Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Code-based all-optical routing using two-level coding

Meenakshi, M. and Andonovic, I. (2006) Code-based all-optical routing using two-level coding. Journal of Lightwave Technology, 24 (4). pp. 1627-1637. ISSN 0733-8724

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Code-based all optical routing employing a two-level-coding scheme is proposed. The first level of coding is employed to establish connections between users within a local area network; a second level of coding provides routing/interconnectivity between networks. The limitations due to physical-layer impairments, such as relative intensity noise (RIN) of the optical source, the signal-dependent shot noise, optical beat interference (OBI), and thermal noise at the receiver, which are some of the fundamental issues in the design of practical optical code division multiple access (CDMA) systems, are analyzed for the two-level scheme. The throughput in terms of 'packets/time slot' offered by the scheme is also compared with that of the wavelength division multiple access (WDMA) system. The system capacity in WDMA is limited by the number of available wavelengths; optical CDMA, on the other hand, has many codes (user addresses), but the throughput is limited by multiple user interference, OBI, and RIN. System designs that overcome these effects and thereby improve the throughput are suggested.