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Abstract

Fragmentation of particle swarms into isolated subgroups occurs when interaction forces are

weak or restricted. In the restricted case, the swarm experiences the onset of bottlenecks in the

graph of interactions that can lead to the fragmentation of the system into subgroups. This work

investigates the characteristics of such bottlenecks when the number of particles in the swarm

increases. It is shown, for the first time, that certain characteristics of the bottleneck can be

captured by considering only the number of particles in the swarm. Considering the case of a

connected communication graph constructed in the hypothesis that each particle is influenced by

a fixed number of neighbouring particles, a limit case is determined for which a lower limit to the

Cheeger constant can be derived analytically without the need for extensive algebraic calculations.

Results show that as the number of particles increases the Cheeger constant decreases. Although

ensuring a minimum number of interactions per particle is sufficient, in theory, to ensure cohesion,

the swarm may face fragmentation as more particles are added to the swarm.
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Extensive research into multi-particle systems and their application has been carried

out, with a particular focus on providing verifiable behavioural models.1–3 Within this

context, coherent behaviour of the swarm depends upon reciprocal interactions amongst the

particles. When these interactions are restricted, as they appear to be in biological systems

and as must be in any practical implementation of a large scale swarm, the determinability

of the behaviour of the swarm becomes highly complex. It is thus important to determine

conditions in which the behaviour of the swarm becomes more or less coherent due to

restricted interactions. This is particularly true for those technological applications that

rely on the interactions of several independent units. In this scenario the limiting factor is

constituted by the amount of information exchanged in the swarm, hence the number of

active connections each unit can keep.

The effect of limited interactions has been addressed, with stability analyses that rely

on the swarm staying connected and numerical simulations in support of the behaviours.4,5

This paper considers a swarm of particles acting in a limited communication network and

interacting through pairwise potentials. Associating particles to nodes of a graph, it is

possible to track mutual interactions as edges of the graph and thus conclude characteristics

of the system with the final aim to inform, through this analysis, the development of future

multi agent systems. The particle representation, through the use of physical interactions

that shape the swarm, allows an effective visualisation of the consequence of restricted

interactions. A measure of how much the interaction network is bottlenecked is provided for

a generic graph by the Cheeger constant, which is introduced in the following and analysed

with respect to its dependence on the number of agents. Here particles are considered that

interact according to a pairwise potentials, with a viscous damping that allows for relaxation

to a static configuration of the system. The equations of motions of the generic agent i in

the swarm are expressed as,
dxi

dt
= vi (1)

m
dvi

dt
= −∇Ui − σvi (2)

where, σvi introduces the velocity dependent damping term in the dynamics, with σ = 0.7

and the mass of each particle m is taken unitary. The potential acting on the generic

particle i is Ui =
∑

j(aijUij), with aij being the entry of the adjacency matrix which takes
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values ”1” or ”0” depending respectively on whether the particles are interacting or not.

This holds for any potential considered. In particular the Morse, the quadratic and the

hyperbolic potentials, which are widely spread in literature, are used here showing the wide

applicability of the results regardless the kind of interaction. Relaxation to static position

is achieved through the viscous dissipation term. The Morse potential is described as

Um
ij = −Ca exp

(

−
|xij|

La

)

+ Cr exp

(

−
|xij |

Lr

)

(3)

where, xij is the relative position vector of a particle i with respect to a particle j. Ca, Cr

represent the strength of the potential, while La and Lr govern the range of the potentials

with La > Lr to ensure stability.2,6 As such in the proceeding analysis they will be assigned

the following values: Ca = Cr = La = 1, Lr = 0.2. The quadratic potential, leading to

accelerations proportional to the distance, is described by the expression

U q
ij = (|xij | − d)2 (4)

where, d is a reference distance between any two agents, herein set to 0.1. The hyperbolic

potential7,8 produces a distance dependent acceleration as well, which then becomes constant

over large distances. This is described by the expression

Uh
ij = [(|xij | − d)2 + 1]0.5 (5)

where, the symbols keep the same meaning and values as in Equations 3 and 4.

