
A MOVING MESH METHOD FOR ONE-DIMENSIONALHYPERBOLIC CONSERVATION LAWS�JOHN M. STOCKIEy , JOHN A. MACKENZIEz , AND ROBERT D. RUSSELLyAbstract. We develop an adaptive method for solving one-dimensional systems of hyperbolicconservation laws, that employs a high resolution Godunov-type scheme for the physical equations,in conjunctionwith a movingmesh PDE governing the motion of the spatial grid points. Many othermoving mesh methods developed to solve hyperbolic problems use a fully implicit discretization forthe coupled solution-mesh equations, and so su�er from a signi�cant degree of numerical sti�ness.We employ a semi-implicit approach that couples the moving mesh equation to an e�cient, explicitsolver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a �xed, uniform mesh, our method exhibitsmore accurate resolution of discontinuities for a similar level of computational work.Key words. moving mesh, adaptivity, equidistribution, shock capturing, hyperbolic conserva-tion laws, �nite volume methods.AMS subject classi�cations. 65M06, 65M50, 76L05, 35L65, 35L67.1. Introduction. In this paper, we present an adaptive algorithm for computingsolutions to one-dimensional systems of hyperbolic conservation laws. We considerproblems of the form qt + f (q)x = 0; (1.1a)q(x; 0) = q0(x); (1.1b)where q(x; t) 2 IRm is an m-vector, a � x � b, and t � 0. The system is \hyperbolic"in the sense that the Jacobian matrix @f=@q has real eigenvalues and is diagonaliz-able with m linearly independent eigenvectors. Such problems are characterized bymoving discontinuities (i.e., fronts or shocks) that separate regions of ow where thesolution is smooth. The major challenge in solving hyperbolic systems numerically isto capture the discontinuous solutions with su�cient accuracy while also keeping thecomputational cost within acceptable limits.The vast majority of numerical methods for solving hyperbolic problems have beendeveloped for �xed, uniform grids. An important class of such methods is based on theGodunov scheme [16], which is a �rst order, �nite volume method that employs theexact solution to local Riemann problems at cell interfaces to enhance the resolution ofdiscontinuities. Accuracy can be further improved by using higher order variants, suchas the ux{ and slope{limiter methods reviewed in [28, 31], and computational costis reduced by linearizing the equations and solving approximate Riemann problemsin each cell instead.The discontinuities that are characteristic of hyperbolic problems typically movein time, and so the solution at a particular point in space can change very rapidly (seeFig. 1.1). As a result, computations on a �xed, uniform spatial mesh can require that�This work was supported by fellowships from the Paci�c Institute for the Mathematical Sciencesand the MITACS National Centre of Excellence, and a research grant from NSERC.yDepartment of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada,V5A 1S6 (jms@cs.sfu.ca, rdr@cs.sfu.ca).zDepartment of Mathematics, University of Strathclyde, Glasgow, U.K., G1 1XH(j.a.mackenzie@strath.ac.uk).Submitted to SIAM Journal on Scienti�c Computing, 1999.1
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slowFig. 1.1. A comparison of the variation in solution from one time step to the next on �xed andmoving meshes.the time step be extremely small in order to reduce the error arising from the timevariation in the solution at points near the front. On the other hand, it is possible totake a much larger time step when the solution is smooth and does not exhibit suchlarge variation from one mesh point to the next. In principle therefore, it is desirableto employ a non-uniform mesh that is sparse in regions where the solution is smoothand more concentrated near discontinuities. Since the steep fronts are not stationary,it is attractive to allow the mesh points to move in time so that �ne grid resolutioncan be maintained near discontinuities, thereby attaining a balance between accuracyand e�ciency.There has been some success in solving hyperbolic problems on adaptive spatialmeshes, starting with Harten and Hyman [17] who demonstrated how to extend aGodunov scheme to handle moving grids in one dimension. They employed a staticregridding technique, in which the solution and mesh are evolved separately, with themesh points updated in each time step to explicitly track discontinuities. Anotherstatic re�nement strategy that has proven very successful, especially for higher di-mensional problems, is the adaptive mesh re�nement method [3] in which the mesh isre�ned locally based on some measure of the solution error using Cartesian sub-grids.Biswas et al. [4] combined both mesh movement and local mesh re�nement in a �niteelement framework.In contrast with static re�nement techniques is the second major class of adaptivemethods based on dynamic re�nement, in which one explicitly derives an equationgoverning the spatial mesh, that moves mesh points naturally to where they aremost needed. The mesh equation is often derived from an equidistribution principle,which attempts to equally distribute some measure of solution error over the spatialdomain. This approach was used to solve one-dimensional hyperbolic problems in [30]and [11], employing a ux splitting method for discretizing the physical PDE. Themajor disadvantage to this technique is that the coupling between the solution andmesh equations is non-linear, often requiring a Newton iteration in each time step,which can be very costly. This problem is further exacerbated by the dense clusteringof mesh points near discontinuities, which degrades the convergence of the iteration.In many moving mesh methods it has been found necessary to introduce an ad-ditional arti�cial viscosity term of the form � qxx into (1.1), and solve the resultingparabolic system instead. This approach has been taken in connection with spatial



