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Abstract: In this paper, we consider a class of multi-group SEIR epidemic models with stochastic
perturbations. By the method of stochastic Lyapunov functions, we study their asymptotic behavior
in terms of the intensity of the stochastic perturbations and the reproductive number R0. When
the perturbations are sufficiently large, the exposed and infective components decay exponentially to
zero whilst the susceptible components converge weakly to a class of explicit stationary distributions
regardless of the magnitude of R0. An interesting result is that, if the perturbations are sufficiently
small and R0 ≤ 1, then the exposed, infective and susceptible components have similar behaviors,
respectively, as in the case of large perturbations. When the perturbations are small and R0 > 1,
we construct a new class of stochastic Lyapunov functions to show the ergodic property and the
positive recurrence, and our results reveal some cycling phenomena of recurrent diseases. Computer
simulations are carried out to illustrate our analytical results.
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1 Introduction

Mathematical modeling in epidemiology has become a more and more useful tool in the analysis of
spread and control of infectious diseases in host populations. There is an intensive literature on the
mathematical epidemiology, for examples, [5, 6, 7, 9, 10, 13, 14, 23, 24, 25, 31, 37, 38, 39, 40, 45, 46,
47, 48, 49, 50, 51, 53] and the references therein. In particular, [1, 2, 43] are excellent books in this
area.

One of classic epidemic models is the SIR model, which subdivides a homogeneous host pop-
ulation into three epidemiologically distinct types of individuals, the susceptible, the infective, and
the removed, with their population sizes denoted by S, I and R, respectively. It is a reasonable
approximation only for a disease which has a short incubation period compared with the time scale
of disease transmission in the host population. But, for some diseases, such as HIV/AIDS, there is
a long fixed period of time between the exposure and becoming infectious. In this case, rather than
becoming infectious instantaneously, the susceptible enters into an exposed class, labeled by E, and
remains there for a latent period of time. This leads to the SEIR model. Moreover, taking different
internal structures of the host population and the transmission properties of infectious diseases into

∗The work was supported by Key Laboratory for Applied Statistics (KLAS) of Ministry of Education of China.
†Corresponding author. E-mail address: x.mao@strath.ac.uk

1



account, a heterogeneous host population can be partitioned into several homogeneous subgroups,
according to various characteristics of individuals, such as age, contact patterns, social and economic
status, profession and demographical distribution. This is known as a multi-group model. Obviously,
in the multi-group model, we have to consider the interactions within a subgroup as well as among
different subgroups in the course of the spread of infectious diseases. Thus, the multi-group model
can produce more interesting and complicated scenarios of disease transmission. A tremendous vari-
ety of multi-group models have been formulated, analyzed, and applied to many infectious diseases,
see [4, 16, 17, 18, 20, 27, 28, 32, 33, 35, 44] for examples. The classic multi-group SEIR models are
governed by the following system of nonlinear ordinary differential equations

dSk

dt
= Λk − dSkSk −

n∑
j=1

βkjSkIj ,

dEk

dt
=

n∑
j=1

βkjSkIj − (dEk + εk)Ek, 1 ≤ k ≤ n,

dIk
dt

= εkEk − (dIk + γk)Ik,

dRk

dt
= γkIk − dRk Rk,

(1.1)

where Sk(t), Ek(t), Ik(t) and Rk(t) are the population sizes of four distinct compartments in the j-th
subgroup at time t. Here Λk represents the influx of individuals into the k-th group, βkj represents the
transmission coefficient between compartments Sk and Ij , d

S
k , d

E
k , d

I
k and dRk represent death rates of

S,E, I and R populations in the k-th group, respectively, εk represents the rate of becoming infectious
after a latent period in the k-th group, and γk represents the recovery rate of infectious individuals in
the k-th group. All these parameters are assumed to be nonnegative except Λk, d

S
k , d

E
k , d

I
k, d

R
k > 0 for

all k.
Since Rk’s have no effects on the dynamics of Sk, Ek and Ik (1 ≤ k ≤ n) in Eq. (1.1) and they

can be solved explicitly once Ik’s are known, they can be omitted in analysis and Eq. (1.1) is therefore
reduced to 

dSk

dt
= Λk − dSkSk −

n∑
j=1

βkjSkIj ,

dEk

dt
=

n∑
j=1

βkjSkIj − (dEk + εk)Ek, 1 ≤ k ≤ n,

dIk
dt

= εkEk − (dIk + γk)Ik.

(1.2)

That is why only three components Sk, Ek, Ik appear in the SRIR models in this paper and some other
papers. Especially, Guo et al. [21] studied the globally asymptotic stability of Eq. (1.2) by a graph-

theoretical approach. Let R0 be the spectral radius of matrix M0 =

(
βkjεkΛk

dSk (d
E
k + εk)(d

I
k + γk)

)
1≤k,j≤n

.

Under some mild conditions, Guo et al. [21] showed that R0 is the basic reproduction number which is
defined as the expected number of the secondary cases produced in an entirely susceptible population
by a typical infected individual during its entire infectious period ([15]). Its biological significance is
that if R0 < 1, the diseases die out whilst if R0 > 1, the diseases become endemic ([15]). Therefore, R0

works as the threshold parameter which determines the extinction or the persistence of the diseases. In
other words, if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable, whilst if R0 > 1,
there exists a unique endemic equilibrium which is globally asymptotically stable.
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In practice, population systems are always subject to environmental noise. It is therefore nec-
essary to develop stochastic population models. It has also been proved that the stochastic models
can reveal some interesting properties which we observe in the real life. Moreover, instead of giving
a single predicted value in the deterministic model, we can build up a distribution of the predicted
outcomes by the trajectory of a stochastic model (ergodic property). Furthermore, we can obtain an
approximation to the mean and the variance of the population sizes of the infective classes, and the
probability of entering into a fixed subset at time t.

In this paper, we introduce random effects into Eq. (1.2) by replacing parameters dSk , d
E
k and

dIk with dSk + σkdBk(t), d
E
k + θkdξk(t) and dIk + ρkdηk(t), respectively. This is a standard technique in

stochastic modeling (see e.g. [3, 11, 12, 30]). This is of course an initial stage. Ideally, we should have
introduced random effects into the other parameters, but the analysis would become too complicated.
In other words, we here only consider a reasonable stochastic analogue of Eq. (1.2) in the following
form 

dSk =
(
Λk − dSkSk −

∑n
j=1 βkjSkIj

)
dt+ σkSkdBk(t),

dEk =
[∑n

j=1 βkjSkIj − (dEk + εk)Ek

]
dt+ θkEkdξk(t), 1 ≤ k ≤ n,

dIk =
[
εkEk − (dIk + γk)Ik

]
dt+ ρkIkdηk(t),

(1.3)

where Bk(t), ξk(t), ηk(t), 1 ≤ k ≤ n, are independent Brownian motions, and σk, θk, ρk, 1 ≤ k ≤ n
are nonnegative and referred as their intensities of stochastic noises respectively which are used to
describe the volatility of perturbations.

It is worth mentioning that because of mutual interactions among different groups, the multi-
group epidemic models are much more complicated than a single-group model. The classical methods
for a single-group epidemic model are not applicable. In this paper, we will use a graph-theoretical
approach, the stochastic Lyapunov functions and the techniques in probability theory to investigate its
asymptotic behavior. Especially, we construct a new class of stochastic Lyapunov functions combing
with a graph-theoretical approach to obtain its ergodic property and positive recurrence. Our results
provide an interesting insight into the spread of recurrent diseases.