Consider a swarm of N particles whose number of interactions is strictly limited; in

particular suppose that a particle can sense the potential of at most k other particles,

the closest ones. In the following this is referred to as the k Nearest Neighbours Rule

(k − NNR). When representing this into a directed sensing graph, this turns into a given

node having k outgoing edges, specifically it senses the action of the closest k neighbours.

For the graph to be connected the total number of interactions, hence of connections within

the swarm must be at least N − 1, which corresponds to a line or to a star graph. In the

particular case presented here, when the connections depend upon the relative positions,

and the positions of the particles depend in turn upon the forces derived through the

interactions, the pairwise potential presented tends to cluster the interacting particles.2,9,10
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This prevents the spontaneous formation of such edge-saving connected graphs.

When N − 1 ≤ k the graph is connected, and in particular it is complete. As more particles

join the system, N increases and eventually becomes greater than k. At this point the graph

of the interactions is no longer complete, yet it can still be connected. It is straightforward

to understand that k = 〈N/2〉 (where 〈·〉 rounds down to the nearest integer) for each

particle is a sufficient, though not necessary condition for the graph to be connected. Hence,

the swarm will remain cohesive. Further, in a dispersed swarm there will be at least one

subgroup composed of n particles, with n ≤ 〈N/2〉 = k. As the number of connections per

particle is greater than the number of particles in the subgroup there must be k−n+1 edges

for each node in this group connecting to some of the other N−n nodes as Figure 1 shows. As

connected particles gather together under the actions of the pairwise interactions, this will

produce a cohesive group. This logic is breached when k < 〈N/2〉. For the case k = 〈N/2〉

FIG. 1: The illustration shows how for k = 〈N/2〉 the swarm must be connected. Each of the particle in

the subgroup on the left must complete its 4 connections by joining the group on the right.

two clustered, but yet connected, groups arise. As the connections that a particle does not

establish in its own cluster are established always on the base of closeness, these will be with

some particles on the closest region of the other cluster. This gives rise to a dumbbell shape

where the particles in the central, narrower part bond the two clusters together and, by

symmetry, have the same number of connections to both sides of the dumbbell. Meanwhile,

they are sensed by all N particles. The dumbbell shape is reflected in the adjacency matrix
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of the graph once each node is associated to a particle and the nodes are labeled from one-end

of the dumbbell to the other. The emergence of a bottleneck when the number of particles

increases, while the number of interactions per particle is held constant is shown in Figure

2 for a planar case, while in Figure 3 the final arrangement after relaxation of a 130 particle

swarm with 65 connections per particle is shown together with a graphical representation of

the corresponding adjacency matrix for a three-dimensional case.

(N = 60) (N = 80) (N = 90) (N = 100)

(N = 110) (N = 120) (N = 121) (N = 122)

FIG. 2: Particle swarm systems in a two-dimensional space relaxing to different shapes as the number of

particles N increases while the number of connections allowed per particle, k, is held constant at 60.

As 〈N
2
〉 is a critical value for the number of connections per node, the bottleneck charac-

teristics of the system for the critical case of k = 〈N/2〉 is considered using the Isoperimetric

number, or Cheeger constant of the graph. The Cheeger constant provides a measure of

the flow along the edges of the graph connecting two complementary subsets of it. Null

flow corresponds to the Cheeger constant being equal to zero and to the two subsets being

disconnected. Meanwhile a unitary value is achieved when any two edges, belonging to the

two complementary subsets, are connected, hence, the flow is the maximum possible. As

such, the Cheeger constant for an oriented graph G is defined as11,

h(G) = inf
S

F (∂S)

min{F (S), F (S)}
(6)

where, F = [fij ] is a circulation, a function from the set of edges of the graph onto R−{0},

S is any subset of nodes in the graph and S is its complement, while ∂S is the set of all
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FIG. 3: Dumbbell emergence in a three-dimensional case. (a) A 130 particle swarm in a dumbbell shape

due to the number of connections per particle being limited to 65 and (b) the corresponding adjacency

matrix obtained associating each node to one particle, after having them sorted from one end to the other

of the dumbbell. Dots represent non-zero entries.

edges connecting a node in S to one in S. If the generic pair ij is not an edge of the graph,

then fij = 0. A popular way to define F is on the basis of the probability distribution

matrix P = [pij ] and its dominant left eigenvector,11 φ. As such, this form of circulation is

indicated with the superscript φ and its definition is

fφ
ij = φipij (7)

where, i and j are indexes corresponding to generic nodes in the graph and P is a matrix

whose generic entry i, j gives the probability of moving from vertex i to vertex j based on

the number of links departing from i, derivable from the entries of the adjacency matrix.