A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 3discretisations based on �nite di�erences [23, 29, 12], �nite elements [15, 22], andcollocation [19]. However, even with the viscous regularization, there are still conver-gence problems associated with taking the hyperbolic limit � ! 0 that can seriouslydegrade performance [15].In this work, we propose an adaptive method that combines the exibility andaccuracy a�orded by a dynamically moving mesh with the increased shock resolutioncapability of a Godunov-type scheme. The resulting method has the potential toreduce the cost of the moving mesh component of the algorithm signi�cantly by elim-inating the need for such a high concentration of grid points near discontinuities. Weemploy the moving mesh PDE or MMPDE approach of Huang et al. [18] in which thenumber of grid points is constant and the points move throughout the domain, subjectto a time-dependent PDE. The main di�erence from many of the other moving gridmethods mentioned earlier is that the MMPDE incorporates a temporal smoothingterm which improves the performance of the solution{mesh iteration.For the physical PDE, we use the wave-propagation method introduced by LeV-eque [21] and implemented in the software package Clawpack [20]. The resultingmethod is similar to that of Chen [9], wherein a Godunov scheme was coupled withan MMPDE in a fully implicit time discretization based on the method of lines. How-ever, we construct a more e�cient semi-implicit scheme that behaves in practice as anexplicit, predictor{corrector step. Furthermore, our method satis�es a discrete con-servation principle which may not be the case for implicit discretizations based on astraightforward method-of-lines approach (see [14], [9] and [12]). Our strategy is basedon the principle that there is no reason to solve the physical PDE and mesh equationwith the same spatial discretization or to the same level of accuracy, since they areequations of di�erent type (one hyperbolic, one parabolic) and have fundamentallydi�erent interpretations (one physical, and the other an arti�cial construct).We begin in Section 2 with a description of the numerical method, includingdetails of the wave propagation scheme for the hyperbolic conservation law, the dis-cretization of the moving mesh equation, and the iteration that couples the two to-gether. Section 3 presents several possible monitor functions that are designed specif-ically to resolve discontinuous solutions and shows how a monitor function can begeneralized for systems of conservation laws where multiple fronts arise. In Section 4,numerical tests are performed on several problems encompassing both scalar conser-vation laws and systems, to demonstrate the accuracy, e�ciency and robustness of themoving mesh method. Throughout two major issues of concern are choosing a mon-itor function that is tailored to capturing discontinuous ow features, and temporalsmoothing for controlling mesh motion.2. The Numerical Method.2.1. The Physical PDE: Godunov's Method on a MovingMesh. We �rstdescribe the �nite volume discretization of the hyperbolic conservation law (1.1a) ona non-uniform, moving mesh derived by Fazio and LeVeque in [13]1. Consider asequence of times tn for n = 0; 1; � � � , where the time steps �tn = tn+1 � tn need notbe equal. Suppose that the spatial domain [a; b] is subdivided using a set of pointswhich move in time and are parameterized by xi(t) = x(�i; t) where �i = iN are the1Fazio & LeVeque used a simple moving mesh strategy for the Euler equations in which thecontact line is tracked explicitly, and a piecewise uniformmesh is �t to either side of the discontinuity.Our moving mesh approach is designed to capture discontinuities naturally as part of the solutionprocess, and is therefore much more exible.



4 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLequally-spaced computational coordinates, anda � x0 < x1(t) < x2(t) < � � � < xN�1(t) < xN � b:Fig. 2.1 depicts a typical computational cell with grid points evolving from time leveltn to tn+1 = tn +�tn, and with xni = xi(tn). In the following discussion, we develop
* *

i+1/2Qi-1
n+1

Q
n

n

f(Q   )
i+1i

n+1

i+1/2

i-1

x   (t)

t n+1

t n

x

f(Q )

x

i-1

xi
xi+1

n n

x n+1 x n+1
i i+1

x

tFig. 2.1. A computational cell on an adaptive spatial mesh. The dashed lines show the actual,curved, grid trajectories, which are approximated by straight lines in the xt{plane.the method in terms of the scalar quantity q to simplify notation, although the resultsextend easily to vectors.In the Godunov scheme [16], the solution is assumed to be piecewise constant oneach sub-interval [xi; xi+1], and the discrete solution is taken to represent the averagevalue of the actual solution along the lower cell boundary,Qni+1=2 = 1�xni+1=2 Z xni+1xni q(s; tn) ds; (2.1)where �xni+1=2 = xni+1 � xni is the local mesh spacing. We then integrate the conser-vation law (1.1a) across over the computational cell to obtain the formula�n+1i+1=2Qn+1i+1=2 = �ni+1=2Qni+1=2 � �tn�� h(f(Q�i+1)� _xni+1Q�i+1)� (f(Q�i )� _xni Q�i )i;(2.2)where �� = 1N and �ni+1=2 := �xni+1=2=��. The numerical ux f(Q�i ) is an approxima-tion of the actual ux along the left slanted boundary of the cell and is computed usingthe solution to the local Riemann problem arising at the interface between the constantstates Qni�1=2 and Qni+1=2. The intermediate state, Q�i , is actually the solution to theRiemann problem that lies along the straight-line characteristic (x�xni )=(t�tn) = _xni .Here, we have assumed that the time derivative _xi = @x(�i; t)=@t is constant over thetime interval [tn; tn+1], so that the edges of the cell are straight lines. The maindi�erence between this and Godunov's scheme on a �xed mesh is the appearance ofadditional _x terms in (2.2) that arise due to the movement of the mesh points.The method in the form (2.2) is non-conservative but can be modi�ed to geta conservative discretization. Again assuming _xi is constant in a cell, we can usexn+1i = xni +�tn _xni to obtain�ni+1=2Qni+1=2 = �n+1i+1=2Qni+1=2 � �tn�� ( _xni+1 � _xni )Qni+1=2:



A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 5Substituting this expression into (2.2) yields the discrete system�n+1i+1=2Qn+1i+1=2 = �n+1i+1=2Qni+1=2 � �tn�� h(f(Q�i+1)� _xni+1(Q�i+1 � Qni+1=2))� (f(Q�i )� _xni (Qni+1=2 � Q�i ))i: (2.3)The advantage to this form is that the quantityPi �ni+1=2Qni+1=2 is conserved with nand constant states Q are preserved.For reasons which will become clear shortly, we write the Godunov scheme inwave propagation form:Qn+1i+1=2 = Qni+1=2 � �tn�n+1i+1=2�� �A+�Qni +A��Qni+1� ; (2.4)with A+�Qni = f(Qni+1=2) � f(Q�i )� _xni (Qni+1=2 �Q�i ); andA��Qni = f(Q�i )� f(Qni�1=2)� _xni (Q�i � Qni�1=2):Here, A+�Qni is the right-going ux di�erence from solving the Riemann problembetween Qni�1=2 and Qni+1=2 and models the combined e�ect on the cell average Qni+1=2of waves entering from the left edge. Similarly,A��Qni+1 is the left-going ux di�er-ence from the Riemann problem between Qni+1=2 and Qni+3=2 and models the combinede�ect of all waves entering the cell from the right.The Godunov scheme can be very expensive, particularly for systems of conser-vation laws, where the Riemann problem at each cell interface requires the solutionof a nonlinear system of equations. In practice, it is possible to solve the Riemannproblem approximately based on the linearized systemqt +A � qx = 0; (2.5)with A an m�m matrix. The well-known approximate Riemann solver of Roe [25] isthe solution to such a linearization and yields a set of m wave speeds �pi and jumpsWpi across each wave, for p = 1; : : : ;m. Using the wave decomposition from the Roesolver, we can write A+�Qi = mXp=1(e�pi )+Wpi ; (2.6a)A��Qi = mXp=1(e�pi )�Wpi ; (2.6b)where (e�pi )+ = max(0; e�pi ), (e�pi )� = min(0; e�pi ), and e�pi = �pi � _xni are \shifted" wavespeeds, incorporating the inuence of the moving mesh. One of the major advantagesof using this type of �nite volume formulation is the natural way in which mesh motionis incorporated into the discrete equations, appearing only in the wave speeds. Thisshould be contrasted with other methods based on �nite di�erences that explicitlyintroduce terms of the form qx _x, which can lead to problems with stability unlessdiscretized carefully [23].



