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We develop a theoretical model to account for the spin-induced atomic displacements in 

conjugated alternant hydrocarbons. It appears to be responsible for an enlargement of the 

distance between pairs of atoms separated by two atoms and located at the end of linear 

polyenes. It also correlates very well with the bond dissociation enthalpies for the cleavage of 

the C-H bond as well as to the spin density at carbon atoms in both open and closed shell at 

graphene nanoflakes (GNFs). Finally, we have modified the Schrödinger equation to study 

the propagation of the spin-induced perturbations through the atoms of GNFs.  
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1. Introduction 

Conjugated alternant hydrocarbons (CAHs) have played a fundamental role in the 

development of theoretical chemistry. The effectiveness of the Hückel molecular orbital 

(HMO) method for studying electronic properties of CAHs continues to amaze generations of 

chemists [1]. The whole area of chemical graph theory has been fueled by the development of 

theoretical tools for studying the energetic properties of conjugated polyenes and polycyclic 

aromatic compounds as well as fullerenes and carbon nanotubes [2, 3]. The recent discovery 

of graphene has increased the interest in CAHs in physics, chemistry and material sciences 

from both a theoretical and experimental perspective [4]. In particular, the existence of open-

shell configurations in certain graphene nanoflakes (GNFs) has been identified as the major 

cause of relevant magnetic properties, such as in the case of trigonal zigzag GNFs which are 

predicted to show metallic antiferromagnetism [5, 6]. The same electronic property is also 

responsible for the intriguing properties of functionalized trigonal GNFs, such as spin transfer, 

their use as components in molecule-based conductors and as electrode active materials in 

secondary batteries [7]. Graphene nanoflakes (GNFs), also known as nanoislands or 

nanodisks, are finite-sized graphene fragments of arbitrary size and shape. When the edges of 

these fragments are passivated by hydrogen, GNFs are realizable as all-benzenoid PAHs [8] in 

which all carbon atoms have sp
2
 hybridization. GNFs can possess large spins depending of 

their shapes, which include linear, triangular, rectangular, parallelogrammic, hexagonal, 

bowtie, etc.  

Apart from the well-known fact that the zero-energy states in CAHs give rise to 

unbonded electrons or radicals, any CAH can be represented as a superposition of various 

resonant structures which include a few radical ones. In other words, any CAH has a 

radicaloid structure even in the case that they do not have any zero-energy states [7, 9-13]. 

Such radical character is responsible for the nonlinear optical (NLO) properties of several 
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GNFs [11-13]. It is also expected to influence the spin density at the different sites of GNFs 

and consequently the electronic, optical and magnetic properties of GNFs.  

In this work we propose a theoretical approach to account for the atomic displacements 

in CAHs due to spin-spin repulsions between pairs of atoms that are separated by two bonds. 

Our approach consists in considering the CAH as a quantum harmonic oscillator in which 

carbon atoms separated by two bonds are connected by springs with negative (repulsive) 

force constant. We then derive the thermal Green’s function for this system which accounts 

for the atomic displacement due to the spin-spin repulsion between atoms which are 

separated by two bonds in alternant conjugated systems. Due to the bipartite nature of CAHs, 

the zero-energy states, if they exist, lie just in the middle of the spectrum of a CAH. The 

particular mathematical form of the thermal Green’s function defined here gives more weight 

to those energy levels which are at the centre of the spectrum of the CAHs. Then, the atomic 

displacements due to spin-spin repulsion correlate very well with the spin density at the given 

atoms, which make them suitable descriptors for C-H bond dissociation enthalpies at these 

sites. More importantly, we have discovered a tiny effect in the geometry of linear conjugated 

polyenes reflected in their crystallographic structures which could be due to the atomic 

displacements induced by spin-spin repulsion. This effect is not accounted for by ab initio 

quantum chemical methods. 

2. Theoretical Model 

Let us consider an alternant conjugated hydrocarbon consisting of n  carbon atoms 

connected through alternant double and single bonds. The molecule is then represented by a 

bipartite graph such that the carbon atoms can be divided into two subsets (starred and 

unstarred), in a way that any site from one subset has its neighbors only in the other subset. 

This implies that if 
j

E  is an energy level of a CAH, then 
j

E  is also an energy level, with the 
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same multiplicity. In addition, according to the spin alternation rule [14-16], which states that 

the singlet spin pairing is preferred solely between sites in different subsets, the free valences 

on the starred and unstarred sites might be identified with “up” and “down” spin. 

