Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Code-based all-optical routing using two-level coding

Meenakshi, M. and Andonovic, I. (2006) Code-based all-optical routing using two-level coding. Journal of Lightwave Technology, 24 (4). pp. 1627-1637. ISSN 0733-8724

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Code-based all optical routing employing a two-level-coding scheme is proposed. The first level of coding is employed to establish connections between users within a local area network; a second level of coding provides routing/interconnectivity between networks. The limitations due to physical-layer impairments, such as relative intensity noise (RIN) of the optical source, the signal-dependent shot noise, optical beat interference (OBI), and thermal noise at the receiver, which are some of the fundamental issues in the design of practical optical code division multiple access (CDMA) systems, are analyzed for the two-level scheme. The throughput in terms of 'packets/time slot' offered by the scheme is also compared with that of the wavelength division multiple access (WDMA) system. The system capacity in WDMA is limited by the number of available wavelengths; optical CDMA, on the other hand, has many codes (user addresses), but the throughput is limited by multiple user interference, OBI, and RIN. System designs that overcome these effects and thereby improve the throughput are suggested.