6 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLGodunov's method is only �rst order accurate in space, and so it su�ers from ahigh degree of arti�cial dissipation which leads to signi�cant smearing of the sharpfronts as the solution is evolved. To increase the accuracy of the discretization, onecan use a high resolution ux correction (see [13, 21] for details).Because the scheme is explicit in time, stability requires the time step to satisfythe CFL condition � � 1, where the CFL number is� = �t maxi;p (����� (e�pi )+�xi+1=2 ����� ; ����� (e�pi+1)��xi+1=2 �����) : (2.7)This inequality requires that the time step be small enough that waves from neigh-bouring cells do not intersect.It is important to distinguish the di�erence between the CFL condition for amoving mesh method and that arising from a �xed non-uniform grid, which is thesame as (2.7) except that e�pi is replaced by the unshifted wave speeds �pi . On a �xedmesh, �xi+1=2 can be very small, leading to a very strict global requirement on thetime step. In contrast, the moving mesh method allows for a much less restrictiveCFL condition when the shifted wave speeds are close to zero; i.e., provided that meshpoints move at approximately the same speed as solution discontinuities: _xi � �pi .The possibility of relaxing the global CFL restriction for explicit calculations on non-uniform meshes is one of the major advantages of using a moving mesh for hyperbolicproblems.2.2. The Moving Mesh PDE. We consider now the mesh computation andfor this formulate a moving mesh PDE that is based on an equidistribution principle.Following [18], we require that the transformation x(�; t) from physical to computa-tional coordinates satisfyZ x(�;t)0 M (s; t) ds = � � Z 10 M (s; t) ds: (2.8)The functionM (x; t) > 0 is called themonitor function and can be the most importantcomponent of the adaptive mesh algorithm. In principle, M can be any appropriately-chosen measure of the numerical error in the solution of the physical PDE. However,an advantage of the moving mesh approach is that M can be chosen to capitalizeon some underlying property of the solution (for example, self-similarity or scalinginvariance [5]). This is a feature that can be exploited in order to place mesh pointsprecisely where they are needed in order to achieve optimal accuracy.It is possible to discretize the integral form (2.8) directly, leading to a set ofalgebraic equations for the mesh locations which can be extremely di�cult to solvee�ciently when coupled with the physical PDE. Instead we take the moving meshPDE approach used by Huang et al. [18], wherein a partial di�erential equation de-scribing the moving mesh points is obtained by taking the time derivative of (2.8) andintroducing temporal smoothing. There are a large number of possible moving meshPDEs, one being MMPDE4 of [18]:2@@� �M @ _x@�� = �1� @@� �M@x@�� : (2.9)2Another moving mesh PDE, MMPDE6, performs better for problems in which there are viscousshocks [22] or blow-up [5]. Its success is attributable to a certain scaling invarianceproperty. However,we have found in numerical experiments thatMMPDE6 is unsuitable for solving hyperbolicproblems,which may be related to some alternate form of scaling invariance.



A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 7The parameter � can be thought of as the time scale over which the mesh relaxestowards equidistribution.A commonly used form of M is the arclength monitor functionM =p1 + jqxj2: (2.10)The corresponding centered �nite di�erence approximation at cell midpoints isMi+1=2 =vuut1 + �����Qi+1 � Qixi+1 � xi �����2; (2.11)where Qi = (Qi+1=2�xi�1=2 + Qi�1=2�xi+1=2)=(�xi+1=2 + �xi�1=2) is a weightedaverage of cell-centered solution values, located at cell edges. Notice that M is largestwhere the solution changes most rapidly, and as a result the mesh equation (2.9)serves to concentrate grid points in regions with large solution gradients.It is well known that some sort of smoothing of the mesh is required in orderto maintain reasonable accuracy in the computation of a solution on an adaptivemesh. Rather than smoothing the mesh itself, a commonly applied technique in themoving mesh framework is to replace the monitor function in the equations above bya regularized version fM given byfMi+1=2 =vuuut i+ipXk=i�ipM2k+1=2� 1 + �jk�ij, i+ipXk=i�ip� 1 + �jk�ij : (2.12)fMi+1=2 can be thought of as a weighted average of the neighbouring 2ip + 1 valuesof M (with weighting factors determined by the parameter  > 0) that serves toeliminate local oscillatory or non-smooth behaviour that may arise from solving theMMPDE.We discretize the MMPDE using centered �nite di�erences in space, yieldingMi+1=2 ( _xi+1 � _xi)�Mi�1=2 ( _xi � _xi�1) = �Ei� ; (2.13a)where Ei is a centered approximation to the term on the right hand side of (2.9) givenby Ei = Mi+1=2 (xi+1 � xi) �Mi�1=2 (xi � xi�1) : (2.13b)Since the monitor function depends on the solution valuesQi+1=2, the discrete physicalequation (2.4) and (2.13a) form a coupled, nonlinear system of equations to be solvedin each time step. In one-dimensional problems, it is commonto employ a fully implicittime discretization and solve the resulting system of sti� ODEs using a package suchas Dassl [24]. In two dimensions this procedure becomes very costly, and otherapproaches are needed (see [6], for example). We wish to construct a time-steppingprocedure that preserves the conservation properties of the physical PDE, an issueaddressed in the following section.2.3. Time Integration. Here we describe an algorithm for solving the discreteequations (2.4) and (2.13). By itself, the wave propagation scheme is explicit, but



