I(0) = 10, β = 0.5, µ =
20, γ = 25, N = 100, and σ2 = 0.03 for the model (1.2), as previously.
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In this example we compare the following 3 methods in terms of the efficiency of
interval estimation. Method 1: One observer is assigned to record I(t) at one location four
times more densely than the comparison during T . Method 2: Two observers are assigned
to record I(t) with the same time steps as the comparison at four locations during T and
these four samples are combined for estimation. Method 3: one observer is assigned to
record I(t) with the same time steps as the comparison during time period 4T . To achieve
this purpose we design the experiment as follows:

We obtain three data sets as in Example 2.5.1, 5 times. The first 4 data sets use the
model parameters above and T = 25, while the fifth data set uses T = 100. Then we sample
every 20th data point in the first data set to obtain sample A, so n = 1250 and ∆t = 0.02
for this case. We use sample A as the benchmark. For Method 1, we obtain sample B
by sampling every 5th data point in the first data set, so n = 5000 and ∆t = 0.005 for
this case. We then use (2.18) and (2.19) to obtain the 95% CIs for β and η. For method
2, we sample every 20th data point in the 2nd to 4th data sets to get sample C, D, E
and combine them with sample A to obtain 4 samples each of n = 1250 and ∆t = 0.02.
For sample A, C, D and E combined together we have n = 5000 observations in total
and ∆t = 0.02. We then use estimators from the regression model with more data sets
using (2.30) and (2.31) to obtain the 95% CIs for β and η (with α = 0.05, zα/2 = 1.96).
For method 3, we sample every 20th data point in the 5th data set to obtain sample F so
n = 5000 and ∆t = 0.02 for this case. The results are displayed in Table 1.

We see from Table 1 that Method 1 (Sample B), using a sample from one location
with denser observations, does not give smaller CIs for both β and η, while Method 2
(Samples A, C, D and E), using more samples at different locations, decreases the width
of the CIs significantly and improves the efficiency of estimation. Method 3 (Sample
F), using a sample with longer observations at one location, also gives narrower CIs.
Therefore we conclude from this example that both Method 2 and 3 improve the efficiency
of estimation. We have repeated our simulations with different model parameter values
and the conclusions are the same.

Table 1: CIs for Example 2.6.1; results are repeated 3 times.

CI for β Width of CI CI for η Width of CI

Sample A (n = 1250,
∆t = 0.02)

(0.36, 1.12) 0.76 (32.06, 106.58) 74.52
(0.32, 0.78) 0.46 (24.78, 71.42) 42.64
(0.15, 0.60) 0.45 (10.84, 54.63) 43.79

Sample B (n = 5000,
∆t = 0.005)

(0.41, 1.13) 0.72 (36.77, 107.53) 70.76
(0.31, 0.72) 0.41 (26.16, 65.84) 39.68
(0.19, 0.62) 0.43 (14.35, 56.29) 41.94

Sample A, C, D and E
(4 × n = 1250, ∆t = 0.02)

(0.36, 0.68) 0.32 (30.98, 62.92) 31.94
(0.39, 0.62) 0.23 (33.68, 56.15) 22.47
(0.38, 0.59) 0.22 (32.62, 53.50) 20.88

Sample F (n = 5000,
∆t = 0.02)

(0.43, 0.76) 0.33 (37.72, 71.73) 34.01
(0.33, 0.63) 0.30 (28.28, 58.07) 29.79
(0.38, 0.60) 0.22 (33.12, 54.34) 21.22

By substituting (2.29) in (2.24), we can easily work out the joint 100(1 − α)% confi-
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dence region for β and η for the regression model with m data sets of size n as

mn∆t(β̂−β)2+2
√

∆t
∑∑

uij(β̂−β)(η̂−η)+
∑∑

uij
2(η̂−η)2 ≤ 2σ̂2Fα,2,mn−2, (2.32)

where β̂ and η̂ are given in (2.27).

We compute that

4∆t
(

∑∑

uij

)2

−4mn∆t
∑∑

u2
ij = 4∆t

(

(

∑∑

uij

)2

−mn
∑∑

u2
ij

)

. (2.33)

As for the regression model with one data set in section 2.5, we can prove that (2.33) is
strictly negative. Therefore the boundary of the 100(1 − α)% joint confidence region for
the regression model with m data sets is still an ellipsoid.