Based on the above stochastic multi-group SEIR model (1.3), we study the transmission dynamics
of infectious diseases according to the threshold value R0 and the stochastic perturbations. We show
that large perturbations can accelerate the extinction of epidemics. It makes sense in the point that
the extinction of epidemics can be caused by occurrence of a catastrophe, such as earthquake, volcanic
eruption or tsunami, which is considered as a large perturbation. When the perturbations are small
and R0 ≤ 1, this model has a similar dynamics as the case of large perturbations, and we can obtain
an explicit limiting distribution of the susceptible in each subgroup. In addition, the ergodicity and
the positive recurrence of multi-group SEIR model hold for small perturbations and R0 > 1. In
such a case, the invariant distributions of the sizes of infective components are obtained, and their
positive densities lies in the first quadrant. Therefore, epidemics can be considered to persist in the
heterogeneous host populations. We can also use the positive recurrence to illustrate characteristics
of recurrent diseases in probabilistic sense, such as the cycling phenomena of the high and the lower
infective levels. Furthermore, in practice, we usually make lots of records to investigate the dynamic
behavior of recurrent diseases. If the numbers of records are great, we usually found that the average
of records approaches a fixed positive point, but the records may fluctuate around this fixed point
even if the numbers are large. In our stochastic model, under some mild conditions, we conclude that
Eq. (1.3) is ergodic, that is to say, the average of records approaches the means of their invariant
distributions as the numbers are large. Meanwhile, the records are recurrent, i.e., they can enter the
high and the lower levels for infinite times (see Remark 6.1), which is a reason why the the records
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may fluctuate around their limits. From this point of review, Eq. (1.3) provide a good description of
some biological phenomena of recurrent diseases.

The paper is organized as follows. In Section 2, we introduce some preliminaries used in the
later parts. In Section 3, we show that there is a unique positive solution to Eq. (1.3) for any positive
initial values. In Section 4, when the stochastic perturbations are large, we show that the exposed
and the infective populations decay exponentially to zero whilst the suspectable populations converge
weakly to a class of stationary distributions regardless of the magnitude of R0. It is also noted that the
increasing perturbations of the exposed and the infective compartments in a subgroup will accelerate
the extinction of other subgroups. In Section 5, when R0 ≤ 1 and the perturbations are small, we
obtain similar results to those in Section 4. Especially, we can get the explicit exponential rates of
the expectation of the sample means of the susceptible components. In Section 6, when R0 > 1
and the perturbations are small, we construct a new class of stochastic Lyapunov functions to obtain
the ergodic property and the positive recurrence of the epidemic models, which account for some
recurring events of recurrent diseases. In Section 7, we make some computer simulations to illustrate
our analytical results. In Section 8, we make the some further discussion and conclude our paper by
emphasizing the difference between the large and small stochastic perturbations. In Section 8, we give
the proofs of several results in the previous sections.)

2 Preliminaries

Firstly, we introduce some notations and results of graph theory ([36, 54]). It is known that a
directed graph G = (V,E) contains a set V = {1, 2, · · · , n} of vertices and a set E of arcs (k, j) leading
from initial vertex k to terminal vertex j. A subgraph H of G is said to be spanning if H and G have
the same vertex set. A directed digraph G is weighted if each arc (k, j) is assigned a positive weight
akj . Given a weighted digraph G with n vertices, define the weight matrix A = (akj)n×n whose entry
akj equals the weight of arc (k, j) if it exists, and 0 otherwise. A weighted digraph is denoted by
(G, A). A digraph G is strongly connected if for any pair of distinct vertices, there exists a directed
path from one to the other and it is well known that a weighted digraph (G, A) is strongly connected
if and only if the weight matrix A is irreducible ([8]). The Laplacian matrix of (G, A) is defined as

LA =


∑

k ̸=1 a1k −a12 · · · −a1n
−a21

∑
k ̸=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑

k ̸=n ank


Let ck, 1 ≤ k ≤ n, denote the cofactor of the k-th diagonal element of LA, by Kirchho’s Matrix Tree
Theorem ([42]) which can be expressed as follows.

Lemma 2.1. Assume n ≥ 2, then

ck =
∑
T ∈Tk

w(T ), 1 ≤ k ≤ n,

where Tk is the set of all spanning trees T of (G, A) that are rooted at vertex k, and w(T ) is the weight
of T . In particular, if (G, A) is strongly connected, then ck > 0, for 1 ≤ k ≤ n.

The following lemmas are classical results of graph theory ([36, 54]), which can be used later.
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Lemma 2.2. Assume n ≥ 2, and the matrix A is irreducible, then the solution space of the linear
system LAv = 0 has dimension 1 and (c1, · · · , cn) is a basis of the solution space, where ck, 1 ≤ k ≤ n,
are given in Lemma 2.1.

Lemma 2.3. Assume n ≥ 2, and ck, 1 ≤ k ≤ n, are given in Lemma 2.1, then the following identity
holds

n∑
k=1

n∑
j=1

ckaijGk(xk) =
n∑

k=1

n∑
j=1

ckaijGj(xj),

where Gk(xk), 1 ≤ k ≤ n, are arbitrary functions.

Lemma 2.4. If n× n matrix A is nonnegative and irreducible, then the spectral radius ρ(A) of A is
a simple eigenvalue, and A has a positive left eigenvector w = (w1, · · · , wn) corresponding to ρ(A).

Next, we give some criteria on the ergodic property of stochastic differential equations. Through-
out this paper, unless otherwise specified, (Ω, {Ft}t≥0, P ) denotes a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null
sets). Denote

Rl
+ = {x ∈ Rl : xi > 0 for all 1 ≤ i ≤ l}.

In general, let X be a regular temporally homogeneous Markov process in El ⊂ Rl described by the
stochastic differential equation

dX(t) = b (X(t)) dt+
d∑

r=1

σr (X(t)) dBr(t), (2.1)

with initial value X(t0) = x0 ∈ El and Br(t), 1 ≤ r ≤ d, are standard Brownian motions defined on
the above probability space. The diffusion matrix is defined as follows

A(x) = (aij(x))1≤i,j≤l , aij(x) =

d∑
r=1

σi
r(x)σ

j
r(x).

Define the differential operator L associated with equation (2.1) by

L =

l∑
i=1

bi(x)
∂

∂xi
+

1

2

l∑
i,j=1

Aij(x)
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(El ×R+;R), then

LV (x) =

l∑
i=1

bi(x)
∂V

∂xi
+

1

2

l∑
i,j=1

Aij(x)
∂2V

∂xi∂xj
,

where Vx = ( ∂V
∂x1

, · · · , ∂V
∂xl

) and Vxx =
(

∂2V
∂xi∂xj

)
l×l

. By Itô’s formula, we have

dV (X(t)) = LV (X(t))dt+

d∑
r=1

Vx(X(t))σr (X(t)) dBr(t).

5



Lemma 2.5. ([22]) We assume that there exists a bounded domain U ⊂ El with regular boundary,
having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion
matrix A(x) is bounded away from zero.

(B.2) If x ∈ El\U , the mean time τ at which a path issuing from x reaches the set U is finite,
and supx∈K Exτ < ∞ for every compact subset K ⊂ El.

Then, the Markov process X(t) has a stationary distribution µ(·) with density in El such that for
any Borel set B ⊂ El

lim
t→∞

P (t, x,B) = µ(B),

and

Px

{
lim
T→∞

1

T

∫ T

0
f
(
x(t)

)
dt =

∫
El

f(x)µ(dx)

}
= 1,

for all x ∈ El and f(x) being a function integrable with respect to the probability measure µ.