8 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLwhen coupled with the mesh equation, the system becomes implicit due to the depen-dence of the mesh equation on Q through the monitor function.In our experience, a straightforward explicit discretization in time will lead toinstabilities and therefore some form of implicit time di�erencing is required (seealso [23, 15]). Intuitively, it is easy to see the need for some form of iteration: if wewere to employ a fully explicit algorithm, basing the mesh locations on the solutionfor the previous time step, then grid points can lag behind the solution, leading toserious violations of the CFL condition. However, a fully implicit scheme, whereinthe coupled nonlinear system is solved in each time step, is far too expensive forpractical calculations. Our method is similar to the fully explicit, predictor{correctorstep constructed in [29], except that the step is iterated. Our aim in constructing ascheme is to leave the solution step for the physical PDE unaltered, so that we canemploy the conservative, high resolution algorithms in Clawpack, and build aroundit a �xed point iteration on the mesh.We propose the following:Moving Mesh Algorithm1. Let n = 0.2. Given an initial solution Q0 at time t = t0, equidistribute the mesh exactlyusing a discretization of the exact equidistribution principle (Mx�)� = 0 (cor-responding to � = 0).3. Step the solution to time level n+ 1 using the following iteration:(a) Let m = 0. Take a guess at the new mesh positions using xn+1;0i =xni +�tn _xni , unless this leads to mesh crossings, in which case we takethe conservative guess xn+1;0i = xni .(b) Use Clawpack to obtain an initial guess Qn+1;0 for the solution at timelevel n + 1 using the mesh xn+1;0i . Clawpack returns an adaptively-chosen time step �tn which is used for the remainder of the iteration.(c) Iterate on m:i. Compute the raw and smoothed monitor function values, Mi+1=2 andfMi+1=2, and the quantity Ei from (2.13b), all based on the currentsolution iterate Qn+1;mi+1=2 .ii. Employ a Crank-Nicholson discretization of (2.13a) for updating themesh:fMn+1;mi+1=2 (xn+1;m+1i+1 �xn+1;m+1i )�fMn+1;mi�1=2 (xn+1;m+1i �xn+1;m+1i�1 )= fMn+1;mi+1=2 (xni+1�xni )�fMn+1;mi�1=2 (xni �xni�1)��tn2� hEn+1;mi +Eni i ;for which a tridiagonal system is solved for the unknowns xn+1;m+1i .iii. Use Clawpack to obtain the new solution approximation Qn+1;m+1i ,using mesh positions xn+1;m+1i , mesh velocities _xn+1i = (xn+1;m+1i �xni )=�tn, and a CFL restriction of � � 0:9.iv. If kxn+1;m+1�xn+1;mk1 > TOL, then increment m, and go to Step3ci.4. Once the iteration has converged, increment n and begin a new time step inStep 3.



A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 9Some of the key aspects of the algorithm worth noting are that:� the physical PDE is integrated explicitly in time using a conservative method;� the convergence tolerance is applied on the mesh only;� there is only a single parameter (the temporal smoothing, � ) needed to controlthe mesh motion;� because the physical PDE is solved using the general-purpose solver Claw-pack, the method is easy to generalize to other problems.These features combine together to yield a method that to our knowledge is distinctfrom any other adaptive approach that has appeared in the literature.3. Monitor Functions for Resolving Discontinuities. The monitor func-tion should in principle be chosen so that it represents some measure of the error inthe computed solution in an appropriate norm. At points where the error is large,M should also be large so that mesh points will tend to concentrate in those ar-eas where higher resolution is needed. While solution arclength (2.10) concentratesmesh points where the solution has large gradients and gives excellent results for manyparabolic problems, have found that it is inappropriate for hyperbolic equations. Par-ticularly when high resolution Godunov schemes are used, computed discontinuousow features can be very steep, and so the moving mesh PDE may drive more pointsthan necessary into the neighborhood of these discontinuities. Several investigationshave already been made into how the arclength monitor function can be modi�edto avoid excessive clustering of points and so control the conditioning of the meshequation [10, 1, 22]. Our objective in this section is to obtain regularized variantsof the arclength monitor, which are still large where discontinuities arise, but not solarge that they over-resolve steep layers.One way to modify the arclength monitor function so as to balance the number ofpoints inside and outside a steep internal layer is to introduce a \regularizing factor"� in the following manner:3 M =r1 + 1� jqxj2: (3.1)The factor � allows one to reduce the magnitude of the monitor function in situationswhere jqxj is very large, thereby avoiding over-resolution of steep layers, while alsoensuring that M still retains a signi�cant peak near these discontinuities. Beckett &Mackenzie [1] applied this type of regularization in the context of singularly perturbedboundary value problems, and using a monitor function based on curvature: M =1 + 1� jqxxj1=m. Taking � to be any constant greater than one in (3.1) will tend tomove points out of a steep front into regions where the solution is smooth. However,if we are to construct a monitor function that will give reasonably consistent resultsfor shocks of arbitrary steepness, then � will have to depend on the solution.A scaling of the arclength function using the maximum solution value (with � /maxx jqj2) was applied in [11] to eliminate large variations in the solution componentsfor systems of conservation laws. This monitor will still over-resolve discontinuous3Note that the monitor functionsM =p�+ jqxj2 and M =p1 + jqxj2=� give identical resultsbecause of the invariance of MMPDE4 in (2.9) under the scaling M 7! cM , where c is a constant.MMPDE6, incidentally, is not invariant under this scaling.



