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Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects
are considered. Problems are formulated with the electric and magnetic current combined-field integral equation
and discretized with the Rao–Wilton–Glisson functions. Solutions are performed iteratively by using the multi-
level fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of
unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely,
the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated
on very large problems involving as many as 100 million unknowns. © 2011 Optical Society of America

OCIS codes: 290.0290, 230.5298.

1. INTRODUCTION
Real-life electromagnetics problems, such as scattering
from red blood cells [1] and transmission through lens sys-
tems and photonic crystals [2], often involve large objects,
whose accurate numerical solutions require dense discretiza-
tions with large numbers of unknowns. Fast methods, such as
the multilevel fast multipole algorithm (MLFMA) [3–5], have
been proposed to efficiently and accurately solve these
large-scale problems. Using MLFMA, matrix-vector multiplica-
tions required for iterative solutions can be performed in
OðN logNÞ time using OðN logNÞ memory for dense matrix
equations involving OðNÞ unknowns. Although MLFMA run-
ning on a single processor can be sufficient to solve a variety
of problems, parallelization of this algorithm on multi-
processor computers is essential to enable the solution of
very large problems. Recently, various parallelization tech-
niques have been developed and implemented [5–16], increas-
ing the problem size from millions to more than 1 billion.
On the other hand, those implementations have been de-
signed for perfectly-conducting objects and less attention
has been paid to more general problems involving dielectric
structures [11,12].

This paper present an efficient parallelization of MLFMA
for the solution of large-scale problems involving three-
dimensional homogeneous dielectric objects. The problems
are formulated with the electric and magnetic current
combined-field integral equation (JMCFIE) [17–20] and dis-
cretized with the Rao–Wilton–Glisson (RWG) [21] functions
on planar triangles. The resulting dense matrix equations
are solved iteratively by using a parallel implementation
of MLFMA on distributed-memory architectures. A rigorous
parallelization technique, namely, the hierarchical partitioning
strategy [8,13], is used for the efficient parallelization of
multilevel tree structures. The developed implementation
is employed to solve dielectric problems involving more than

100 million unknowns on moderate parallel computers. The
numerical results, some of which are presented in this paper,
can be used for benchmarking purposes, e.g., to test the
accuracy of approximate high-frequency techniques.

The rest of the paper is organized as follows. Section 2
summarizes matrix equations obtained from discretizations
of electromagnetics problems formulated with JMCFIE.
Application of MLFMA to JMCFIE is discussed in Section 3.
Section 4 presents efficient parallelization of the implementa-
tion using the hierarchical strategy, followed by numerical
results in Section 5, and concluding remarks in Section 6.
Time-harmonic electromagnetic fields with the e−iωt time
dependence are assumed throughout the paper.

2. MATRIX EQUATIONS OBTAINED FROM
JMCFIE
Discretizations of surface integral equations using a set of
testing functions tm and a set of basis functions bn for m,
n ¼ 1; 2;…; N lead to 2N × 2N dense matrix equations in
the form of

�
�Zð11Þ �Zð12Þ
�Zð21Þ �Zð22Þ

�
·

�
x
y

�
¼

�
v
w

�
; ð1Þ

where �ZðabÞ for a, b ¼ 1; 2 are N × N matrix partitions.
In (1), x and y represent vectors of N elements involving
coefficients to expand the equivalent electric and magnetic
currents, respectively. Using a Galerkin scheme, the basis
and testing functions are identical. For JMCFIE, matrix ele-
ments, i.e., interactions of the basis and testing functions,
are derived as
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Zð11Þ
mn ¼ α