Consequently, any pair of carbon atoms separated by two bonds has the same spin. This means 

that we can consider that pairs of atoms separated by two bonds in CAHs suffer spin-spin 

repulsion. Let us assume that every carbon atom is represented by a ball of mass m  and that 

there is a spring with the spring constant 
2m  connecting two balls separated by two bonds. 

The negative sign of these spring constants indicates that there is repulsion between these 

pairs of atoms due to spin-spin interactions. 

We now consider the CAH as a quantum harmonic system in which atoms oscillate 

under thermal disturbances. For the sake of simplicity, we assume that there is no damping 

and no external forces are applied to the system. The coordinates chosen to describe a 

configuration of the system are ix , 1,2, ,i n , each of which indicates the fluctuation of the 

atom i  from its equilibrium point 0ix  . In order to find how the thermal disturbances 

propagate through the molecule we will start by considering a Hamiltonian of the form 

   
2 2 2 2 2

,

2 2 4

i i
i i ij i j

i i j

p m x m
H K k T x x

m

 



 
     
 
 

   (1) 

where ik  is the number of atoms adjacent to the atom i  and 
iK  is a counter term that offsets 

the movement of the whole molecule by tying it to the ground. The second term of the right-

hand side is the potential energy of the springs connecting the balls. The term ijT  is equal to 

one if the atoms i  and j  are separated by two bonds, or zero otherwise. The first term in the 

first set of square parentheses is the kinetic energy of the atom i . Here we consider 2i iK k  

in (1) such that the Hamiltonian can be written as: 
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2 2 2
2

,

,

2 2 2

i
i i i ij j

i i j

p m m
H x k x T x

m

  
   
 
 

   (2) 

This Hamiltonian can then be simplified to 

2 2

,

,

2 2

i
i ij j

i i j

p m
H x P x

m


    (3) 

where the entries of the matrix P  are 

if 
1   if 2
0     otherwise,

i

ij ij

k i j
P d

 
 


 (4) 

and ijd  is the number of bonds separating the corresponding atoms. 

It is straightforward to realize that the matrix 
2P A , where the adjacency matrix A  is 

a square symmetric matrix whose entries are ones or zeros if the corresponding pairs of atoms 

are bonded or not, respectively. It corresponds to the Hamiltonian of the Hückel molecular 

orbital (HMO) method [1].  

Here we are interested only in the influence of the molecular topology in the 

propagation of the spin-spin repulsions between pairs of atoms separated by two bonds. 

Consequently, we can approximate the Hamiltonian in the following way 

 2

, ,

i ij j i j
ij

i j i j

H x P x x x  A . (5) 

We now obtain the diagonal thermal Green’s function  pp
G  , where we have 

restricted ourselves to the space spanned by the ground state (the vacuum). This function 

indicates how much an excitation at a given carbon atom propagates through the whole 

molecule before coming back to the same atom and being annihilated, 

  †1 H

pp p p
G vac a e a vac

Z

  , (6) 
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where   is the inverse temperature, Z  is the partition function, †

p
a  and 

p
a  are the creation 

and annihilation operators. Following the procedure described in [17] we obtain the thermal 

Green’s function, which is given by 

         
2 2 2

1

exp
n

H A

pp j jpp pp
j

G e e p    



   , (7) 

where 
j

  is an eigenvalue of A  and 
j

  its corresponding eigenfunction. In the current study 

we will keep 1   in all the calculations. 

3. Spin-induced Atomic Displacements in Polyenes 

In this section we develop some analytic expressions for 
pp

G  in linear and cyclic 

polyenes. A linear polyene is represented by a path graph. That is, a graph in which every 

node is adjacent to other two except two nodes which are adjacent to only one node. The p th 

entry of the j th eigenvector of the adjacency matrix of nP  is given by 

 
2

sin

1 1
j

jp
p

n n


 

 

 ( 1, ,j n ) and the corresponding eigenvalue by 2cos

1
j

j

n


 



 

[18]. Then we have 

24cos
2 1

1

2
sin

1 1

jn

n

pp

j

jp
G e

n n

  
  

 



 
  

  
 . (8) 

By using trigonometric relationships this expression can be modified to 

24 cos
1

1

2 2 2
2 cos 2 cos

1 1

1 1

2 1 1 2
cos

1 2 2 1

2
cos .

1 1

jn

n

pp

j

j jn n

n n

j j

jp
G e

n n

e jp
e e

n n



 





 
  

 



    
    

    

 

  
   

   

  
   

   



 

 (9) 

Let 
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 
2

2cos 2cos

0 0

cos 2 ,
pp

e
G e d p e d

 

   




  
   

 
   (10) 

and let 

  cos

0

0

1 z dI z e


 



  , (11) 

   cos

0

1
cosz

k
I z e k d



  


  , (12) 

be Bessel functions of the first order. Then, 

       2

0
2 2

pp n r p
G P e I I     

 
, (13) 

where 

    if / 2 (  even) or ( 1) / 2 (  odd)
1  if / 2 (  even) or ( 1) / 2 (  odd),

p p n n p n n
r p

n p p n n p n n
   

      
 

and  / 1j n   . Finally, we can see that    / 1pp n pp nG P G P   as n . 