That is

pij =
aij

∑

j aij
. (8)

Equation 7 does not directly provide information on the behaviour of the Cheeger constant

as a function of the number of nodes. However, other circulations can be used to define the

Isoperimetric number as long as they satisfy the condition,

∑

i
i→j

fij =
∑

w
j→w

fjw (9)
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for the generic nodes i, j and w. That is the flow in one node of the graph is null. For

the matrix F this translates to having the sum over the rows equal to the sum over the

columns. Therefore, an analytic expression for the Cheeger constant, which is dependent

on the number of nodes in the graph, can be derived by redefining the circulation. In order

to do this the connection network is imposed on the system through an adjacency matrix

composed of two blocks plus two linking rows, shown in Figure 4.a. The adjacency matrix is

obtained by considering that interactions between the two halves pass only through the two

central nodes. This is still consistent with the k−NNR for k = 〈N/2〉 as long as each row of

the idealised adjacency matrix presents 〈N/2〉 non-zero entries, as it does. For clarity, only

an even number of nodes is presented (refer to the online additional material for the case of

an odd number of nodes). As the particles in the centre are sensed by both clusters, their

columns in the adjacency matrix do not have any zero entries, except along the primary

diagonal. This idealised approximation is shown in Figure 4.a for a graph composed of 60

nodes as opposed to one resulting from the spontaneous relaxation of 60 particles following

the dynamics earlier described, with initial conditions randomly distributed in a unit sphere,

shown in Figure 4.b. The idealisation of the adjacency matrix in Figure 4.a represents
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FIG. 4: Adjacency matrices for spontaneously relaxed (a) and idealised connected (b) 60 particle swarm.

the connection structure, where N is even, that produces the smallest possible bottleneck

compliant with the physical restriction of having at least 2 central communicating particles

for N even. Consequently, the associated Cheeger constant is the minimum achievable, as

a smaller value would imply a smaller number of particles bridging the two halves, leading

to fragmentation. This is the reason for which the configuration in Figure 4.a is considered
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here as limit case before the swarm fragmentation. Conversely, Figure 4.b shows a typical

adjacency matrix resulting from spontaneous relaxation using Morse potential, however, as

in this case the adjacency matrix is not imposed on the swarm, spontaneous relaxation can

reduce to anything from this to the limiting case described.

Defined only for existing edges, the circulation used has a matrix representation with the

same non-zero entries as the adjacency matrix. The actual value for each entry is found

by requiring that entries belonging to columns with the same number of non-zero elements

take the same value. This, together with the condition expressed by Equation 9, provides a

number of relations that are sufficient to fully define the circulation for the matrix in Figure

4.(a). This circulation takes four possible values, as there are four different column lengths

in the matrix; call these a, b, c and d. Four equations are hence derived by requiring the

sums along the rows and the columns of the circulation matrix to be equal, as per Equation

9, one for each column length as


























(

N
2
− 2

)

a =
(

N
4
− 2

)

a+ b+
(

N
4
− 1

)

c + 2d
(

N
2
− 1

)

b =
(

N
4
− 1

)

a+
(

N
4
− 1

)

c+ 2d

N
2
c =

(

N
4
− 1

)

a+ b+
(

N
4
− 2

)

c + 2d

(N − 1) d = b+ 2
(

N
4
− 1

)

c+ d

(10)

where, again N is the number of particles/nodes in the graph. Each of the equations in

the linear system expresses the equality between row and column sum. For instance in the

first equation the sum along any of the first or last (N
4
− 1) columns is (N

2
− 2)a as all these

columns have (N
2
− 2) nonzero entries for which the value a is imposed. This is compared to

the sum along any of the first or last (N
4
− 1) rows featuring the first (N

4
− 2) entries equal

to a, one entry equal to b, (N
2
− 1) entries equal to c and 2 equal to d. To allow a solution

other than the zero solution, a is considered known and a ∈ ℜ+. The solution of the system

in Equation 10 is then,


















b = N−2

N
a

c =
N

4
a−b−2d
N

4
−1

d =
−

N−2

N
+N

2

N+2
a .