Example 2.6.2 Assume that the parameters are given by T = 1, I(0) = 10, β =
0.5, µ = 20, γ = 25, N = 100, m = 10 and σ2 = 0.03 for the model (1.2).

We simulate I(t) using the above parameters by the EM method with a very small
step size ∆t = 0.001, m = 10 times and save these I(t) as 10 sets of true data. Then we
sample every 10th data in each data set to obtain 10 samples for our parameter estimation,
so n = 100 and ∆t = 0.01 for each of our samples.

We find the boundary of the 95% joint confidence region for β and η using (2.33)
and the univariate 95% CIs for each of them using (2.30) and (2.31), and also the point
estimates using (2.27). These are shown in Figure 2(a).

We see that most of the ellipse lies in the square which represents the univariate CIs,
but the area of the ellipse is much smaller than that of the square. This indicates the
advantage of the joint confidence region, i.e. it does not include many of the extreme
values in the univariate CIs and is more efficient. Also we see that the ellipse is centered
at the point estimate of β and η. The red point which represents the true value of β = 0.5
and η = 45 lies in the ellipse.

Example 2.6.3 Assume that the model parameters are given by T = 1, I(0) = 10, β =
0.5, µ = 20, γ = 25, N = 100 and σ2 = 0.03 for the model (1.2).

In order to examine the influence of different m on the 95% joint confidence region,
we vary the value of m as m = 1, m = 2 and m = 5 and use the same method as
in Example 2.6.2 to simulate data sets for each m and sample from each of them. We
then obtain three 95% joint confidence regions for the different m, which are shown in
Figure 2(b). We see that the area of the 95% joint confidence region becomes smaller
as m becomes larger. Also the red point which represents the true value of β = 0.5 and
η = 45 lies in all the ellipses.

3 Pseudo-Maximum Likelihood Estimation

In this context, the explicit expressions for MLEs for φ = (β, η, σ2) are not attainable,
primarily because it is very difficult to find the corresponding likelihood function. There-
fore we are unable to use the exact Maximum Likelihood method. An approximation

16



20 30 40 50 60 70 80 90

0.
4

0.
6

0.
8

1.
0

eta

be
ta

(a)

−100 −50 0 50 100 150 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

eta

be
ta

(b)

Figure 2: (a) shows the 95% joint confidence region for β and η from (2.32) and m = 10
data sets generated using the parameter values in Example 2.6.2. The ellipse in the figure
represents the 95% joint confidence region, while the grey lines represent the univariate
95% CIs for each of β and η. The black point marked in the figure is the point estimate
for β and η and the red point represents the true value of β = 0.5 and η = 45; (b) shows
the 95% joint confidence region for β and η using the parameter values in Example 2.6.3,
with m = 1 (black), m = 2 (grey) and m = 5 (blue). The red point represents the true
value of β = 0.5 and η = 45.
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scheme, the Pseudo-likelihood method [3, 9], will be applied here to obtain estimators
for β, η and σ2. We use the Euler method, which approximates the path of the process,
so that the discretized form of the process has a likelihood that is usable and so can be
maximised with respect to the parameter values.

3.1 Pseudo-MLE

The Euler scheme discretizes the process as (2.1). The increments Ik+1−Ik are condition-
ally independent Gaussian random variables with mean Ik(βN − η−βIk)∆t and variance
σ2Ik

2(N − Ik)
2∆t. Therefore the transition density of the process can be written as

p(Ik+1, (k + 1)∆t|Ik, k∆t)

=
1

√

2πσ2Ik
2 (N − Ik)

2 ∆t
exp

(

− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)

2 ∆t

)

,
(3.1)

where p(Ik+1, (k+1)∆t|Ik, k∆t) represents the conditional probability density that I[(k+
1)∆t] = Ik+1 given that I(k∆t) = Ik. Then a pseudo-likelihood is obtained as

Ln(φ) =

n
∏

k=1





1
√

2πσ2Ik
2 (N − Ik)

2 ∆t
exp

(

− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)

2 ∆t

)



 .

(3.2)
Taking the logarithm of (3.2) we have the log pseudo-likelihood

ln(φ) = −1

2

∑

[ln(2π∆t) + lnσ2 + lnI2
k + ln (N − Ik)

2]

− 1

2

∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)

2 ∆t
.