A cyclic polyene can be represented by a cycle graph, which is the one in which every 

node is adjacent to other two. Here we consider only cyclic polyenes of even length, 

otherwise they are not bipartite. Following an analogous procedure as the previously 

described we find that 

   2

0
2

pp n
G C e I  , (14) 

where also    / 1pp n pp nG C G C   as n . 
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As an example we illustrate in the following Table the values of 
pp

G  for the atoms 

1, ,4p   in octatetraene, 8P  (see Figure 1). The atoms are labeled as in Figure 1. For the 

cyclooctatetraene or [8]annulene ( 8C ) the value of 
pp

G  is 0.3022 while that obtained by using 

formula (15) is 0.3085. 

Insert Table 1 and Figure 1about here. 

The study of polyenes demonstrates that the degree of connectivity of a given atom is 

an important factor in determining the atomic displacements due to spin-spin repulsion. That 

is, the terminal CH2 groups have more atomic displacements that the CH groups at the centre 

of the chain. As a consequence the separation between the atoms labeled as 1 and 3 in linear 

polyenes is expected to be larger than those for pairs more at the centre of the chain, such as 

atoms 2 and 4 or 3 and 4’. Due to the weak nature of the spin-spin repulsion this effect is 

expected to be relatively small. However, the X-ray structure of all-trans 1,3,5,7-octatetraene 

reveals that this effect is observed for the different pairs of atoms separated by two bonds in 

the molecule (see Table 2) [19]. For instance, the distance between the atoms 1 and 3 in this 

molecule is 2.469 Å, which is slightly longer than that between the atoms 2 and 4 (2.466 Å). 

The distance between atoms 3 and 4’ is again slightly enlarged with respect to that of the pair 

2-4 (2.468 Å). Such alternancy cannot be explained by effects in the crystal structure. 

However, it is predicted by our current model as can be seen in Table 1 where we give the 

sum of the atomic displacements between the corresponding pairs of atoms as an indication 

of the effect of the spin-spin repulsion between atoms separated by two bonds. It is worth 

mentioning here that this effect is not reproduced by high-level ab initio quantum chemical 

calculations as can be seen in Table 1 [20]. In all the cases reported the distance between 

atoms 1 and 3 is shorter than those of the atoms 2-4 and 3-4’. Consequently, we argue here 
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that the consideration of the weak spin-spin repulsion between pairs of atoms separated by 

two bonds could be a desirable correction for quantum chemical approaches.  

Insert Table 2 about here. 

4. Spin-induced Atomic Displacements in Graphene Nanoflakes 

Another factor which is expected to influence 
pp

G  is the radical character of the 

corresponding atom. It is expected that the larger the radical density in a given atom, the 

larger the atomic displacement due to spin-spin repulsion. Here we study computationally the 

atomic displacement due to spin-spin repulsion in graphene nanoflakes. First we start by 

studying how 
pp

G  can give information about physicohemical properties of the atoms in these 

molecules, which indirectly can provide hints about the relation between the atomic 

displacements and spin densities. We then analyze the relation between 
pp

G  and the bond 

dissociation enthalpies (kcal/mol at 298K) for the cleavage of the C-H bond in PAHs. In 

Figure 2 we show the mean atomic displacements due to spin-spin repulsion at the 

nonequivalent sites of naphthalene, anthracene and pyrene together with their bond 

dissociation enthalpies calculated at the B3LYP/6-31G(d) level by Barckholtz et al. [21]. For 

naphthalene we also shown the experimental values reported by Reed and Kass [22]. As can 

be seen the 
pp

G  index perfectly predicts the sites with the largest enthalpies for cleavage the 

C-H bond, which correspond to those with the highest mean atomic displacement due to spin-

spin repulsion.  

Insert Figure 2 about here. 

In order to understand this result we first need to understand the relation between the 

atomic displacements and the density of radicals at given atoms. If we consider two atoms 

separated by two bonds the repulsion force acting on them is basically due to the spin-spin 
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repulsion. Then, if the spin densities at such atoms are large the repulsion between the atoms 

should be stronger. In closing, the atomic displacement should be larger for those pairs of 

atoms displaying high spin densities. The spin density is expected to be higher at those sites 

in which radicals or radicaloids are localized. Consequently, we expect a correlation between 

the radical density at a given site and the atomic displacement due to spin-spin repulsion. 