10 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLfronts, and so we consider instead a scaling based on the maximum derivative value,� = �max := maxx jqxj2=�; (3.2)where the parameter � > 1 controls the concentration of mesh points. A relatedregularization, used in [1], scaled the derivative term in (3.1) by its average value overthe domain using � = �avg := 1jb� aj Z ba jqxj2 dx: (3.3)The advantage to this type of monitor function is that there is no free parameterneeded for mesh control.3.1. Generalization to Systems of Equations. The discussion of monitorfunctions thus far has been restricted to the case where the unknown function is ascalar. The de�nition extends naturally to systems of equations in which q is an m-vector. Perhaps the most obvious approach is to replace the absolute value jqxj withthe vector 2{norm kqk in (3.1). However, in problems such as the Euler equationsof gas dynamics, the solution components can take on values that di�er widely inmagnitude, in which case it makes no sense to weight the individual componentsequally. Furthermore, shocks are characterized by jumps in all three components,whereas contact lines appear as discontinuities in the density only, as pictured inFig. 3.1. As a result shocks are weighted more heavily in the calculation of themonitor function and contact lines are essentially ignored. This is undoubtedly whatlimits the accuracy of contact line resolution in other movingmesh computations suchas those reported in [8, 22].
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A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 11although pressure could equally well be used in place of velocity. We choose to regu-larize the monitor function using �max, since then the maximum magnitude of M isindependent of the shock steepness or the magnitude of the velocity component. It isthen possible to normalize the monitor functions so that di�erent discontinuities aregiven equal weight, something which is not possible with the averaged regularizationparameter �avg.In a similar manner, we construct a \contact monitor" function de�ned in termsof the entropy S = ln (p=�) asM c =s1 + �� jSxjmaxx jSxj�2: (3.5)While the entropy is discontinuous across both shocks and contact lines (see Fig. 3.1)and so is not an ideal choice for a contact monitor, entropy typically has a muchsmaller jump across a shock than a contact line. Therefore, (3.5) should still be agood measure of the location of contact discontinuities.The moving mesh algorithm requires a single monitor function, which we de�neusing the simple convex combinationM cs = �M c + (1 � �)M s: (3.6)In all numerical simulations performed herein, we weight the two classes of disconti-nuity equally and take � = 12 . The resolution of the shock and contact line is fairlyinsensitive to the choice � in (3.4) and (3.5) provided it is taken large enough, and inpractice a value of � = 100 has proven to give satisfactory results.4. Numerical Results. In this section, we will focus on three test problems:the inviscid Burgers' equation; the Buckley-Leverett equation (which is distinguishedby a non-convex ux function); and the Euler equations of gas dynamics (a system of 3hyperbolic conservation laws). We evaluate the various monitor functions introducedin Section 3 by comparing accuracy and computational cost. We also investigate theimportance of the temporal smoothing parameter � appearing in the moving meshequation, and whether there are any particular issues associated with solving problemsthat have discontinuous solutions. The solution quality and algorithm performanceare much less sensitive to the level of spatial smoothing, and so we �x the parametersip = 4 and  = 2 in (2.12) for the remainder.Computational costs are reported as CPU timesmeasured on a Sun SPARCstation{20, and in all of our simulations the overhead cost associated directly with computingthe mesh amounted to at most 25% of the total CPU time. As a result, any di�erencesin total cost between the �xed and moving mesh results can be attributed primarily todi�erences in the time step in conjunction with any additional moving mesh iterationsrequired in each time step.Errors are reported relative to an \exact" solution which is actually a �nely-resolved numerical approximation obtained from a �xed mesh computation with N =2500. An appropriate norm for measuring errors in discontinuous solutions is theL1{norm, which we approximate using the formulakQ� qk1 = NXi=1 ��Qi+1=2 � q(xi+1=2)�� ��xi+1=2;where Q is the computed solution and q the exact solution.