Z
Sm

dr tmðrÞ · ðT o þ T iÞfbngðrÞ

þ ð1 − αÞ
Z
Sm

dr tmðrÞ · n̂ × ðKo −KiÞfbngðrÞ

− ð1 − αÞ
Z
Sm

dr tmðrÞ · bnðrÞ; ð2Þ

Zð12Þ
mn ¼ ð1 − αÞ

Z
Sm

dr tmðrÞ · n̂ × ðη−1o T o − η−1i T iÞfbngðrÞ

− α
Z
Sm

dr tmðrÞ · ðη−1o Ko þ η−1i KiÞfbngðrÞ

−
1
2
αðη−1o − η−1i Þ

Z
Sm

dr tmðrÞ · n̂ × bnðrÞ; ð3Þ

Zð21Þ
mn ¼ −ð1 − αÞ

Z
Sm

dr tmðrÞ · n̂ × ðηoT o − ηiT iÞfbngðrÞ

þ α
Z
Sm

dr tmðrÞ · ðηoKo þ ηiKiÞfbngðrÞ

þ 1
2
αðηo − ηiÞ

Z
Sm

dr tmðrÞ · n̂ × bnðrÞ; ð4Þ

where α ∈ ½0; 1� is a combination parameter [18], n̂ is the unit
normal vector at the observation point r, and ηu ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

μu=ϵu
p

represents the intrinsic impedance of the outer (u ¼ o) and
inner (u ¼ i) media. The diagonal partitions are identical,
i.e., �Zð11Þ ¼ �Zð22Þ in (1). The integro-differential operators
can be applied to the nth basis function as

T ufbngðrÞ ¼ iku

Z
Sn

dr0 bnðr0Þguðr; r0Þ

þ i
ku

Z
Sn

dr0 ∇0 · bnðr0Þ∇guðr; r0Þ; ð5Þ

KufbngðrÞ ¼
Z
PV;Sn

dr0 bnðr0Þ ×∇0guðr; r0Þ; ð6Þ

where PV indicates the principal value of the integral,
ku ¼ ω ffiffiffiffiffiffiffiffiffiffiϵuμu

p
is the wavenumber, and

guðr; r0Þ ¼
expðikujr − r0jÞ

4πjr − r0j ð7Þ

denotes the homogeneous-space Green’s function. Elements
of the right-hand-side vectors in (1) can be derived similarly
as

vm ¼ −ð1 − αÞ
Z
Sm

dr tmðrÞ · n̂ ×HincðrÞ

− αη−1o
Z
Sm

dr tmðrÞ · EincðrÞ; ð8Þ

wm ¼ ð1 − αÞ
Z
Sm

dr tmðrÞ · n̂ × EincðrÞ

− αηo
Z
Sm

dr tmðrÞ ·HincðrÞ; ð9Þ

where Einc and Hinc are incident electric and magnetic fields
created by external sources in the outer medium. In (2)–(9),
Sm and Sn represent the spatial supports of the mth testing
function tm and the nth basis function bn, respectively.

3. MULTILEVEL FAST MULTIPOLE
ALGORITHM
The matrix equation in (1) can be solved iteratively via a
Krylov-subspace algorithm, where the required matrix-vector
multiplications can be performed efficiently with MLFMA.
Multilevel tree structures are constructed by placing the
object in a cubic box and recursively dividing its surface into
subdomains. Then, far-field interactions that are between
distant basis and testing functions can be performed effi-
ciently in three stages, namely, aggregation, translation, and
disaggregation, using the factorization and diagonalization
of the homogeneous-space Green’s functions [5]. Different
tree structures are required for the outer and inner media,
since the sampling rate to compute far-field interactions
depends on the wavenumber, hence the electrical parameters
of the medium [19]. In an aggregation stage, radiated fields
are calculated from the lowest level to the top of the tree
structure. At the lowest level, the radiated field of a subdo-
main is obtained by combining radiation patterns of the basis
functions located inside the subdomain. The radiation pattern
of the nth basis function with respect to a reference point rC is
defined as

RðuÞ
n ðrC; kuÞ ¼ γnð�I − k̂k̂Þ · S−nðrC; kuÞ; ð10Þ

where �I is the 3 × 3 unit dyad, γn ¼ �1 represents the orienta-
tion of the basis function, and

S−nðrC; kuÞ ¼
Z
Sn

dr exp½−iku · ðr − rCÞ�bnðrÞ: ð11Þ

Radiated fields of subdomains at the higher levels are
obtained by combining radiated fields of subdomains at
the lower levels. Lagrange interpolation is used to change
the sampling rate between the consecutive levels during the
aggregation stage. In a translation stage, radiated fields of
subdomains are converted into incoming fields for other sub-
domains at the same level. Finally, in a disaggregation stage,
total incoming fields are calculated from the top of the tree
structure to the lowest level. At the lowest level, total incom-
ing fields are received by the testing functions. As opposed to
radiation patterns of the basis functions, receiving patterns of
the testing functions depend on the matrix partition, i.e.,

