Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A genetic algorithm-based approach to machine assignment problem

Chan, F.T.S. and Wong, T.C. and Chan, L.Y. (2005) A genetic algorithm-based approach to machine assignment problem. International Journal of Production Research, 43 (12). pp. 2451-2472. ISSN 0020-7543

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Over the last few decades, production scheduling problems have received much attention. Due to global competition, it is important to have a vigorous control on production costs while keeping a reasonable level of production capability and customer satisfaction. One of the most important factors that continuously impacts on production performance is machining flexibility, which can reduce the overall production lead-time, work-in-progress inventories, overall job lateness, etc. It is also vital to balance various quantitative aspects of this flexibility which is commonly regarded as a major strategic objective of many firms. However, this aspect has not been studied in a practical way related to the present manufacturing environment. In this paper, an assignment and scheduling model is developed to study the impact of machining flexibility on production issues such as job lateness and machine utilisation. A genetic algorithm-based approach is developed to solve a generic machine assignment problem using standard benchmark problems and real industrial problems in China. Computational results suggest that machining flexibility can improve the overall production performance if the equilibrium state can be quantified between scheduling performance and capital investment. Then production planners can determine the investment plan in order to achieve a desired level of scheduling performance.