12 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELL4.1. Inviscid Burgers' equation. Our �rst test of the moving mesh methodis the inviscid Burgers' equation qt + �12q2�x = 0; (4.1)for 0 � x � 1, and t � 0, with periodic boundary conditions and an initial solutionpro�le given by q0(x) = sin(2�x) + 12 sin(�x). The solution propagates to the right,steepening until the singularity time ts = 64=(129�) � 0:15792, at which point ashock forms.The solution up to time t = 1:2 is displayed in Fig. 4.1 for a moving meshcalculation with N = 50, � = 0:05 and regularization parameter �avg, while the�xed grid solution with the same number of mesh points is given in Fig. 4.2 forcomparison. It is evident that the moving mesh computation yields considerably
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A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 13Table 4.1Comparison of various �xed and moving grid solutions for Burgers' equation. The arclengthcomputation agged with a \�" experienced di�culties with stability of the mesh equation whichaccounts for the exceptionally large CPU time.Description CPU time NT L1 error RFixed mesh:N = 50 0.44 78 0.0042N = 100 0.92 149 0.0028N = 200 2.43 289 0.0015N = 400 7.36 562 0.0007Moving mesh (� = 0:1):�max, N = 50 1.66 185 0.0017 0.104�avg, N = 50 1.58 172 0.0013 0.101�avg, N = 100 4.84 331 0.0005 0.056Arclength monitor (N = 50):� = 0:2 2.67 323 0.0015 0.022� � = 0:1 31.20 4256 0.0016 0.001A more quantitative comparison of solution errors is a�orded by Table 4.1, whichlists the L1 error in the solution for various �xed and moving mesh calculations. Themoving mesh calculations with 50 grid points are as accurate as for a �xed mesh with200 points, and require less CPU time.For the computations using regularization parameters �avg and �max, the numberof iterations in each time step is at most 2. Therefore, the major factor determiningthe e�ciency of the method is the CFL condition (2.7) arising from the physicalPDE. The time steps in the moving mesh calculations are considerably larger thanthat which would be allowed on a �xed mesh with a similar level of re�nement nearthe shock. This is illustrated by the time step plots in Fig. 4.3(a), which correspondto a 400-point �xed mesh and a moving grid with �avg. However, the improvementis not as dramatic as we might have expected from (2.7) because the shifted wavespeeds are never exactly zero. It is not possible to constrain mesh points to lie alwaysalong the front since they must periodically enter the shock layer from the right andleave from the left, as seen in Fig. 4.1. This phenomenon, known as \mesh racing,"4is unavoidable in r-adaptive methods for which mesh points are not explicitly addedor removed throughout the adaptation procedure.The connection between mesh racing and the CFL number (2.7) can be mademore apparent by considering two mesh trajectories, xi�1 and xi, that lie along ashock as pictured in Fig. 4.4. The mesh point xi continues moving along the shockand so the wave speed is � � _xi. The local CFL number corresponding to the meshpoint xi�1 is then given by�i�1=2 = j�� _xi�1j�txi � xi�1 � j _xi � _xi�1j�� � ��xi � xi�1 ��t � �t.���� x�x�t ���� : (4.2)Consequently, when mesh racing occurs, there is an accompanying stability constrainton the time step that is determined by the \mesh racing factor," R := minx jx�=x�tj.4While not standardized in the literature, the term \mesh racing" has been used in the past byK. Miller.
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A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 15Table 4.2Comparison of various �xed and moving grid solutions for Burgers' equation (�avg, N =50). The arclength computation marked with a \�" experienced di�culty with stability of the meshequation. � CPU time NT L1 error R� 0.01 63.38 324 0.0072 0.0050.025 3.68 261 0.0016 0.0500.05 1.96 236 0.0022 0.0680.10 1.58 171 0.0013 0.1010.20 1.25 117 0.0016 0.2000.50 0.98 89 0.0035 0.769The temporal smoothing parameter can also be interpreted as a time scale overwhich the grid relaxes towards equidistribution. Consequently, a secondary e�ect oftemporal smoothing is a slight time delay in the mesh motion. This is manifested inFig. 4.1 as a higher concentration of mesh points at the trailing edge of the shock.A tangible connection can be made between mesh racing and the level of temporalsmoothing, based on the analysis of moving mesh methods performed by Smith &Stuart [26] for a general class of time-dependent scalar PDEs. In this work, the authorsderive the following bounds on the mesh derivatives in terms of � and �M := maxx(M ):jx�tj � �M2� and x� � 1�M ;which can be combined to obtain a bound on the mesh racing factor,R � ��M3 : (4.3)While this is only an lower bound onR, it does suggest that our strategy of combiningtemporal smoothing with a regularized monitor function serves to control mesh racing.This is particularly evident in the case of the �max regularization, for which M isbounded by a constant and in fact, R � �=�3=2. Referring to the contour plots inFig. 4.5 and the entries in Table 4.2, � clearly does have a mollifying inuence on themesh curvature and hence also on mesh racing.
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16 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLmesh points to cluster in the layer. The results in Table 4.1 demonstrate that thearclength monitor requires a higher value of � to control the mesh behaviour, and theiteration diverges even when � is as large as 0.1. As long as the temporal smoothingis taken large enough the arclength results are comparable to that for other monitorfunctions, although the accuracy su�ers somewhat because of the time lag in themesh motion. However, as we will see later in computations with the Euler equations,arclength can introduce severe ill-conditioning in the mesh equation, so we do notadvocate its use for hyperbolic problems.We close with a brief comparison to other more commonmovingmesh approaches,and report on simulations for which the physical and mesh PDEs are discretizedimplicitly in time using a method of lines approach. The resulting nonlinear system issolved using the BDF solver Dassl [24] with error tolerances atol = rtol = 10�6. Weemploy two di�erent spatial discretizations: the �rst being a centered �nite di�erenceapproximation of the viscous Burgers' equation with the viscosity � ! 0, and thesecond a Godunov scheme for the inviscid problem. The CPU times and errors arelisted in Table 4.3, from which it is easy to see the signi�cant increase in cost requiredfor a fully implicitmethod. The close-up plots of the solution near the shock in Fig. 4.6indicates the clustering together of points as the layer steepens, with CPU timesdemonstrating the corresponding increase in di�culty of solving the mesh equation.Table 4.3Comparison of moving grid calculations for Burgers' equation based on the method of lines(N = 50, � = 0:05). The columns NT and NJAC give the number of time steps and number ofJacobian evaluations respectively.Description CPU time NT NJAC L1 errorInviscid Burgers, �max 15.70 1264 221 0.0063Viscous Burgers, � � 1, � = 10�3 9.08 580 44 0.0041� = 10�4 14.70 830 79 0.0039� = 10�5 32.90 1523 214 0.0036
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A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 17Burgers' computation fails to converge at all using the arclength monitor function, andso an alternate monitor had to be employed. Using the �max regularization we wereable to compute the solution pictured in Fig. 4.6. While the L1-error is only slightlylarger in comparison to the other computations, there is clearly a signi�cant error inthe shock speed. This points to a serious drawback in using a straightforward methodof lines approach for hyperbolic problems: namely, that the resulting discretizationmay not be conservative. This is one of our main motivations for constructing asemi-implicit algorithm using an explicit, conservative step in the physical solution.4.2. Buckley-Leverett equation. Wenext consider the scalar Buckley-Leverettproblem which has been used to describe the one-dimensional ow of two immiscibleuids in a porous medium, neglecting capillary pressure and gravity. This may beused to model gas and oil in a reservoir, for which the equations take the form of ascalar conservation law (1.1a), where q is the uid saturation (water volume / porevolume) and the ux function isf(q) = q2q2 + 0:5(1� q)2 : (4.4)The solution is obtained on the interval x 2 [0; 1], with initial and boundary conditionsq(x; 0) = 11 + 10x; q(0; t) = 1; q(1; t) = 111 ;corresponding to an \oil recovery" scenario where water is pumped into the reservoirat x = 0 and oil is forced out at x = 1. In contrast with Burgers' equation, theBuckley-Leverett ux function f(q) is non-convex, which leads to di�culties withsome numerical schemes and so serves as an excellent test of a numerical method.The solution to time t = 1:0 sec is shown for a moving mesh in Fig. 4.7 and thecorresponding �xed mesh simulation in Fig. 4.8. Again, the adaptive mesh does anexcellent job of capturing and following the discontinuity, and resolves the shock layermuch more accurately than the �xed mesh method with the same number of points.
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PSfrag replacementsq xFig. 4.8. Fixed mesh solution to the Buckley-Leverett equation (N = 50).4.3. Euler equations. The Euler equations describing the evolution of an in-viscid, compressible, polytropic gas in one dimension are@@t 24 ��ue 35+ @@x 24 �u�u2 + pu(e + p) 35 = 0 (4.5)where � is the density, u the velocity, p the pressure, e = p�1 + 12�u2 the internalenergy, and  the ratio of speci�c heats ( = 1:4 for air). The system (4.5) is in theform of a conservation law (1.1a) with q = (�; �u; e)T and f(q) = qu+ (0; p; pu)T .We consider Sod's classical shock tube problem [27] which has the following initialconditions q(x; 0) = ((1:0; 0:0; 2:5); if 0 � x < 0:5(0:125; 0:0; 0:25); if 0:5 � x � 1and reecting boundary conditions at x = 0 and x = 1. In contrast with the Burgers'or Buckley{Leverett problems of the previous sections (in which the initial conditionsare smooth), the selection of an appropriate initial mesh is of particular importancehere because the initial conditions are discontinuous. In order for mesh points tobe placed on or near the initial discontinuities, the data must be smoothed oversome �nite width. We therefore replace jumps in the initial data using hyperbolictangent pro�les with width � � 0:005, and then equidistribute the initial mesh exactly(i.e., � = 0) with the smoothed data. The resulting mesh and solution data are usedas the initial conditions for the numerical scheme.The performance of the algorithm with the arclength monitor function was muchworse than for Burgers' equation, requiring an excessively large value of � for sta-bility. We therefore consider only regularized monitor functions, and begin withM =p1 + kqxk22=�, based on a straightforward 2-norm of the solution components,with � = R kqxk22 dx. The computed density and mesh contour plot are displayedin Fig. 4.9, from which we see that the moving mesh solution provides much betterresolution of the shock and rarefaction wave than the �xed mesh algorithm (shown inFig. 4.10). However, the contact discontinuity is not detected at all, and consequentlythe resolution of the contact line is no better than for a �xed mesh. These qualitativeobservations are supported by the L1 error values reported in Table 4.4.
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20 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLTable 4.4Comparison of various �xed and moving grid solutions for the Euler equations.Description CPU time NT L1 error RFixed grid:N = 60 0.82 56 0.0047N = 120 2.03 98 0.0026N = 240 6.60 179 0.0013N = 480 21.19 339 0.0006Moving grid (N = 60, � = 0:005):�avg (M based on kqxk22) 5.46 152 0.0032 0.0123Moving grid (N = 60, � = 0:005, �max):M = M c 5.03 103 0.0041 0.0145M = M s 4.50 117 0.0043 0.0136M = M cs 3.32 80 0.0026 0.0150discontinuity, although the errors in Table 4.4 demonstrate the loss in accuracy suf-fered when only one of the two discontinuous ow features is resolved. Furthermore,the computational time is increased, due primarily to reductions in time step fromlocal CFL violations near the discontinuity that is not being adequately resolved.The results computed with the monitor function M cs are displayed in Fig. 4.12.While the solution is not as sharp at the individual fronts as the solution obtained
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A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 21those that employ fully implicit time-stepping, our moving mesh scheme requires atmost the same number of time steps for a comparable level of accuracy. If we thentake into account the added cost of evaluating and inverting the Jacobian matrix inimplicit methods, our scheme is much cheaper. Furthermore, in the case of the Eulerequations, we observe a signi�cant improvement in the resolution of contact lines.5. Conclusions. We have developed an adaptive method for solving one-dimen-sional hyperbolic conservation laws that is accurate and e�cient. This is despite thefact that di�culties identi�ed with solving parabolic problems on moving meshes inthe literature (namely, mesh racing and ill-conditioning of the solution-mesh iteration)are exacerbated for hyperbolic problems due in large part to the absence of a naturaldissipative mechanism in the physical equations.The method is based on the existing fast, wave propagation algorithms imple-mented in the software package Clawpack. The accuracy of our results derives fromour combining the high resolution, Godunov-type scheme for the physical equationswith a movingmesh PDE that uses a monitor function speci�cally designed to capturesolution discontinuities. Numerical results demonstrate the e�cacy of the method incomparison with �xed mesh computations and other moving mesh results reported inthe literature, particularly as regards resolution of contact discontinuities.The e�ciency of our solution algorithm stems primarily from our constructionof a semi-implicit iteration for the solution and mesh, that behaves in practice as atwo- or three-step predictor{corrector method. This should be compared with othermoving mesh algorithms, which typically employ a fully implicit time discretizationfor the coupled solution{mesh system that iterates both solution and mesh to con-vergence. The rapid convergence of the iteration is aided by a combination of adiscontinuity-adaptive monitor function that avoids over-resolving sharp fronts withtemporal smoothing that molli�es the e�ects of mesh racing. The temporal smooth-ing parameter � is the only free parameter required in the moving mesh algorithm.However, the level of smoothing required varies between problems, and so this is onearea where further work is required. It is likely that performance can be enhanced byallowing � to depend on the solution throughout a given computation.We have come to two fundamental conclusions regarding adaptive solution ofhyperbolic problems. First, the arclength monitor function, which is the one mostcommonly used in moving mesh computations, is not appropriate for hyperbolic prob-lems, where high concentrations of mesh points near discontinuous solution featurescan cause the mesh equations to become ill-conditioned. Second, temporal smooth-ing is essential for controlling mesh racing, which can otherwise cause serious CFLviolations and further degrade the solution{mesh iteration.We are not advocating r-adaptive methods as a panacea for all hyperbolic prob-lems, particularly because of the proven success of static re�nement methods such asAMR [3]. However, we have shown that there is considerable advantage to be gainedby some degree of dynamic mesh movement, and so an optimal \overall" solutionstrategy is likely to derive from a combination of grid movement (r{re�nement) andgrid subdivision (h{re�nement).The most obvious extension of this work is to higher dimensional problems wheremultiple shock interactions pose particular challenges for mesh adaptation. TheClawpack code has already proven very e�ective for problems on non-uniform sta-tionary grids in two dimensions, and so our next step will be to generalize the wavepropagation scheme to a moving grid. When used in combination with the variationalapproach for 2D movingmeshes developed in Cao et al. [7], our discontinuity-adaptive