Rð11;uÞ
m ðrC; kuÞ ¼ Rð22;uÞ

m ðrC; kuÞ
¼ αγmð�I − k̂k̂Þ · SþmðrC; kuÞ
− ð1 − αÞk̂ × S×nm ðrC; kuÞ; ð12Þ
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Rð12;uÞ
m ðrC; kuÞ ¼ ð1 − αÞη−1u ð�I − k̂k̂Þ · S×nm ðrC; kuÞ

þ αγmη−1u k̂ × SþmðrC; kuÞ; ð13Þ

Rð21;uÞ
m ðrC; kuÞ ¼ −ð1 − αÞηuð�I − k̂k̂Þ · S×nm ðrC; kuÞ

− αγmηuk̂ × SþmðrC; kuÞ; ð14Þ

where γm ¼ �1 represents the orientation of the testing
function and

SþmðrC; kuÞ ¼
Z
Sm

dr exp½iku · ðr − rCÞ�tmðrÞ; ð15Þ

S×nm ðrC; kuÞ ¼
Z
Sm

dr exp½iku · ðr − rCÞ�tmðrÞ × n̂: ð16Þ

Considering the expressions in (10) and (12)–(14), only θ and
ϕ components of S−m, Sþm, and S×nm are required. If the medium
is lossless (and using the Galerkin scheme),

SþmðrC; kuÞ ¼ fS−mðrC; kuÞg�; ð17Þ

where � represents the complex-conjugate operation.

4. HIERARCHICAL PARALLELIZATION OF
MLFMA
Consider a multilevel tree structure involving ðLþ 2Þ ¼
OðlogðkuDÞÞ levels obtained by recursively dividing an object
of size D. At level l from 1 to L, there are Nl ≈ 4ð1−lÞN1 none-
mpty subdomains, where N1 ¼ OðNÞ. For each subdomain,
radiated and incoming fields are sampled at Sl ¼ 2ðTl þ 1Þ2
directions, where the truncation number Tl is determined
by the excess bandwidth formula. In general, the number of
samples increases by a factor of four from a level to the next
upper level, i.e., Sl ≈ 4ðl−1ÞS1 with S1 ¼ Oð1Þ. Consequently,
the computational cost of the lth level is

NlSl ≈ 4ð1−lÞN14ðl−1ÞS1 ¼ N1S1 ¼ OðNÞ; ð18Þ

which is independent of l. For a general three-dimensional
object, kuD ¼ Oð ffiffiffiffi

N
p Þ, L ¼ OðlogNÞ, and the overall cost of

MLFMA is OðN logNÞ.
Efficient parallelization of MLFMA is a challenging task

due to the complicated structure of this algorithm. Simple
parallelization strategies based on distributing subdomains
among processes are usually not efficient since they do not
provide a well-balanced partitioning for the higher levels of
tree structures [10]. Since all levels of MLFMA have equal
importance with OðNÞ complexity, its efficient parallelization
should consider the best partitioning for each level. Along
this direction, parallelization of MLFMA can significantly
be improved by using advanced techniques, such as the
hybrid strategy [6,10] using different partitioning schemes
for the lower and higher levels and the asynchronous strategy
using dynamic partitioning of the workload among pro-
cesses [11].

Another advanced technique developed recently is the
hierarchical partitioning strategy [8,13], which is based on
the simultaneous partitioning of subdomains and their fields
at all levels. Considering the number of subdomains and the

number of samples, the partitioning is adjusted for each level
independently to obtain the best possible parallelization.
It can be shown that the hierarchical strategy leads to efficient
parallelization of MLFMA by improving the load-balancing,
reducing the total amount of communications, and facilitating
process arrangements in nonuniform platforms to minimize
internode communications [13]. As shown in this paper,
the hierarchical strategy can also be applied to dielectric
problems such that the resulting implementation enables
the analysis of large-scale objects discretized with tens of
millions of unknowns on modest parallel computers. To the
best of author’s knowledge, the hierarchical strategy has
been applied to dielectric problems only for two-dimensional
objects [12].