(3.3)

The corresponding partial derivatives with respect to β, η and σ2 are

∂ln(φ)

∂β
= −

∑ Ik+1 − Ik − Ik(βN − η − βIk)∆t

σ2Ik
2 (N − Ik)

2 ∆t
· (−IkN∆t + I2

k∆t), (3.4)

∂ln(φ)

∂(η)
= −

∑ Ik+1 − Ik − Ik(βN − η − βIk)∆t

σ2Ik
2 (N − Ik)

2 ∆t
· Ik∆t, (3.5)

∂ln(φ)

∂σ2
= − n

2σ2
+

1

(σ2)2
· 1

2∆t
·
∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

Ik
2 (N − Ik)

2 . (3.6)

By setting all the partial derivatives equal to zero and solving these simultaneously, we
find β̂, η̂ and σ̂2 where the pseudo-likelihood function changes direction. We find that
β̂, η̂ have the same expressions as the least squares estimators in (2.7) and (2.8), while

σ̂2 is almost the same as the least squares estimator (2.14) except that it has n in the
denominator instead of (n − 2). We notice that β̂, η̂ and σ̂2 are a unique solution to the
partial derivative equations (3.4), (3.5) and (3.6), and the likelihood function (3.2) tends
to 0 at the boundary. Since the values of the likelihood function are always positive, we
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conclude that the turning point (β̂, η̂, σ̂2) maximises the pseudo-likelihood function (3.2).
Therefore φ̂ = (β̂, η̂, σ̂2) are the pseudo-MLEs for (1.2).

In the following sections we construct joint confidence regions for the pseudo-MLEs
that we have obtained.

3.2 Exact Joint Confidence Region

We know that the pseudo-MLEs are exactly the same as the least squares estimators,
except for a minor difference in the estimation of σ2. If we want to find a joint 100(1−α)%
confidence region for θ = (β, η) then we have already found this in the least squares case
in (2.25) and (2.32) (for both m = 1 and m > 1) by obtaining an exact 95% confidence
region for θ as

(θ − θ̂)T
(

var(β̂, η̂)
)−1

σ2(θ − θ̂) ≤ σ2χ2
α,2, (3.7)

where χ2
α,2 is the upper α point of the χ2 distribution on 2 degrees of freedom, and then

estimating σ2 by σ̂2. Note that we use σ̂2 in (2.14) instead of σ̂2 from the pseudo-MLE
since the least squares estimator for σ2 is unbiased and is slightly better than the pseudo-
MLE. Arnold (1998) [1] argues that if plug-in estimates are used for the variance, it is
sensible to change the distribution from χ2

2 to 2F2,n−2 [4], to balance out the loss of
accuracy because of the substitution that increases the area of the region. We replace σ2

by σ̂2 and therefore it is more sensible to use 2F2,n−2 here. Then it will lead to the same
analytic form of the 100(1 − α)% joint confidence region for β and η as the least squares
case in (2.24).

We already know the exact confidence region for β and η but we did not obtain the
confidence region for all three pseudo-MLEs. In the following sections we construct large
sample 100(1 − α)% joint confidence regions for all three pseudo-MLEs and for β and η
as well for purposes of comparison. There are two ways to construct the asymptotic joint
confidence region. The first method is based on the assumption that the pseudo-MLEs
are approximately multivariate normally distributed, while the second is based on the
likelihood ratio test statistic.

3.3 Asymptotic joint confidence regions based on the approxi-

mate multivariate normality of pseudo-MLEs

We can regard one data point as X = (x0, x1, ..., xn), which is a complete run with the
initial data I0 and the transition probability as in (3.1). If we obtain m data points
X = (x0, x1, ..., xn) all with the same initial value and the same transition probability,
then our m observations are independently and identically distributed and all with the
pseudo-likelihood function as given in (3.2). Within this framework, we can apply the
asymptotic maximum likelihood theory.

If m = 1 (i.e. we have only one run) or m is very small this is not very helpful as
the asymptotic theory requires the number of observations (m here) to be very large in
order to be valid. In this case the estimators β̂ and η̂ are exactly the same as in the
least squares case. So if σ2 is known their distribution is still exactly multivariate normal.
Therefore if m = 1 we use the exact confidence region as in (2.24) to estimate β and η for
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the pseudo-MLE case. If m is large, we can then use the asymptotic pseudo-MLE theory
and the likelihood ratio test which we will introduce in the next section.