Remark 2.1. (i) The existence of the stationary distribution with density is referred to Theorem
4.1 on page 119 and Lemma 9.4 on page 138 in [22] while the ergodicity and the weak convergence
are referred to Theorem 5.1 on page 121 and Theorem 7.1 on page 130 in [22].

(ii) To verify Assumptions (B.1) and (B.2), it suffices to show that there exists a bounded domain
U with regular boundary and a non-negative C2-function V such that A(x) is uniformly elliptical in
U and for any x ∈ El\U , LV (x) ≤ −C for some C > 0 (See e.g. [55], page 1163).

3 Existence and Uniqueness of the Positive Solution

By Lyapunov analysis method ([41]), we show that Eq. (1.3) has a unique global and positive
solution.

Theorem 3.1. If all the system parameters in Eq. (1.3) are nonnegative except Λk, d
S
k , d

E
k , d

I
k > 0

for all 1 ≤ k ≤ n, then there is a unique positive solution to Eq. (1.3) on t ≥ 0 for any initial value
in R3n

+ , and the solution will remain in R3n
+ with probability 1, namely Sk(t), Ek(t) and Ik(t) ∈ R+,

1 ≤ k ≤ n, for all t ≥ 0 almost surely.

Proof. Note that the coefficients of Eq. (1.3) are locally Lipschitz continuous, thus there exists a
unique local solution on t ∈ [0, τe), where τe is the explosion time, thus Eq. (1.3) has a unique local
solution. Assume that m0 ≥ 0 is sufficiently large such that Sk(0), Ek(0), Ik(0), 1 ≤ k ≤ n, all lie in
the interval [1/m0,m0]. For each integer m ≥ m0, define the stopping time

τm = inf{t ∈ [0, τe) : min
1≤k≤n

{Sk(t), Ek(t), Ik(t)} ≤ 1/m or

max
1≤k≤n

{Sk(t), Ek(t), Ik(t)} ≥ m}.

As usual, we set inf ∅ = ∞. Clearly, τm is increasing. Set τ∞ = lim
m→∞

τm, where 0 ≤ τ∞ ≤ τe a.s. If

we show that τ∞ = ∞ a.s., then τe = ∞ and the solution remains in R3n
+ for all t ≥ 0, a.s. If this

statement is false, then there is a pair of constants T > 0 and ϵ ∈ (0, 1) such that

P{τ∞ ≤ T} > ϵ.
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Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ϵ for all m ≥ m1. (3.1)

Define the C2-function V : R3n
+ → R+ as

V (Sk, Ek, Ik, 1 ≤ k ≤ n) =

n∑
k=1

(Sk − ak − ak log
Sk

ak
) +

n∑
k=1

(Ek − 1− logEk) +

n∑
k=1

(Ik − 1− log Ik),

where ak, 1 ≤ k ≤ n, are positive constants to be determined later.
By Itô’s formula, we see

dV =

n∑
k=1

[
(1− ak

Sk
)dSk +

ak(dS)
2

2S2
k

]
+

n∑
k=1

[
(1− 1

Ek
)dEk +

(dEk)
2

2E2
k

]
+

n∑
k=1

[
(1− 1

Ik
)dIk +

(dIk)
2

2I2k

]

:= LV dt+
n∑

k=1

(1− ak
Sk

)σkSkdBk(t) +
n∑

k=1

(1− 1

Ek
)θkEkdξk(t) +

n∑
k=1

(1− 1

Ik
)ρkIkdηk(t),

(3.2)
where

LV =
n∑

k=1

(1− ak
Sk

)(Λk − dSkSk −
n∑

j=1

βkjSkIj) +
ckσ

2
k

2

+
n∑

k=1

{
(1− 1

Ik
)
[
εkEk − (dIk + γk)Ik

]
+

ρ2k
2

}

+
n∑

k=1

(1− 1

Ek
)

 n∑
j=1

βk,jSkIj − (dEk + εk)Ek

+
θ2k
2


≤

n∑
k=1

Λk − (dIk + γk)Ik + ak

n∑
j=1

βkjIj + akd
S
k + dEk + dIk + εk + γk +

akσ
2
k

2
+

ρ2k
2

+
θ2k
2

 .

Note that

n∑
k=1

n∑
j=1

akβkjIj −
n∑

k=1

(dIk + γk)Ik

=

n∑
j=1

[
n∑

k=1

akβkj

]
Ij −

n∑
j=1

(dIj + γj)Ij

=
n∑

j=1

[
n∑

k=1

akβkj − (dIj + γj)

]
Ij .

Choose ak, 1 ≤ k ≤ n, such that for 1 ≤ j ≤ n,
n∑

k=1

akβkj ≤ dIj + γj , then

LV ≤ C, (3.3)
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where C is a generic positive constant. (3.2) and (3.3) yields∫ τm∧T

0
dV (Sk(r), Ek(r), Ik(r), 1 ≤ k ≤ n)

≤
∫ τm∧T

0
Cdr +Mτm∧T ,

(3.4)

where {Mt, t ≥ 0} is a continuous local martingale with initial value 0.
Taking expectation on both sides of (3.4), yields

E [V (Sk(τm ∧ T ), Ek(τm ∧ T ), Ik(τm ∧ T ), 1 ≤ k ≤ n)]

≤ V (Sk(0), Ek(0), Ik(0), 1 ≤ k ≤ n) + E

∫ τm∧T

0
Cdr

≤ V (Sk(0), Ek(0), Ik(0), 1 ≤ k ≤ n) + CT.

(3.5)

Set Ωm = {τm ≤ T} for m ≥ m1 and by (3.1), we have P (Ωm) ≥ ϵ. Note that for every ω ∈ Ωm, there
is at least one of Sk(τm, ω), Ek(τm, ω), Ik(τm, ω), 1 ≤ k ≤ n equals either m or 1/m. Consequently,

V (Sk(τm ∧ T ), Ek(τm ∧ T ), Ik(τm ∧ T ), 1 ≤ k ≤ n)

≥ min
1≤k≤n

{
m− ak − ak log

m

ak
,
1

m
− ak − ak log

1

akm

}
∧ (m− 1− logm) ∧ (

1

m
− 1− log

1

m
).

It then follows from (3.1) and (3.5) that

V (Sk(0), Ek(0), Ik(0), 1 ≤ k ≤ n) + CT

≥ E
[
1Ωm(ω)V (Sk(τm ∧ T ), Ek(τm ∧ T ), Ik(τm ∧ T ), 1 ≤ k ≤ n)

]
≥ ε min

1≤k≤n

{
m− ak − ak log

m

ak
,
1

m
− ak − ak log

1

akm

}
∧ (m− 1− logm) ∧ (

1

m
− 1− log

1

m
),

where 1Ωm(ω) is the indicator function of Ωm. Letting m → ∞ leads to the contradiction that
V (Sk(0), Ek(0), Ik(0), 1 ≤ k ≤ n) + CT = ∞. So τ∞ = ∞ a.s.

4 Exponential stability under large perturbations

In this section, we investigate the exponential decay of the exposed and the infective components,
and the weak convergence of the susceptible components under large perturbations. It is shown that
even if R0 > 1 of Eq. (1.2), the random effects may make the exposed and the infective components
washout more likely whilst the susceptible components converge weakly to stationary distributions
with the explicit densities.