Consider the partitioning of the lth level involving
Nl subdomains, whose radiated and incoming fields are
sampled at Sl directions. Using the hierarchical strategy,
subdomains and their samples are divided into pl;c and pl;s
partitions, respectively, where pl;cpl;s ¼ p is the total number
of processes. Subdomains are partitioned according to their
indices in the multilevel tree structure and considering the
partitioning in the lower (l − 1) and higher (lþ 1) levels, if
they exist. Samples are partitioned similarly along the θ direc-
tion. In general, the ratio pl;c=pl;s decreases from the lower
levels to the higher levels, but the actual partitioning is deter-
mined by load-balancing algorithms considering various
factors [22–24].

A. Aggregation
Since field samples are partitioned, the aggregation stage
requires one-to-one communications between processes.
Specifically, local interpolations that are performed by a
process requires samples owned by some other processes.
In general, each process exchanges data with at most two
processes; secondary communications with other processes
can be avoided by adjusting the partitioning accordingly.
Communications are performed for all local subdomains,
followed by the interpolation and shift operations to aggregate
radiated fields. After all subdomains are processed, one-to-
one data exchanges are required between pairs of processes,
if the partitioning is different in the upper level ðlþ 1Þ. Each
process sends half of the field samples for each subdomain
and receives a complementary data from the associated
process.

B. Translation
Since subdomains are partitioned, one-to-one communica-
tions are also required during the translation stage. For these
communications, each process is paired one by one with the
other pl;c − 1 processes. Once a pairing is established, all
related translations between the subdomains located at the
two different processes are performed. In addition to those
translations requiring communications, there are also intra-
process translations that can be performed in each process
without any pairing and communication.

C. Disaggregation
The disaggregation stage is the reverse of the aggregation
stage, i.e., the tree structure is traced from the highest
level to the lowest level. For each subdomain, the total incom-
ing field is obtained by combining incoming fields due to
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translations and the incoming field from the parent subdo-
main. At level l, disaggregations start with data exchanges
between pairs of processes, if the partitioning needs to be
modified, compared to the partitioning at level ðlþ 1Þ. Then,
all local subdomains are processed, i.e., incoming fields from
parent subdomains are shifted and anterpolated. Similar to
those performed during interpolations of the aggregation
stage, one-to-one communications (with at most two pro-
cesses for each process) are required between processes to
deflate the local data produced by anterpolations.

Using a two-dimensional partitioning by distributing both
subdomains and field samples, the hierarchical strategy pro-
vides a well-balanced distribution of the workload among pro-
cesses. In the case of homogeneous dielectric objects, there
are two different tree structures associated with the outer
and inner media. The hierarchical strategy can be applied to
these tree structures separately to achieve the best possible
partitioning for both of them.

5. NUMERICAL RESULTS
For numerical solutions, surfaces are discretized with the
RWG functions on λo=10 triangles, where λo ¼ 2π=ko is the
wavelength in the outer medium. All objects are located in
free space. Problems are formulated with JMCFIE using α ¼
0:5 and solved iteratively via parallel MLFMA. Both near-field
and far-field interactions are computed with maximum 1%
error. Iterative solutions are performed by the biconjugate-
gradient-stabilized (BiCGStab) algorithm [25] accelerated
with block-diagonal preconditioners [19]. Iterations are
carried out until the residual error is reduced to below 0.005.
Solutions are parallelized by using the hierarchical strategy on
a cluster of Intel Xeon Nehalem quad-core processors with
2:80GHz clock rate.

Figure 1 presents solutions of a scattering problem invol-
ving a dielectric sphere with a radius of 0:3m at 20GHz.
The radius of the sphere corresponds to approximately 20λo
and the problem is discretized with 2,925,708 unknowns. The
relative permittivity of the sphere is 2.0 and it is illuminated by
a plane wave propagating in the z direction with the electric
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Fig. 1. (Color online) Solutions of a scattering problem involving a
dielectric sphere with a radius of 0:3m at 20GHz discretized with
2,925,708 unknowns. The total computing time is plotted as a function
of the number of processes from 1 to 128.
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Fig. 2. (Color online) Solution of a scattering problem involving
a dielectric sphere with a radius of 0:3m at 100GHz discretized
with 67,582,464 unknowns. SCS (in dBms) is plotted as a function of
the bistatic angle from 0° to 180°, where 0° and 180° correspond to the
backscattering and forward-scattering directions, respectively. Com-
putational values provided by the parallel MLFMA implementation
agree well with the analytical Mie-series solution.
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Fig. 3. (Color online) Electromagnetics problems involving a dielec-
tric hemisphere lens with a radius of 25mm and a periodic structure
involving 2 × 2 × 0:41 cm slabs (a simple photonic crystal). Both
objects are illuminated by plane waves.
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field polarized in the x direction. The solution requires 37
iterations. Figure 1 depicts the total time including the setup
and iterations when the solution is parallelized into 2, 4, 8, 16,