(11)

The Cheeger constant can thus be derived from its definition in Equation 6 as,

h(G) = h(N) =
N
2
d+

(

N
4
− 1

)

c
(

N
4
− 1

) (

N
2
− 2

)

a +
(

N
2
− 1

)

b+
(

N
4
− 1

)

N
2
c + (N − 1) d

, (12)
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that, after some algebraic manipulation can be reduced to

h(G) = h(N) =
2N (N2 − 4N + 6)

N4 − 2N3 − 6N2 + 20N + 8
. (13)

Equation 13 is obtained in the hypothesis of N being a multiple of 4, otherwise more com-

plicated expressions are to be defined that take into account the shifting of the rows of one

position depending on the value of N ; for clarity this is not done here. Equation 13 can be

proved to be a decreasing function of N , in particular h(N) tends to zero as N approaches

infinity, that is,

lim
N→∞

h(N) = 0 (14)

The Cheeger constant so defined does not depend on any of the coefficients as they are

all proportional to the variable a, which eventually cancels out through simple algebraic

manipulations.

Comparison of the above analytically determined Cheeger constant as a function of only

the number of nodes, and the Cheeger constant obtained through numerical integration of

the spontaneous relaxation of particles driven by pairwise potential within a network of

links based on the k −NNR, is presented in Figure 5.

Numerical integration is conducted in a three-dimensional space with initial positions and

velocities chosen randomly within a unit sphere and for sufficient time to have the swarm

relaxed into a static pattern. Numerical integration is by an explicit Euler scheme, with an

integration step of 10−3 seconds. The Cheeger constant is then calculated using Equation

6 by inserting the values of circulation obtained through Equation 7. The two partitions

S and S are identified on the base of the spatial arrangement the formation attains after

relaxation, i.e. the dumbbell. It is found that the Cheeger constant, obtained from the

adjacency matrix with two linking rows, closely tracks that obtained from numerical

simulations averaged over 100 runs for each data point. As expected, the prediction is

found to be always below, or at most equal to, the lowest value found within the numerical

simulation data set confirming that the analytic curve provides a lower bound for the

prediction of the Cheeger constant. This can be easily determined for very large swarms

where calculation of Cheeger constant using eigenvalues becomes problematic.
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FIG. 5: Comparison of Cheeger constant obtained by the analytic expression simply based on the number

of particles and that obtained through numerical simulations averaged over 100 runs with random initial

conditions.

Results show that, in the limit case of k = 〈N/2〉, the spontaneous relaxation produces a

graph of interactions with a number of crossing links between the two clusters, in excess of

those strictly needed to ensure cohesion as the numerical simulations on average returns val-

ues above the minimum attainable. Notwithstanding, when swarms grow larger the number

of links across the two clusters reduces compared to the total number of interactions within

the swarm. This is confirmed by the fact the Cheeger constant is a monotonically decreasing

function. Thus, as the Cheeger constant is a measure of the bottleneck characteristics of a

graph, the results show how a swarm of particles that interact on the base of the k−NNR,

with k = 〈N/2〉, tends to become more and more bottlenecked as the number of particles

increases justifying the assertion that an increase in the number of particles is not entirely

compensated by an increase in the number of cross-links between the two clusters of the
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dumbbell that the system eventually relaxes into. In this frame the minimum value achiev-

able by the Cheeger constant, related to the narrowest bottleneck, can always be bound from

below knowing only the number of particles. Thinking towards the engineering of multi-

agent systems, in the case of a very large number of agents, possible consequences arising

from the behaviour described are even more incisive. Emergence of a bottleneck restricts

sensing and information flow, hence updates of the system’s state, which agents need for

cohesion, is delayed. In-turn this can directly results in fragmentation into sub-groups even

in the case of k close to, but still greater than, 〈N/2〉.
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