First we find a joint confidence region for φ = (β, η, σ2). It is a standard result that
the maximum likelihood estimators (β̂, η̂, σ̂2) for (β, η, σ2) are approximately multivari-
ately normally distributed with mean φ and variance 1

m
Σ(φ)−1, where Σ(φ) is the Fisher

information matrix defined in (3.9) [1, 16, 20], i.e.

φ(m) ∼ N (3)

(

φ,
1

m
Σ(φ)

)

approximately, (3.8)

where

Σ−1(φ) = σij(φ) = −E

{

∂2

∂φi∂φj

lnf(X; φ)

}

. (3.9)

Here

f(X; φ) =
n
∏

k=1





1
√

2πσ2Ik
2 (N − Ik)

2 ∆t
exp

(

− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)

2 ∆t

)



 ,

so that

lnf(X; φ) = −1

2

∑

[ln(2π∆t) + lnσ2 + lnI2
k + ln (N − Ik)

2]

− 1

2

∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)

2 ∆t
.

The regularity conditions required are that

d

dφ

∫

Ω

f(x; φ)dx =

∫

Ω

∂

∂φ
f(x; φ)dx (3.10)

where Ω denotes the sample space. This property follows from the conditional normal
distribution of the increments Ik+1 − Ik. For example

∂

∂β

∫

Ω

f(x; φ)dx = 0

as the integral over the sample space is one. But

∂

∂β
f(x; φ) =

n
∑

k=1

θkf(x; φ), where θk =
Ik+1 − Ik − Ik(βN − η − βIk)∆t

σ2Ik
2 (N − Ik)

2 ∆t
·(IkN∆t−I2

k∆t),

for k = 1, 2, 3, . . . , n.

So

∫

Ω

∂

∂β
f(x; φ)dx =

n
∑

k=1

E(θk),

=
n
∑

k=1

E
{

E(θk|I0, I1, . . . , Ik)
}

,

= 0,
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as the conditional distribution of Ik+1 − Ik given I0, I1, . . . , Ik is Gaussian with mean
Ik(βN − η − βIk)∆t and variance σ2I2

k(N − Ik)
2∆t. The other two parts of (3.10) corre-

sponding to η and σ2 follow similarly.

The quadratic form associated with (3.8),

U =

3
∑

i=1

3
∑

j=1

mσij(φ)(φ̂i − φi)(φ̂j − φj) (3.11)

has an approximate chi-square distribution with three degrees of freedom for large m.

Because φ̂ is a strongly consistent estimate of φ, the statistics U will still have an
asymptotic chi-square distribution with σij(φ) being substituted by σij(φ̂).

This will give a three dimensional confidence region for φ = (β, η, σ2). To actually
evaluate this asymptotic confidence region for our case is very complicated. The equation

(3.9) is very difficult to calculate since it involves the approximation of E
(

1
(N−Ik)2

)

, and

also it will bring in extra error from the approximation, so we do not use this confidence
region in our examples.

On the other hand we could assume that σ is known and that we are trying to estimate
θ = (β, η). This is parallel to the estimation procedure that we used in the least squares
problem (estimating σ by σ̂ and getting a two dimensional confidence region for β and
η). Then

θ(m) ∼ N (2)

(

θ,
1

m
Σ(θ)

)

approximately,

where

Σ−1(θ) = σij(θ) = −E

{

∂2

∂θi∂θj
lnf(X; θ)

}

. (3.12)

The associated quadratic form

U ′ =
2
∑

i=1

2
∑

j=1

mσij(θ)(θ̂i − θi)(θ̂j − θj) (3.13)

has an approximate chi-square distribution with two degrees of freedom for large m.

Note that θ̂ is the pseudo-MLE θ̂(σ) = (β̂(σ), η̂(σ)) with σ known and solves

∂

∂β
lnLn(θ) = 0 and

∂

∂η
lnLn(θ) = 0.

Here Ln(θ) is given by (3.2) except that σ is regarded as known.