32, 64, and 128 processes, in addition to the sequential solu-
tion (single process). The ideal case assuming 100% paralleli-
zation efficiency is also shown for comparisons. It can be
observed that the computing time is significantly reduced
from t1 ¼ 187; 516 seconds to t128 ¼ 1947 seconds when the
number of processes is increased from 1 to 128. Hence, the
parallelization efficiency is ðt1=t128Þ=128 ¼ 75% on 128 pro-
cesses, corresponding to 96-fold speedup, which is quite high,
considering the difficult parallelization of MLFMA.

Figure 2 presents the solution of a scattering problem
involving the same dielectric sphere (with 0:3m radius
and 2.0 relative permittivity) at 100GHz. At this frequency,
the radius of the sphere is approximately 100λo and the
problem is discretized with 67,582,464 unknowns. The sphere
is again illuminated by a plane wave propagating in the z
direction with the electric field polarized in the x direction
in free space. The solution of the problem, which is performed
by using a 10-level MLFMA parallelized into 64 processes,
requires 237 iterations and a total of 77 hours. The total
amount of memory used for the solution is 723GB. Figure 2
depicts the bistatic scattering cross section (SCS) values (in
dBms) on the z-x plane as a function of the bistatic angle θ
from 0° to 180°. Computational values obtained by using
MLFMA are compared with those obtained via analytical Mie-
series solutions. SCS values around the forward-scattering
(0°) and backscattering (180°) directions are also focused
in separate plots. It can be observed that the computational
values agree well with the analytical results, confirming
the high accuracy of the implementation even for very large
problems.

In addition to the sphere, electromagnetics problems invol-
ving a dielectric hemisphere lens with a radius of 25mm and
a periodic structure involving 2 × 2 × 0:41 cm slabs (a simple
photonic crystal) are considered, as depicted in Fig. 3. The
lens has a relative permittivity of 4.8 and it is illuminated by
a plane wave propagating in the −z direction (towards its con-
vex surface). At 120GHz and 1:08THz, discretizations with
λo=10 triangles lead to matrix equations involving 615,456
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Fig. 4. (Color online) Solution of an electromagnetics problem invol-
ving a dielectric hemisphere lens with a radius of 25mm at 120GHz.
The lens has a relative permittivity of 4.8 and the problem is discre-
tized with 615,456 unknowns. The total electric field in the vicinity of
the lens is plotted for the inner and outer problems, in addition to the
complete plot obtained via their superposition.
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Fig. 5. (Color online) Solution of an electromagnetics problem invol-
ving a dielectric hemisphere lens with a radius of 25mm at 1:08THz.
The lens has a relative permittivity of 4.8 and the problem is discre-
tized with 49,851,936 unknowns. The total electric field on the axis of
rotation of the lens is plotted from z ¼ −40mm to 40mm.
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and 49,851,936 unknowns, respectively. Figure 4 depicts the
total electric field in the vicinity of the lens at 120GHz. The
solution at this frequency requires 48 iterations. Three differ-
ent plots are shown in Fig. 4; the total electric field for the
inner and outer problems and their superposition. For the
inner problem, the equivalent currents obtained by MLFMA

are allowed to radiate into a homogeneous space with the
electrical parameters of the inner medium assumed every-
where. Hence, in this case, the equivalent currents should
not radiate outside the object and any nonzero value can
be interpreted as the error. As depicted in Fig. 4, the amplitude
of the total electric field outside the object for the inner
problem is below −20dB, except for a tiny region. Similarly,
for the outer problem, the equivalent currents radiate into
a homogeneous space with the electric parameters of the
outer medium and any radiation into the object can be
interpreted as error. As also depicted in Fig. 4, the total
electric field is below −20dB inside the object for the outer
problem, showing the high accuracy of the solution. Finally,
by superposing the plots for the inner and outer problems,
the complete plot in Fig. 4 can be obtained. In this plot, focus-
ing due to the lens is clearly observed in the transmission
region at around z ¼ −7mm, where the total electric field
is maximum.