Theorem 4.1. If B = (βkj)1≤kj≤n is irreducible, then

max
1≤k≤n

{
lim sup
T→∞

1

T
logEk(T ), lim sup

T→∞

1

T
log Ik(T )

}
≤ (R0 − 1)+ max

1≤k≤n
{dIk + γk}+R0

n∑
j=1

(dIj + γj)−
1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

) . (4.1)
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Especially, if Ik converge exponentially to 0 and 2dSk > σ2
k, 1 ≤ k ≤ n, then

lim
T→∞

1

T

∫ T

0
Sk(u)du =

Λk

dSk
, a.s, lim

T→∞

1

T

∫ T

0
E

(
Sk(t)−

Λk

dSk

)2

dt =
σ2
kΛ

2
k

(2dSk − σ2
k)(d

S
k )

2
,

and Sk(T ) →w νk, as T → ∞, where →w means the convergence in distribution and νk is a probability

measure in R+ such that

∫ ∞

0
xνk(dx) =

Λk

dSk
. In particularly, νk has density (Akx

2pk(x))
−1, where Ak

is a normal constant and

pk(x) = x

2dSk
σ2
k exp

(
2Λk

σ2
kx

)
, x > 0. (4.2)

The proof is given in the Appendix.

Remark 4.1. In the deterministic model, when R0 > 1, the positive solution converges to the
endemic equilibrium P ∗. However, if the intensities of white noise θ2k and ρ2k are large enough, the
exposed and the infective populations of Eq. (1.3) will always die out exponentially regardless of the
magnitude of R0. Meanwhile, the increasing perturbation size of a group of populations speeds up the
extinction of the other groups of populations. Thus the asymptotic behavior of perturbed epidemic
models can be very different from that of the deterministic counterpart.

To explain such a phenomena, we may regard the large perturbation as the occurrence of a
catastrophe, such as earthquake, volcanic eruption or tsunami, which brings depopulation of the
exposed and the infective individuals. Therefore, Theorem 4.1 fits the scenario of such extinction well.

5 Exponential stability under small perturbations and R0 ≤ 1

In this section, we investigate the asymptotic behavior under small perturbations and R0 ≤ 1.
We can obtain the similar results as that in Theorem 4.1, which are given in the following theorem.

Theorem 5.1. If B = (βkj)1≤k,j≤n is irreducible, R0 ≤ 1 and 2dSk > σk, 1 ≤ k ≤ n, then

max
1≤k≤n

{
lim sup
T→∞

1

T
logEk(T ), lim sup

T→∞

1

T
log Ik(T )

}

≤ max
1≤k≤n

 σk√
2dSk − σ2

k


n∑

j=1

R0(d
I
j + γj)−

1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

) . (5.1)

Especially, if Ik, 1 ≤ k ≤ n, converge exponentially to 0, then Sk(T ) →w νk, as T → ∞, where νk is
the probability measure in R+ defined in Theorem 4.1 and for any 1 ≤ k ≤ n,

lim
T→∞

1

T
log
( ∣∣∣∣ESk(T )−

Λk

dSk

∣∣∣∣ ) = −dSk . (5.2)

The proof can be seen in the Appendix.

Remark 5.1. If R0 ≤ 1 and σS
k is small enough, then the exposed and the infective components

always have exponential stability whilst the susceptible components converge weakly to a class of
stationary distributions instead of P0 on the effect of white noises. Furthermore, the expectation of
sample means of the susceptible components have also the exponential convergence with the explicit
rates.
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6 Ergodic Property under small perturbations and R0 > 1

By a new class of stochastic Lyapunov functions, we obtain the ergodic property and the positive
recurrence of Eq. (1.3) to illustrate the cycling phenomena of recurrent diseases.

Theorem 6.1. If B = (βkj)1≤k,j≤n is irreducible, R0 > 1, σk, θk, ρk, 1 ≤ k ≤ n, are positive and

min
1≤k≤n

{
ck(d

S
k − σ2

k)S
∗
k

2
, ak(d

E
k − 2θ2k)(E

∗
k)

2, ak(d
I
k + γk − 2ρ2k)(I

∗
k)

2

}
>

n∑
k=1

(Akσ
2
k +Bkθ

2
k + Ckρ

2
k),

(6.1)

then Eq. (1.3) has the ergodic property and converges to the unique stationary distribution µ. Here
P ∗ = (S∗

1 , · · · , S∗
n, E

∗
1 , · · · , E∗

n, I
∗
1 , · · · , I∗n) is the unique endemic equilibrium of (1.2), ck, 1 ≤ k ≤ n,

denotes the cofactor of the k-th diagonal element of LB̄, respectively, B̄ = (B̄k,j)n×n = (βkjS
∗
kI

∗
j )n×n,

and

ak =

(
dEk + dIk + γk + 2dSk + (dSk )

2d
E
k + dIk + γk

(dIk + γk)d
E
k

+ 2σ2
k

)−1
ck(d

S
k − σ2

k)

2S∗
k

,

κ = max
1≤k≤n

{
βk,jI

∗
k

dSk

}
,

Ak =
(κ
2
+ 1
)
ckS

∗
k + 2ak(S

∗
k)

2,

Bk =
(κ+ 1)ckE

∗
k

2
+ 2ak(E

∗
k)

2,

Ck =
(κ+ 1)(dEk + εk)ckI

∗
k

2εk
+ 2ak(I

∗
k)

2

(
dIk + γk + dEk

εk
+ 1

)
.

Especially, we have

lim
T→∞

1

T
E

∫ T

0

n∑
k=1

[
ck(d

S
k − σ2

k)

2S∗
k

(Sk(t)− S∗
k)

2 + ak(d
E
k − 2θ2k)(Ek(t)− E∗

k)
2

+ak(d
I
k + γk − 2ρ2k)(Ik(t)− I∗k)

2
]
dt ≤

n∑
k=1

(Akσ
2
k +Bkθ

2
k + Ckρ

2
k).

Proof. If B = (βkj)1≤k,j≤n is irreducible and R0 > 1, Guo et al. ([21]) pointed out there is a unique
endemic equilibrium P ∗ = (S∗

1 , · · · , S∗
n, E

∗
1 , · · · , E∗

n, I
∗
1 , · · · , I∗n) in Eq. (1.2) such that for 1 ≤ k ≤ n,

Λk = dSkS
∗
k +

n∑
j=1

βkjS
∗
kI

∗
j ,

n∑
j=1

βkjS
∗
kI

∗
j = (dEk + εk)E

∗
k ,

εkE
∗
k = (dIk + γk)I

∗
k .

(6.2)
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Firstly, define the C2 function V1: R
3n
+ → R+ by

V1(Sk, Ek, Ik, 1 ≤ k ≤ n) =

n∑
k=1

ck

[
Sk − S∗

k − S∗
k log

Sk

S∗
k

+ Ek − E∗
k − E∗

k log
Ek

E∗
k

+
dEk + εk

εk

(
Ik − I∗k − I∗k log

Ik
I∗k

)]
.

We compute

LV1 =

n∑
k=1

ck

Λk − dSkSk −
(dEk + εk)(d

I
k + γk)Ik

εk
−

ΛkS
∗
k

Sk
+

n∑
j=1

βkjS
∗
kIj + dSkS

∗
k

−
n∑

j=1

βkjSkIjE
∗
k

Ek
+ (dEk + εk)E

∗
k −

(dEk + εk)EkI
∗
k

Ik
+

(dEk + εk)(d
I
k + γk)I

∗
k

εk


+

n∑
k=1

ck

[
σ2
kS

∗
k

2
+

θ2kE
∗
k

2
+

ρ2kI
∗
k(d

E
k + εk)

2εk

]
.

