Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

The effect of increasing the thickness of the ship’s structural members on the Generalised Life Cycle Maintenance Cost (GLCMC)

Lazakis, Iraklis and Turan, Osman (2009) The effect of increasing the thickness of the ship’s structural members on the Generalised Life Cycle Maintenance Cost (GLCMC). In: Proceedings of IMPROVE Final Workshop. University of Zagreb, Zagreb.

[img] PDF (Vol_I_Conference_Papers)
Final Published Version

Download (9MB)


In the context of the EU funded IMPROVE project, the research work of a Generalised Life Cycle Maintenance Cost (GLCMC) was initiated in order to investigate the influence of a weight oriented ship structural design on its production and operational characteristics. Following this, an increase in the structural scantlings of the ship was examined following the IACS Common Structural Rules (CSR) for double hull oil tankers. A case study for a Chemical tanker is shown considering an addition in its bottom plate thickness and three different cases of mean annual corrosion rates applied. A comparison regarding the “Gross gains”, “Gross expenses” and “Net gains” for this ship is also presented. Moreover, an evaluation of the extra cost for the additional steel weight used is shown together with the outcome on the repair-free operation of the ship for different additional plate thickness. Finally, a sensitivity analysis is carried out for the most likely case (“Case 2”) and the variation of different amount of days spent in the ship repair yard.