Now we can understand why the sites with the largest atomic displacements are those with 

the highest bond dissociation enthalpies. That is, the site with the largest 
pp

G  is also that with 

the largest radical (spin) density. Then removing the hydrogen attached to this site is quite 

energetic as it will increase dramatically the radical density at this carbon atom. 

Now we study the atomic displacements due to spin-spin repulsion of four types of 

GNF systems, namely: linear (acenes), hexagonal (coronenes), trigonal (triangulenes) and 

bowtie GNFs. The first two types of systems are examples of closed-shell GNFs and the last 

two represent systems with open-shells. As can be seen in Figure 3 for small representatives 

of the GNFs studied here the index 
pp

G  predicts the largest atomic displacements at the edges 

of the GNFs in a way that coincides with the spin densities calculated for these systems using 

first principle methods [9]. This is a remarkable finding as our Hamiltonian does not consider 

electron spin explicitly. It can be interpreted by considering that the carbon sites where 

certain radicaloid structures exist suffer the largest spin-spin repulsion and so their atomic 

displacements are relatively large. In the case of the triangulene illustrated in Figure 3 the 

sites with the largest atomic displacements are those that support radicals in the molecules 

obtained experimentally so far. For instance, the derivative of triangulene reported by Allison 

et al. in 1995 [23] displays the radicals at the three sites in which 
pp

G  is maximum. A similar 

observation holds for the derivative obtained by Inoue et al. in 2001 [24].  All these findings 

indicate that the index 
pp

G  is a good indicator of the spin density at sites in GNFs.  
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Insert Figures 3 about here 

Finally, we consider the atomic displacements entropy in order to study the total atomic 

displacements delocalization in the GNFs studied. It is defined as ln
i ii

S p p  , where 

 2exp /
i i

p Z  . We then study the average entropy per site S . The results indicate that 

the maximum atomic displacement per site is present in the hexagonal system. At the same 

time the highest localization is obtained for the triangular GNF, with the linear and bowtie 

GNFs occupying an intermediate position: 11.4
H

S  , 11.2
L

S  , 11.1
B

S   and 

10.7
T

S  . The highest localization in the triangular system is expected from the fact that it 

has an open shell configuration in which a few radicals are found in some sites with high 

probability. The same is also expected for the bowtie nanoflake, which indeed has the second 

largest localization according to S . The surprise then comes from the similarity in the 

localization index between the linear system and those with open-shell configurations. 

Despite the fact that linear GNFs are expected to have closed shell configurations, there are 

important clues that when the number of fused rings is larger than 7 the ground states of these 

nanoflakes are antiferromagnetic ones [25-27], which agrees with our prediction about the 

similarity between this system and the open-shell ones.   

5. Propagation of spin-induced perturbations 

Now, let us consider how the perturbation produced at the site 
0

x
 
by the spin-spin 

repulsion propagates through the whole molecule. If we consider that such perturbation is 

located at this atom at the time 0t  , the dynamics of the propagation through the sites of the 

molecule can be understood by studying the evolution of the electronic wave packet given by 

the time-dependent Schrödinger equation with the Hamiltonian (5) ( 1 ) 
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 
 2

t
i A t

t








, (15) 

with the initial condition  
0,

0
x x x

t   . The solution of (4) is      2exp 0t itA   . 

Obviously, the amplitude that the perturbation that resided at site q  at time 0t   ends up at 

the site p  due to the quantum dynamics is given by  2expp itA q . Then, by 

continuation from the real time t  to the imaginary time, we obtain the thermal Green’s 

function as  2exp
pq

G p A q  .  

In order to compare the dynamic properties of the four systems under study we analyze 

the scaling behavior of the temporal autocorrelation function averaged over different 

nonequivalent initial positions of the wave packet. The temporal autocorrelation function is 

defined by    
2

0

1 t

pp
C t t dt

t
   , where    2exp

pq

pq

t itA   
  

 and  indicates the 

average over the nonequivalent sites. The integrand of this function    
2

p pp
P t t   is known 

as the return probability of the wave packet initially localized at the site p . It is known that 

the temporal autocorrelation function scales as   ~C t t 
, where 0 1   [28]. As it is well 

known 0   indicates localization of the wave packet, 0 1   indicates anomalous 

diffusion and 1   indicates ballistic motion. Thiem and Schreiber [29] have recently 

suggested the use of the scaling behavior of the return probability instead of that of the 

autocorrelation function. In this case,   ~P t t 
 and it is expected that    . However, it is 

usually the case that     and    can be even larger than one, which according to Zhong 

and Mosseri [30], makes the integral in the autocorrelation function convergent, yielding 