(6.3)

Substituting (6.2) into (6.3), we have

LV1 =
n∑

k=1

ck

2dSkS∗
k − dSkSk −

dSk (S
∗
k)

2

Sk
+ 3

n∑
j=1

βkjS
∗
kI

∗
j −

n∑
j=1

βkj(S
∗
k)

2I∗j
Sk

+
n∑

j=1

βkjS
∗
kIj

−
n∑

j=1

βkjS
∗
kI

∗
j

SkIjE
∗
k

S∗
kI

∗
jEk

−
n∑

j=1

βkjS
∗
kI

∗
j

EkI
∗
k

E∗
kIk

−
n∑

j=1

βkjS
∗
kI

∗
j

Ik
I∗k


+

n∑
k=1

ck

[
σ2
kS

∗
k

2
+

θ2kE
∗
k

2
+

ρ2kI
∗
k(d

E
k + εk)

2εk

]

=

n∑
k=1

ckd
S
kS

∗
k

(
2− Sk

S∗
k

−
S∗
k

Sk

)
+

n∑
k=1

ck

3 n∑
j=1

βkjS
∗
kI

∗
j −

n∑
j=1

βkjS
∗
kI

∗
j

S∗
k

Sk

−
n∑

j=1

βkjS
∗
kI

∗
j

SkIjE
∗
k

S∗
kI

∗
jEk

−
n∑

j=1

βkjS
∗
kI

∗
j

EjI
∗
j

E∗
j Ij


+

n∑
k=1

ck

 n∑
j=1

βkjS
∗
kIj −

n∑
j=1

βkjS
∗
kI

∗
j

Ik
I∗k

+
n∑

k=1

ck

[
σ2
kS

∗
k

2
+

θ2kE
∗
k

2
+

ρ2kI
∗
k(d

E
k + εk)

2εk

]
.

By Lemma 2.3,

n∑
k=1

ck

 n∑
j=1

βkjS
∗
kIj −

n∑
j=1

βkjS
∗
kI

∗
j

Ik
I∗k

 =

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
j

Ij
I∗j

−
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
j

Ik
I∗k

= 0. (6.4)

Meanwhile, the inequality x ≥ 1 + lnx, x > 0 implies
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n∑
k=1

ck

3 n∑
j=1

βkjS
∗
kI

∗
j −

n∑
j=1

βkjS
∗
kI

∗
j

S∗
k

Sk
−

n∑
j=1

βkjS
∗
kI

∗
j

SkIjE
∗
k

S∗
kI

∗
jEk

−
n∑

j=1

βkjS
∗
kI

∗
j

EjI
∗
j

E∗
j Ij


=

n∑
k=1

ck

n∑
j=1

βk,jS
∗
kI

∗
j

[
3−

S∗
k

Sk
−

SkIjE
∗
k

S∗
kI

∗
jEk

−
EjI

∗
j

E∗
j Ij

]

≤
n∑

k=1

ck

n∑
j=1

βkjS
∗
kI

∗
j

[
ln

Ek

E∗
k

− ln
Ej

E∗
j

]

=

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
j ln

Ek

E∗
k

−
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
j ln

Ej

E∗
j

= 0,

(6.5)

where the last equality is derived from Lemma 2.3.
Therefore, (6.4) and (6.5) yield

LV1 ≤
n∑

k=1

ckd
S
kS

∗
k

(
2− Sk

S∗
k

−
S∗
k

Sk

)
+

n∑
k=1

ck

[
σ2
kS

∗
k

2
+

θ2kE
∗
k

2
+

ρ2kI
∗
k(d

E
k + εk)

2εk

]
. (6.6)

Secondly, define the C2 function V2: R
2n
+ → R+ by

V2(Sk, Ek, Ik, 1 ≤ k ≤ n) =

n∑
k=1

ck

[
Ek − E∗

k − E∗
k log

Ek

E∗
k

+
dEk + εk

εk

(
Ik − I∗k − I∗k log

Ik
I∗k

)]
.

By computation,

LV2 =
n∑

k=1

ck

 n∑
j=1

βkjSkIj −
(dEk + εk)(d

I
k + γk)

εk
Ik −

n∑
j=1

βkjSkIjE
∗
k

Ek
+ (dEk + εk)E

∗
k

−
(dEk + εk)Ek

Ik
+

(dEk + εk)(d
I
k + γk)

εk
I∗k

]
+

n∑
k=1

ck

(
θ2kE

∗
k

2
+

(dEk + εk)ρ
2
kI

∗
k

2εk

)

=

n∑
k=1

ck

 n∑
j=1

βkj(Sk − S∗
k)(Ij − I∗j ) +

n∑
j=1

βkjSkI
∗
k +

n∑
j=1

βkjS
∗
kIj −

n∑
j=1

βkjS
∗
kI

∗
k

−
(dEk + εk)(d

I
k + γk)

εk
Ik −

n∑
j=1

βkjSkIjE
∗
k

Ek
+ (dEk + εk)E

∗
k −

(dEk + εk)Ek

Ik

+
(dEk + εk)(d

I
k + γk)

εk
I∗k

]
+

n∑
k=1

ck

(
θ2kE

∗
k

2
+

(dEk + εk)ρ
2
kI

∗
k

2εk

)

=
n∑

k=1

n∑
j=1

ckβkj(Sk − S∗
k)(Ij − I∗j ) +

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
1 +

Sk

S∗
k

−
SkIjE

∗
k

S∗
kI

∗
jEk

−
EkI

∗
k

E∗
kIk

]

+
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
j

Ij
I∗j

−
n∑

k=1

ckβkjS
∗
kI

∗
j

Ik
I∗k

+
n∑

k=1

ck

(
θ2kE

∗
k

2
+

(dEk + εk)ρ
2
kI

∗
k

2εk

)
,
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where the last equality is derived from (6.2).
Applying inequality x ≥ 1 + log x, x > 0 again, yields

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
1 +

Sk

S∗
k

−
SkIjE

∗
k

S∗
kI

∗
jEk

−
EkI

∗
k

E∗
kIk

]

≤
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
Sk

S∗
k

− 1− log
SkIjE

∗
k

S∗
kI

∗
jEk

− log
EkI

∗
k

E∗
kIk

]

≤
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
Sk

S∗
k

− 1 + log
S∗
k

Sk
− log

Ij
I∗j

− log
I∗k
Ik

]

≤
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
Sk

S∗
k

+
S∗
k

Sk
− 2

]
−

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
log

Ij
I∗j

− log
I∗k
Ik

]

≤
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
Sk

S∗
k

+
S∗
k

Sk
− 2

]
,

(6.7)

where the last inequality is derived from Lemma 2.3 such that

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
k log

Ij
I∗j

−
n∑

k=1

n∑
j=1

ckβkjS
∗
kI

∗
k log

I∗k
Ik

= 0.

Similarly, we get
n∑

k=1

n∑
j=1

βkjS
∗
kI

∗
j

Ij
I∗j

−
n∑

k=1

n∑
j=1

βkjS
∗
kI

∗
j

Ik
I∗k

= 0. (6.8)

Hence, (6.7) and (6.8) imply

LV2 ≤
n∑

k=1

n∑
j=1

ckβkj(Sk − S∗
k)(Ij − I∗j ) +

n∑
k=1

n∑
j=1

ckβkjS
∗
kI

∗
k

[
Sk

S∗
k

+
S∗
k

Sk
− 2

]

+
n∑

k=1

ck

(
θ2kE

∗
k

2
+

(dEk + εk)ρ
2
kI

∗
k

2εk

)
.