If σ is actually unknown, we can substitute σ by its least squares estimator σ̂. Then
the distribution for that statistic U ′ is 2F2,mn−2 [4]. We should use mn − 2 here rather
than m− 2 as the estimator σ̂2 is the average of mn− 2 sums of squares. Also we should
use the least squares estimator, not the pseudo-MLE for σ̂, for the same reason as in
section 3.2, although the results using the pseudo-MLE will be very close. If m is large,
2F2,mn−2 will be approximately the same as a chi-square distribution with two degrees
of freedom and the asymptotic confidence region will then approach the exact confidence
region.

We are unable to work out this asymptotic confidence region numerically for the same
reason as in the three dimensional case.
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3.4 Joint confidence regions based on the likelihood ratio statis-

tic

Another approximate confidence region is based on the likelihood ratio test statistic [1].
Suppose that we have m independent observations X1,X2, ...,Xm with common density
f(X|φ). Then we can approximate the 100(1 − α)% confidence region for φ by

(φ : −2logRn(φ) < χ2
3,1−α). (3.14)

Here

Rn(φ) =
Lm(φ)

Ln(φ̂)
,

where the vector φ̂ contains the pseudo-MLEs for φ, the parameters,

Lm(φ) =

m
∏

j=1

Ln,j(φ) (3.15)

and Ln,j(φ) =

n
∏

k=1





1
√

2πσ2Ik,j
2 (N − Ik,j)

2 ∆t
exp

(

− 1

2

[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)

2 ∆t

)



 .

So a 100(1 − α)% confidence region for φ is

m
∑

j=1

n
∑

k=1

(

ln
2

√

2πσ̂2Ik,j
2 (N − Ik,j)

2 ∆t
− ln

2
√

2πσ2Ik,j
2 (N − Ik,j)

2 ∆t

+
[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)

2 ∆t

)

− mn < χ2
α,3.

Again if σ2 is assumed known, a similar argument shows that a 100(1−α)% confidence
region for θ is

m
∑

j=1

n
∑

k=1

(

[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)

2 ∆t

− [Ik+1,j − Ik,j − Ik,j(β̂N − η̂ − β̂Ik,j)∆t]2

σ2Ik,j
2 (N − Ik,j)

2 ∆t

)

< χ2
α,2.

(3.16)

Here again θ̂ is the pseudo-MLE θ̂(σ) = (β̂(σ), η̂(σ)) with σ known, and solves

∂

∂β
lnLm(θ) = 0 and

∂

∂η
lnLm(θ) = 0.

In these equations Lm(θ) is given by (3.15) but regarded as a function of θ = (β, η) with
σ known rather than as a function of φ = (β, η, σ).
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Again if we replace the unknown σ by σ̂ (the least squares estimator), then the
distribution should be 2Fα,2,mn−2.

Then (3.16) can be written as

m
∑

j=1

n
∑

k=1

(

[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)

2 ∆t
− (mn − 2)

)

< 2Fα,2,mn−2,

which is equivalent to

1

σ̂2

(

m
∑

j=1

n
∑

k=1

(Ik+1,j − Ik,j)
2

Ik,j (N − Ik,j)
2 ∆t

+ β2mn∆t + η2
m
∑

j=1

n
∑

k=1

∆t

(N − Ik,j)
2 + ηβ

m
∑

j=1

n
∑

k=1

−2∆t

N − Ik,j

+ β
m
∑

j=1

n
∑

k=1

−2(Ik+1,j − Ik,j)

Ik,j(N − Ik,j)
+ η

m
∑

j=1

n
∑

k=1

2(Ik+1,j − Ik,j)

Ik,j (N − Ik,j)
2

)

− (mn − 2) < 2Fα,2,mn−2.

This can be simplified as
m
∑

j=1

n
∑

k=1

y2
k,j + β2nm∆t + η2

m
∑

j=1

n
∑

k=1

u2
k,j + ηβ2

√
∆t

m
∑

j=1

n
∑

k=1

uk,j + β(−2
√

∆t)
m
∑

j=1

n
∑

k=1

yk,j

+ η(−2)

m
∑

j=1

n
∑

k=1

uk,jyk,j − (mn − 2)σ̂2 < 2σ̂2Fα,2,mn−2,

with uk and yk defined in (2.2).