  ~1/C t t . In Figure 4 we illustrate the scaling behavior of the return probability and the 

temporal autocorrelation function for the four systems studied. The sizes of the systems are 
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498, 486, 526, and 500, respectively. It is observed in the four GNF systems that  C t  

decays with a power-law behavior before approaching a constant value due to finite size 

effects. The quantity  C t  decays strongly for the GNFs with closed-shell systems, i.e., 

linear and hexagonal, indicating a more extended nature of the wave functions in these 

systems. That is, the values of   for the four systems are, respectively 0.92
H

  , 0.92
L

  , 

0.89
B

   and 0.88
T
  , where H, L, B and T stand for hexagonal, linear, bowtie and 

triangular, respectively. This indicates that in the four systems there is anomalous quantum 

diffusion with larger localization of the radical wave packet in those systems with open-

shells. In general, it is difficult to extract the scaling behavior for the return probability in 

these systems due to the short period of decay before the wave packet starts to oscillate 

around a constant value due to the small sizes of the systems considered here. The only 

exception is the linear GNF where it was possible to check that   1.02~P t t 
, indicating a 

ballistic motion of the radical along the linear graphene nanostructure. Therefore, the same 

kind of ballistic motion should be expected for the hexagonal system. 

Insert Figure 4 about here. 

6. Conclusions 

We consider a conjugated alternant hydrocarbon as a network of quantum harmonic 

oscillators. Instead of considering bonded atoms as connected by springs here we assume that 

pairs of atoms separated by two bonds are connected by springs of negative constant. This 

repulsive effect arises from the spin-spin repulsion between these atoms which have the same 

spin. Using this model we derive the atomic displacements due to spin-spin repulsion as the 

thermal Green’s function of a network of quantum harmonic oscillators. Then, we show that 

the spin-induced atomic displacement is responsible for: (i) an enlargement of the distance 

between pairs of atoms separated by two atoms and located at the end of linear polyenes; (ii) 
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bond dissociation enthalpies for the cleavage of the C-H bond at different sites of polycyclic 

aromatic hydrocarbons; (iii) the spin density at carbon atoms in both open and closed shell 

graphene nanoflakes (GNFs). Finally, we use a modified Schrödinger equation to study the 

propagation of the spin-induced perturbations through the atoms of GNFs.  
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Table and Figure captions 

Table 1. Exact values of the thermal Green’s function for the nonequivalent atoms in 

octatetraene as well those calculated by using formula (14). The labeling of the atoms is 

given in Figure 1. 

Table 2. Atomic distance between pairs of atoms separated by two bonds in octatetraene 

obtained from x-ray crystallography as well as calculated by different ab initio methods. The 

values of the sum of the atomic displacements 
pp qq

G G  due to spin-spin repulsion are also 

given. 

Figure 1. Illustration of the atomic displacements in octatetraene, 
pp

G . The circles radii are 

proportional to the values of the displacements and the colors are used to differentiate atoms 

in each partition of the bipartite graph. 

Figure 2. Illustration of the atomic displacements due to spin-spin repulsion, 
pp

G  and the 

bond dissociation enthalpies (kcal/mol at 298K) for the cleavage of the C-H bond at different 

sites of three PAHs. The atomic displacements due to spin-spin repulsion are plotted as 

circles whose radii are proportional to 
pp

G  and the color correspond to spin up or down. 

Values in parenthesis are obtained experimentally by Reed and Kass [22]. 

Figure 3. Illustration of the atomic displacements due to spin-spin repulsion at the sites of 

some small representatives of the four types of GNFs studied. The atomic displacements are 

plotted as circles whose radii are proportional to 
pp

G  and the color correspond to atoms in the 

same bipartite set. 

Figure 4. Scaling behavior of the return probability and the temporal autocorrelation function 

for the dynamics of spin-induced perturbations in the four types of GNFs studied in this 

work. 
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Table 1 

atom exact Formula (14) 

1 0.5238 0.5238 

2 0.2153 0.2153 

3 0.3371 0.3373 

4 0.3030 0.3016 

 

Table 2 

Method 
13

d  
24

d  
34 '

d  

Exp. 2.469 2.466 2.468 

HF/6-31G* 2.464 2.466 2.465 

MP2/6-31G* 2.468 2.476 2.473 

6-31G 2.468 2.471 2.468 

B3LYP/6-31G* 2.471 2.481 2.478 

pp qq
G G  0.861 0.518 0.674 
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