(6.9)

Thirdly, define the C2 function V3: R
n
+ → R+ by

V3(Sk, 1 ≤ k ≤ n) =

n∑
k=1

ck(Sk − S∗
k)

2

2S∗
k

.

By computation and (6.2),
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LV3 =
n∑

k=1

ck(Sk − S∗
k)

S∗
k

(Λk − dSkSk −
n∑

j=1

βkjSkIj) +
n∑

k=1

ckσ
2
kS

2
k

2S∗
k

= −
n∑

k=1

ckd
S
k (Sk − S∗

k)
2

S∗
k

−
n∑

k=1

n∑
j=1

ckβkj(Sk − S∗
k)

2Ij
S∗
k

−
n∑

k=1

n∑
j=1

ckβkj(Sk − S∗
k)(Ij − I∗j ) +

n∑
k=1

ckσ
2
kS

2
k

2S∗
k

≤ −
n∑

k=1

ck(d
S
k − σ2

k)(Sk − S∗
k)

2

S∗
k

−
n∑

k=1

n∑
j=1

ckβkj(Sk − S∗
k)(Ij − I∗j ) +

n∑
k=1

ckS
∗
kσ

2
k.

(6.10)

Fourthly, define the C2 function V4: R
3n
+ → R+ by

V4(Sk, Ek, Ik, 1 ≤ k ≤ n) =

n∑
k=1

ak(Sk − S∗
k + Ek − E∗

k + Ik − I∗k)
2.

By computation and (6.2),

LV4 = 2
n∑

k=1

ak(Sk − S∗
k + Ek − E∗

k + Ik − I∗k)
(
Λk − dSkSk − dEk Ek − (dIk + γk)Ik

)
+

n∑
k=1

ak(σ
2
kS

2
k + θ2kE

2
k + ρ2kI

2
k)

= −2

n∑
k=1

ak
[
dSk (Sk − S∗

k)
2 + dEk (Ek − E∗

k)
2 + (dIk + γk)(Ik − I∗k)

2

+(dSk + dEk )(Sk − S∗
k)(Ek −E∗

k) + (dIk + γk + dSk )(Sk − S∗
k)(Ik − I∗k)

+(dIk + γk + dEk )(Ek − E∗
k)(Ik − I∗k)

]
+

n∑
k=1

ak(σ
2
kS

2
k + θ2kE

2
k + ρ2kI

2
k).

Since 2ab ≤ a2 + b2, we obtain

LV4 ≤
n∑

k=1

akmk(Sk − S∗
k)

2 −
n∑

k=1

ak(d
E
k − 2θ2k)(Ek − E∗

k)
2 −

n∑
k=1

ak(d
I
k + γk − 2ρ2k)(Ik − I∗k)

2

− 2
n∑

k=1

ak(d
I
k + γk + dEk )(Ek − E∗

k)(Ik − I∗k) + 2
n∑

k=1

ak(σ
2
k(S

∗
k)

2 + θ2k(E
∗
k)

2 + ρ2k(I
∗
k)

2),

(6.11)

where mk = dEk + dIk + γk + 2dSk + (dSk )
2d

E
k + dIk + γk

(dIk + γk)d
E
k

+ 2σ2
k.

Finally, define the C2 function V5: R
n
+ → R+ by

V5(Ik, 1 ≤ k ≤ n) =

n∑
k=1

ak(d
I
k + γk + dEk )

εk
(Ik − I∗k)

2.
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We compute

LV5 = 2
n∑

k=1

ak(d
I
k + γk + dEk )(Ek − E∗

k)(Ik − I∗k) +
n∑

k=1

ak(d
I
k + γk + dEk )ρ

2
kI

2
k

εk

− 2
n∑

k=1

ak(d
I
k + γk + dEk )(d

I
k + γk)

εk
(Ik − I∗k)

2

≤ 2

n∑
k=1

ak(d
I
k + γk + dEk )(Ek − E∗

k)(Ik − I∗k) + 2

n∑
k=1

ak(d
I
k + γk + dEk )ρ

2
k(I

∗
k)

2

εk

− 2

n∑
k=1

ak(d
I
k + γk + dEk )(d

I
k + γk − ρ2k)

εk
(Ik − I∗k)

2

≤ 2

n∑
k=1

ak(d
I
k + γk + dEk )(Ek − E∗

k)(Ik − I∗k) + 2

n∑
k=1

ak(d
I
k + γk + dEk )ρ

2
k(I

∗
k)

2

εk
.

(6.12)

Hence, (6.11) and (6.12) imply

L(V4 + V5) ≤
n∑

k=1

akmk(Sk − S∗
k)

2 −
n∑

k=1

ak(d
E
k − 2θ2k)(Ek − E∗

k)
2 −

n∑
k=1

ak(d
I
k + γk − 2ρ2k)(Ik − I∗k)

2

+ 2

n∑
k=1

ak(σ
2
k(S

∗
k)

2 + θ2k(E
∗
k)

2 + ρ2k(I
∗
k)

2) + 2

n∑
k=1

ak(d
I
k + γk + dEk )ρ

2
k(I

∗
k)

2

εk
.

(6.13)
(6.6) together with (6.9), (6.10) and (6.13), yield

L (κV1 + V2 + V3 + V4 + V5) ≤ −
n∑

k=1

ck(d
S
k − σ2

k)

2S∗
k

(Sk − S∗
k)

2 −
n∑

k=1

ak(d
E
k − 2θ2k)(Ek − E∗

k)
2

−
n∑

k=1

ak(d
I
k + γk − 2ρ2k)(Ik − I∗k)

2 + κ

n∑
k=1

ck

[
σ2
kS

∗
k

2
+

θ2kE
∗
k

2
+

ρ2kI
∗
k(d

E
k + εk)

2εk

]

+
n∑

k=1

ck

(
θ2kE

∗
k

2
+

(dEk + εk)ρ
2
kI

∗
k

2εk

)
+ 2

n∑
k=1

ak(d
I
k + γk + dEk )ρ

2
k(I

∗
k)

2

εk

+ 2
n∑

k=1

ak(σ
2
k(S

∗
k)

2 + θ2k(E
∗
k)

2 + ρ2k(I
∗
k)

2) +
n∑

k=1

ckS
∗
kσ

2
k

= −
n∑

k=1

[
ck(d

S
k − σ2

k)

2S∗
k

(Sk − S∗
k)

2 + ak(d
E
k − 2θ2k)(Ek −E∗

k)
2 + ak(d

I
k + γk − 2ρ2k)(Ik − I∗k)

2

]

+

n∑
k=1

(Akσ
2
k +Bkθ

2
k + Ckρ

2
k),

Note that if (6.1) holds, then the ellipsoid
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n∑
k=1

[
ck(d

S
k − σ2

k)

2S∗
k

(Sk − S∗
k)

2 + ak(d
E
k − 2θ2k)(Ek − E∗

k)
2 + ak(d

I
k + γk − 2ρ2k)(Ik − I∗k)

2

]

=

n∑
k=1

(Akσ
2
k +Bkθ

2
k + Ckρ

2
k)

lies entirely in R3n
+ . We can take U to be any neighborhood of the ellipsoid with Ū ⊆ El = R3n

+ , so
for x ∈ U \El, LV ≤ −C, which implies condition (B.2) in Lemma (2.5) is satisfied. Besides, there is
a constant C > 0 such that for x ∈ Ū , ξ ∈ R3n,

3n∑
i,j=1

(
3n∑
k=1

aik(x)ajk(x)

)
ξiξj =

n∑
k=1

σ2
kx

2
kξ

2
k +

n∑
k=1

θ2kx
2
n+kξ

2
n+k +

n∑
k=1

ρ2kx
2
2n+kξ

2
2n+k ≥ C.