22 J. M. STOCKIE, J. A. MACKENZIE & R. D. RUSSELLmonitor function should exhibit similar advantages in higher dimensions.There is also a need for further theoretical work on the behaviour of the nonlin-ear system of equations for the solution and mesh. It is our hope that an analysisfor hyperbolic problems (perhaps in the context of the scalar advection equation)will provide insight into the importance of both the monitor function and temporalsmoothing, and their relationship to the phenomenon of mesh racing.REFERENCES[1] G. Beckett and J. A. Mackenzie. On a uniformly accurate �nite di�erence approximation of asingularly perturbed reaction-di�usion problem using grid equidistribution. Report 97/30,Department of Mathematics, University of Strathclyde, Glasgow, Scotland, 1997.[2] J. B. Bell and G. R. Shubin. An adaptive grid �nite di�erence method for conservation laws.J. Comput. Phys., 52:569{591, 1983.[3] M. J. Berger and R. J. LeVeque. Adaptive mesh re�nement using wave-propagation algorithmsfor hyperbolic systems. SIAM J. Appl. Math., 35(6):2298, 1998.[4] R. Biswas, J. E. Flaherty, and D. C. Arney. An adaptivemesh-movingand re�nement procedurefor one-dimensional conservation laws. Appl. Numer. Math., 11:259{282, 1993.[5] C. J. Budd, W. Huang, and R. D. Russell. Moving mesh methods for problems with blow-up.SIAM J. Sci. Comp., 17(2):305{327, Mar. 1996.[6] W. Cao, W. Huang, and R. D. Russell. An r-adaptive �nite elementmethod based uponmovingmesh PDEs. J. Comput. Phys., 149(2):221{244, 1999.[7] W. Cao, W. Huang, and R. D. Russell. A study of monitor functions for two-dimensionaladaptive mesh generation. SIAM J. Sci. Comp., 1999. To appear.[8] N. N. Carlson and K. Miller. Design and application of a gradient-weighted moving �niteelement code I: in one dimension. SIAM J. Sci. Comp., 19(3):728{765, 1998.[9] J. Chen. Numerical study of blowup problems and conservation laws with moving mesh meth-ods. Master's thesis, Simon Fraser University, Burnaby, British Columbia, Canada, June1996. (unpublished).[10] K. Chen. Error equidistribution and mesh adaptation. SIAM J. Sci. Comp., 15(4):798{818,1994.[11] E. A. Dor� and L. O. Drury. Simple adaptive grids for 1-D initial value problems. J. Comput.Phys., 69:175{195, 1987.[12] K. Farrell and L. O. Drury. An explicit adaptive grid algorithm for one-dimensional initialvalue problems. Appl. Numer. Math., 26(1/2):3{12, 1998.[13] R. Fazio and R. J. LeVeque. Moving-meshmethods for one-dimensionalhyperbolicproblems us-ing Clawpack. (unpublished, available at ftp://amath.washington.edu/pub/rjl/papers/rf-rjl:movingmesh.ps.gz), 1998.[14] R. M. Furzeland, J. G. Verwer, and P. A. Zegeling. A numerical study of three moving gridmethods for one-dimensional partial di�erential equations which are based on the methodof lines. J. Comput. Phys., 89(2):349{388, 1990.[15] R. J. Gelinas, S. K. Doss, and K. Miller. The moving �nite element method: Applicationsto general partial di�erential equations with multiple large gradients. J. Comput. Phys.,40:202{249, 1981.[16] S. K. Godunov. Di�erence method of numerical computation of discontinuous solutions ofhydrodynamic equations. Mat. Sb., 47:271{306, 1959. (In Russian).[17] A. Harten and J. M. Hyman. Self-adjusting grid methods for one-dimensional hyperbolicconservation laws. J. Comput. Phys., 50:235{269, 1983.[18] W. Huang, Y. Ren, and R. D. Russell. Moving mesh methods based on moving mesh partialdi�erential equations. J. Comput. Phys., 113:279{290, 1994.[19] W. Huang and R. D. Russell. A moving collocation method for solving time dependent partialdi�erential equations. Appl. Numer. Math., 20:101{116, 1996.[20] R. J. LeVeque. Clawpack { A software package for solving multidimensional conservation laws.In Hyperbolic problems: theory, numerics, applications, pages 188{197. World Scienti�cPublishing, River Edge, NJ, 1996.[21] R. J. LeVeque. Wave propagation algorithms for multi-dimensional hyperbolic systems. J.Comput. Phys., 131(2):327{353, 1997.[22] S. Li. Adaptive Methods and Software for Time-Dependent Partial Di�erential Equations. PhDthesis, University of Minnesota, 1998.