Figure 5 presents the total electric field on the axis of
rotation of the lens from z ¼ −40mm to 40mm at 1:08THz,
i.e., when the radius of the hemisphere is approximately
90λo. The solution of the problem involving 49,851,936
unknowns via 10-level MLFMA requires 105 iterations and
a total of 19 hours using 128 processes. The total amount
of memory used for the solution is 673GB. Similar to the
lower frequency case, a focussing is observed at around
−7mm.

Figures 6 and 7 present the solution of electromagnetics
problems involving the simple photonic crystal depicted in
Fig. 3. Five dielectric slabs of dimensions 2 × 2 × 0:41 cm
are placed at 0:5 cm intervals and illuminated by a plane wave.
Scattering from this structure with 1.6 relative permittivity is
investigated at 120GHz and 1:62THz. Discretizations at these
frequencies lead to matrix equations involving 619,200 and
112,849,200 unknowns, respectively. Figure 6 presents the
total electric field in the vicinity of the structure at 120GHz.
It can be observed that the unwanted radiations are below
−20dB for both the inner and outer problems. Figure 7 depicts
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Fig. 6. (Color online) Solution of an electromagnetics problem
involving five 2 × 2 × 0:41 cm dielectric slabs at 120GHz. The structure
has a relative permittivity of 1.6 and the problem is discretized with
619,200 unknowns. The total electric field in the vicinity of the struc-
ture is plotted for the inner and outer problems, in addition to the
complete plot obtained via their superposition.
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a relative permittivity of 1.6 and the problem is discretized with
112,849,200 unknowns. The total electric field on the axis of symmetry
is plotted from z ¼ −5 cm to 5 cm for the inner and outer problems.
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the electric field on the axis of symmetry from z ¼ −5 cm to
5 cm at 1:62GHz. At this frequency, the solution of the pro-
blem via 10-level MLFMA requires 102 iterations and a total
of 37 hours using 64 processes. The total amount of memory
used for the solution is 669GB. Similar to the previous results,
investigation of the electric fields obtained for the inner
and outer problems demonstrate the high accuracy of the
solutions.

Finally, the solution of a scattering problem involving a
two-dimensional array of 81 × 81 ¼ 6561 lossy dielectric
cubes is considered. As depicted in Fig. 8(a), cubes of edges
1 μm are periodically arranged on the x-y plane with 2 μm
periodicity in both directions. The relative permittivity and
conductivity of the cubes are 8.0 and 0:01S=m, respectively.
The array is illuminated by a plane wave propagating in the
−z direction with the electric field polarized in the x direction
at 300THz, i.e., when the edges of the cubes are approxi-
mately λo and the overall size of the structure is approximately
161λo × 161λo × λo. The problem is discretized with 26,926,344
unknowns and solved in a total of nine hours (including
32 iterations) using 663GB memory. Figure 8(b) depicts the

bistatic SCS (in dB μms) on the z-x plane, demonstrating
peaks at around 30° and 150°, in addition to high values in
the backscattering and forward-scattering directions.

6. CONCLUDING REMARKS
This paper presents a parallel implementation of MLFMA
for rigorous solutions of large-scale electromagnetics pro-
blems involving three-dimensional dielectric objects. For
efficient parallelization of MLFMA, the hierarchical partition-
ing strategy, which was developed for metallic objects, is
extended to dielectric structures formulated with surface in-
tegral equations. The efficiency and accuracy of the resulting
implementation are demonstrated on very large problems
discretized with tens of millions of unknowns. In addition
to showing the feasibility of full-wave solutions of large-scale
dielectric problems, numerical results presented in this
paper can be used for benchmarking purposes, e.g., testing
the accuracy of implementations based on high-frequency
techniques.
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