Applying Rayleigh’s principle ([52], P349), condition (B.1) is satisfied. Therefore, Eq. (1.3) has a
unique stationary distribution µ in R3n

+ and it is ergodic.

Corollary 6.1. Under the above assumptions, Eq. (1.3) is positive recurrent.

Proof. In the proof of Theorem 6.1, condition (B.2) of Lemma 2.5 is verified. Thus, Eq. (1.3) is
positive recurrent by the definition of positive recurrence and lemma 3.1 in [22], on page 116-117.

Remark 6.1. For fixed α1 and α2 such that α1 > α2 > 0, let U1 = {x ∈ R+;x ≥ α1} and
U2 = {x ∈ R+;x ≤ α2} denote the high and the lower infective levels, respectively. Set τ i0 = inf{t ≥
0; Ii(t) ∈ U1} and τ i1 = inf{t ≥ τ i0; Ii(t) ∈ U2}, we define the following sequence of stopping times
recursively for every 1 ≤ i ≤ n:

τ i2k = inf{t ≥ τ i2k−1; Ii(t) ∈ U1}, k ≥ 1;

τ i2k+1 = inf{t ≥ τ i2k; Ii(t) ∈ U2}, k ≥ 1.

By Corollary 1 and strong Markov property, τ ik < ∞, k ≥ 0, a.s. This means the recurring phenomena
of high and lower infective levels in j-th group, which can be used to illustrate some cycling events of
recurrent diseases and provide a biological insight of recurrent diseases.

7 Simulations

In this section, we make simulations to confirm our analytical results. Using the Milstein’s higher
order method ([26]), we simulate the positive solution to Eq. (1.3) with the given positive initial value
and parameters. The corresponding discretization equations are

Sk,i+1 = Sk,i + (Λk − dSkSk,i −
n∑

j=1

βkjSk,iIj,i)∆t+ σkSk,iBk,i

√
∆t+

σ2
kSk,i

2
(B2

k,i∆t−∆t),

Ek,i+1 = Ek,i +

 n∑
j=1

βkjSk,iIj,i − (dEk + εk)Ek,i

∆t+ θkEk,iξk,i
√
∆t+

θ2kEk,i

2
(ξ2k,i∆t−∆t),

Ik,i+1 = Ik,i +
(
εkEk,i − (γk + dIk)Ik,i

)
∆t+ ρkIk,iηk,i

√
∆t+

ρ2kIk,i
2

(η2k,i∆t−∆t),
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where Bk,i, ξk,i, ηk,i, 1 ≤ k ≤ n, 1 ≤ j ≤ m, are independent Gaussian random variables with
distribution N(0, 1). Let n = 2, we consider two groups of infective populations. In Eq. (1.3),
we choose the positive initial value (S1(0), S2(0), E1(0), E2(0), I1(0), I2(0)) = (3.6, 2.4, 2.7, 3.2, 2.1, 2.7)
and the parameters Λ1 = 0.2, Λ2 = 0.1, ε1 = 0.3, ε2 = 0.2, γ1 = 0.3, γ2 = 0.2, dSk = dEk = dIk = 0.1,
1 ≤ k ≤ 2 . Using Matlab software, we simulate the solution to Eq. (1.3) with different values of βkj ,
σS
k , θ

E
k and ρIk, 1 ≤ k, j ≤ 2.
In Fig.1-Fig.6, we choose parameters such that R0 > 1 and the conditions in Theorem 4.1 are

satisfied, i.e., β11 = β22 = β12 = β21 = 2, σ1 = σ2 = 0.1, θ1 = θ2 = 2.4, ρ1 = ρ2 = 3.0. In (a)
and (b), note that the exposed and the infective populations tend exponentially to 0. In (c) and (d),

the average of susceptible populations 1
T

∫ T
0 Sk(t)dt converges to Λk

dSk
, 1 ≤ k ≤ 2. In Fig.3-Fig.6, we

represent the histograms of Sk and νk, 1 ≤ k ≤ 2. We use statistical software R to record the values
of Sk, 1 ≤ k ≤ 2, at large time t = 50000, and ∆t = 0.01. Comparing these figures we know that when
the time is large, the kernel density of Sk looks very like the one of νk, 1 ≤ k ≤ 2. Thus Sk is a good
approximation to νk, 1 ≤ k ≤ 2.

In Fig. 7 and Fig. 8, we only change the values of the intensities: σk = θk = ρk = 0.1, 1 ≤ k ≤ 2.
In (e) and (f), the simulating solutions fluctuate around the endemic equilibrium. In (g) and (h), we

give the simulations of
1

t

∫ t

0
Sk(s)ds,

1

t

∫ t

0
Ek(s)ds and

1

t

∫ t

0
Ik(s)ds, 1 ≤ k ≤ 2, which conform the

ergodicity of Eq. (1.3).

8 Discussion and concluding remarks

It is seen that when the perturbations are very large, the exposed and the infective components
will be forced to expire. It makes sense in the point that the extinction of epidemics can be caused
by the occurrence of a catastrophe, such as earthquake, volcanic eruption, or tsunami, which can be
considered as a large perturbation. Hence, R0 will not act as the threshold to determine the extinction
or the persistence of epidemics as that of the deterministic model. In such a case, the exposed and the
infective components decay exponentially to zero in every group regardless of the magnitude of R0.
We also obtain the weak convergence of the susceptible components. In particular, the expectation
of limiting sample means, limiting sample variances and the densities of invariant distributions of the

17



0 500 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(c)

 

 

0 500 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(d)

 

 

∫
0
t S

1
(s)ds/t ∫

0
t S

2
(s)ds/t

Figure 2

Histogram of S1

S1

De
ns

ity

1 2 3 4

0.0
0.2

0.4
0.6

0.8

Figure 3

Histogram of S2

S2

De
ns

ity

0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

Figure 4

18



Histogram of v1

v1

De
ns

ity

1 2 3 4 5

0.0
0.2

0.4
0.6

0.8

Figure 5

Histogram of v2

v2

De
ns

ity

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.5

1.0
1.5

Figure 6

0 50 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(e)

 

 

0 50 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(f)

 

 
S1
E1
I1

S2
E2
I2

Figure 7

19



0 50 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(g)

 

 

0 50 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(h)

 

 
S1
E1
I1

S2
E2
I2

Figure 8

susceptible components are denoted explicitly by parameters in this model.
Under small perturbations, if R0 ≤ 1 and some mild conditions hold, the results in the case of

large perturbations also hold. In addition, we obtain the explicit exponential rates of the expectation
of sample means of the susceptible components. If R0 > 1, we study the ergodicity and the positive
recurrence of Eq. (1.3) by a new class of stochastic Lyapunov functions. Furthermore, we use the
positive recurrence and the strong Markov property to illustrate the recurrent phenomena of high and
lower infective levels of recurrent diseases, which provides a biological insight of recurrent diseases
(see Remark 6.1). In such a case, R0 plays a role similar to the threshold of the deterministic model.
Therefore, large perturbation surpasses the effect of R0 as a threshold value, and small perturbation
retains some role of R0 in stochastic sense.

9 Appendix

In this part, we will give the proofs of several results in the previous sections.

Proof of Theorem 4.1 By comparison theorem (Theorem 1.1 of [29], on page 352), Sk ≤ Xk,
where Xk is the positive solution with initial value Xk(0) = Sk(0) such that

dXk = (Λk − dSkXk)dt+ σkXkdBk(t). (9.1)

Since 0 < Sk ≤ Xk, Xk is positive.