A MOVING MESH METHOD FOR 1D CONSERVATION LAWS 23[23] S. Li, L. Petzold, and Y. Ren. Stability of movingmesh systems of partial di�erential equations.SIAM J. Sci. Comp., 20(2):719{738, 1999.[24] L. R. Petzold. A description of DASSL: A di�erential/algebraic system solver. In R. S. Steple-man, editor, Transactions on Scienti�c Computation. IMACS, New Brunswick, NJ, 1982.[25] P. L. Roe. Approximate Riemann solvers, parameter vectors, and di�erence schemes. J. Com-put. Phys., 43:357{372, 1981.[26] J. H. Smith and A. M. Stuart. Analysis of continuousmovingmesh equations. Technical ReportSCCM-96-12, Scienti�c Computing and Computational Mathematics Program, StanfordUniversity, 1996.[27] G. A. Sod. A survey of �nite di�erencemethods for systems of nonlinearhyperbolic conservationlaws. J. Comput. Phys., 27:1{31, 1978.[28] P. K. Sweby. High resolution schemes using ux limiters for hyperbolic conservation laws.SIAM J. Numer. Anal., 21(5):995{1011, 1984.[29] J. G. Verwer, J. G. Blom, and J. M. Sanz-Serna. An adaptive moving grid method for one-dimensional systems of partial di�erential equations. J. Comput. Phys., 82(2):454{486,1989.[30] K.-H. A. Winkler, M. L. Norman, and M. J. Newman. Adaptive mesh techniques for fronts instar formation. Physica D, 12:408{425, 1984.[31] P. Woodward and P. Colella. The numerical simulation of two-dimensional uid ow withstrong shocks. J. Comput. Phys., 54:115{173, 1984.