This can be written as

mn∆t
(

β − β̂
)2

+

m
∑

j=1

n
∑

k=1

u2
j,k (η − η̂)2+2

√
∆t

m
∑

j=1

n
∑

k=1

uk,j(β−β̂)(η−η̂) < 2σ̂2Fα,2,mn−2−D,

(3.17)
where

D = −mn∆tβ̂2 −
m
∑

j=1

n
∑

k=1

u2
j,kη̂

2 − 2
√

∆t
m
∑

j=1

n
∑

k=1

uk,jβ̂η̂ +
m
∑

j=1

n
∑

k=1

y2
k,j − (mn − 2)σ̂2.

The region (3.17) has the same form as the exact confidence region (2.32) apart from the
substraction of a constant D on the right hand side. We have shown that (2.33) is strictly
negative and therefore the 100(1−α)% confidence region for θ (3.17) is an ellipse centered
at the pseudo-MLE β̂ and η̂. We numerically compare the exact 95% confidence region
for θ with the asymptotic confidence region obtained by using the likelihood ratio test in
the following example, and establish the size of the difference D in this case.

Example 3.4.1 Assume that the parameters are given by T = 5, I(0) = 10, β =
0.5, µ = 20, γ = 25, N = 100, m = 100 and σ2 = 0.03 for the model (1.2).

We use the same method as in Example 2.6.2 to simulate m = 100 data sets and
sample from them. With the samples we obtained, we calculate both the 95% joint confi-
dence region for β and η (2.32) and the asymptotic confidence region obtained using the
likelihood ratio test (3.17). These confidence regions are shown in Figure 3. The two con-
fidence regions are almost identical and the difference between them can hardly be seen.
We calculated D, the difference between the two confidence regions as shown in (3.17),
which is very small, −2.373 × 10−12 in this case.
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Figure 3: (a) shows the exact 95% joint confidence region for β and η (2.32) using the
parameter values in Example 3.4.1; (b) shows the approximate likelihood ratio based
confidence region using (3.17).

4 Summary and Further Work

In this paper we have applied the pseudo-MLE and the least squares method to estimate
the parameters in the stochastic SIS model. For the least squares method, we started
with the case in which only one data set is available and then improved our method by
considering the case where more than one data set is available. We have obtained the
point estimators, 100(1 − α)% CIs and 100(1 − α)% joint confidence regions for β and η
for both cases. We also investigated which factors influence the width of the CIs and the
areas of the confidence regions. Theorem 2.2 states that the asymptotic widths of the CIs
for both β and η strictly decrease as the total time period T increases and do not depend
on the size of the time step ∆t. Example 2.6.1 shows that a sample from one location with
denser observations does not give narrower CIs, while using more than one sample taken
at different locations and getting a sample with a longer period of observation at one
location decreases the width of CIs significantly and improves the efficiency of estimation.
Examples 2.5.2 and 2.6.3 show that the area of the confidence region decreases with
increasing total time period T and increasing number of samples m.

We have also obtained pseudo-MLEs which are almost the same as the point esti-
mators from the least squares case, with a minor difference in the estimators of σ2. For
obtaining the confidence region for the pseudo-MLEs we considered the following two
cases. When the number of samples m is small, we obtained the exact confidence region
for β and η in the pseudo-MLE case based on the least squares method. When m is large,
we used the asymptotic MLE theory and the likelihood ratio test to obtain the large sam-
ple confidence regions for both the three dimensional case (using all three pseudo-MLEs)
and the two dimensional case (estimating β and η assuming that σ is known). We only
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calculated numerically the asymptotic confidence region based on the likelihood ratio test
for β and η. Example 3.4.1 shows that the numerical asymptotic confidence region using
the likelihood ratio test for β and η is almost identical to the exact confidence region.

Comparing the least squares estimation method and the pseudo-MLE method, we
find that although the pseudo-MLE is more popular for parameter estimation for SDEs,
least squares estimation gave the same point estimators and joint confidence region as the
pseudo-MLE and is easier to apply. In our case least squares estimation is advantageous.

The Bayesian approach is another popular way to estimate the parameters for SDEs
[9]. In practice, we often have some information about the value of parameters before
data is collected. The Bayesian approach is advantageous in this circumstance since it
includes the prior information about the model parameters in the form of one or more
prior distributions [5]. We are applying the Bayesian approach to our stochastic SIS model
and will report the results in a further paper.
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