First, we show (9.1) is stable in distribution and ergodic. Let Yk = Xk −
Λk

dSk
, then Yk satisfies

dYk = −dSkYkdt+ σk(Yk +
Λk

dSk
)dBk(t).

Theorem 2.1 (a) in [19] with C = 1 implies that the diffusion process Yk is stable in distribution as
t → ∞, so does Xk.

By Theorem 1.16 in [34], we see Xk is ergodic, and with respect to the Lebesgue measure its

unique invariant measure νk has density (Akx
2pk(x))

−1, where Ak = Mkσ
2
k exp

(
−2Λk

σ2
k

)
. Since Xk
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is stable in distribution, and it is clear that the stability in distribution implies that the limiting
distribution is just the invariant distribution. Therefore, Xk(t) converges weakly to νk as t → ∞.

Now, we show that fk(t) := EXp
k(t) is uniformly bounded for some p > 1 to be determined later.

Applying Itô’s formula to Xp
k , we have

dXp
k =

(
pΛkX

p−1
k − pdSkX

p
k +

σ2
kp(p− 1)Xp

k

2

)
dt+ pσkX

p
kdBk(t).

Taking expectation of the above equation, and using the fact a
1
p b

p−1
p ≤ a

p
+

b(p− 1)

p
, a, b > 0, yields

f ′
k(t) ≤ Λp

k + (p− 1)fk(t)− p

[
dSk −

σ2
k(p− 1)

2

]
fk(t)

≤ Λp
k + p

[
p− 1

p
−
(
dSk −

σ2
k(p− 1)

2

)]
fk(t).

Choose p > 1 close enough to 1 such that

p− 1

p
−
(
dSk −

σ2
k(p− 1)

2

)
< 0,

then sup
t≥0

EXp
k(t) = sup

t≥0
fk(t) < ∞, and

∫∞
0 xpνk(dx) < ∞.

By ergodic theorem, we have

Px

{
lim
T→∞

1

T

∫ T

0
Xk(t)dt =

∫ ∞

0
xνk(dx)

}
= 1, (9.2)

for all x ∈ R+. Whilst Jensen’s inequality yields

E

[
1

T

∫ T

0
Xk(t)dt

]p
≤ E

1

T

∫ T

0
Xp

k(t)dt ≤ sup
t≥0

EXp
k(t) < ∞.

Therefore,

{
1

T

∫ T

0
Xk(t)dt, t ≥ 0

}
is uniformly integrable and together with (9.2), we have

E
1

T

∫ T

0
Xk(t)dt →

∫ ∞

0
xνk(dx). (9.3)

Taking expectation on both sides of (9.1), yields

EXk(t)

t
= Λk −

dSk
t
E

∫ t

0
Xk(s)ds.

Let t → ∞ and taking (9.3) into account, we have∫ ∞

0
xνk(dx) =

Λk

dSk
.
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Next, define C2 function V: R2n
+ → R+ by

V (Ek, Ik, 1 ≤ k ≤ n) =

n∑
k=1

ek

(
Ek +

dEk + εk
εk

Ik

)
,

where ek =
wkεk

(dEk + εk)(d
I
k + γk)

, 1 ≤ k ≤ n, and (w1, · · · , wn) is the positive left eigenvector of M0

corresponding to R0. We compute

dV =

 n∑
k=1

n∑
j=1

ekβkjSkIj −
n∑

k=1

wkIk

 dt+

n∑
k=1

ek

[
θkEkdξk(t) +

(dEk + εk)ρk
εk

Ikdηk(t)

]
.

Itô’s formula implies

d log V = V −1

 n∑
k=1

n∑
j=1

ekβkjSkIj −
n∑

k=1

wkIk

 dt− (2V 2)−1
n∑

k=1

e2k

(
θ2kE

2
k +

(dEk + εk)
2ρ2k

ε2k
I2k

)
dt

+ V −1
n∑

k=1

ek

[
θkEkdξk(t) +

(dEk + εk)ρk
εk

Ikdηk(t)

]

= V −1

 n∑
k=1

n∑
j=1

ekβkjΛk

dSk
Ij −

n∑
k=1

wkIk

 dt+ V −1
n∑

k=1

n∑
j=1

ekβkj

(
Sk −

Λk

dSk

)
Ijdt

− (2V 2)−1
n∑

k=1

e2k

(
θ2kE

2
k +

(dEk + εk)
2ρ2k

ε2k
I2k

)
dt+ V −1

n∑
k=1

ek

[
θkEkdξk(t) +

(dEk + εk)ρk
εk

Ikdηk(t)

]
.

Note that
n∑

k=1

n∑
j=1

ekβkjΛk

dSk
Ij −

n∑
k=1

wkIk = (R0 − 1)

n∑
k=1

wkIk,

and

V 2 ≤

[
n∑

k=1

(
ekθkEk

1

θk
+

ek(d
E
k + εk)ρkIk

εk

1

ρk

)]2

≤
n∑

k=1

e2k

(
θ2kE

2
k +

(dEk + εk)
2ρ2k

ε2k
I2k

) n∑
k=1

(
1

θ2k
+

1

ρ2k

)
,

then

d log V ≤

V −1(R0 − 1)

n∑
k=1

wkIk + V −1
n∑

k=1

n∑
j=1

ekβkj

(
Sk −

Λk

dSk

)
Ij

 dt

− 1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

) + V −1
n∑

k=1

ek

[
θkEkdξk(t) +

(dEk + εk)ρk
εk

Ikdηk(t)

]
.
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Since

lim sup
T→∞

1

T

∫ T

0
V (t)−2

n∑
k=1

e2k

(
θ2kE

2
k(t) +

(dEk + εk)
2ρ2k

ε2k
I2k(t)

)
dt < ∞,

the strong large number law of martingales implies

lim
T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

ek

[
θkEkdξk(t) +

(dEk + εk)ρk
εk

Ikdηk(t)

]
= 0, a.s.

Therefore,

lim sup
T→∞

log V (T )

T
≤ lim sup

T→∞

1

T

∫ T

0
V (t)−1(R0 − 1)

n∑
k=1

wkIk(t)dt−
1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

)
+ lim sup

T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

n∑
j=1

ekβkj

(
Sk(t)−

Λk

dSk

)
Ij(t)dt.

(9.4)

If R0 > 1, then

lim sup
T→∞

1

T

∫ T

0
V (t)−1(R0 − 1)

n∑
k=1

wkIk(t)dt ≤ (R0 − 1) max
1≤k≤n

{dIk + γk}. (9.5)

Also, note that

lim sup
T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

n∑
j=1

ekβkj

(
Xk(t)−

Λk

dSk

)
Ij(t)dt

≤ lim sup
T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

n∑
j=1

ekβkjXk(t)Ij(t)dt

≤ lim sup
T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

n∑
j=1

ekβkj(d
I
j + γj)

wj
Xk(t)dt ≤ M1,

(9.6)

where

M1 =

n∑
k=1

n∑
j=1

wkβkjεkΛk(d
I
j + γj)

dSkwj(dEk + εk)(d
I
k + γk)

=
n∑

j=1

n∑
k=1

wkβkjεkΛk

dSk (d
E
k + εk)(d

I
k + γk)

·
dIj + γj

wj

=
n∑

j=1

R0wj ·
dIj + γj

wj

=
n∑

j=1

R0(d
I
j + γj).
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Therefore, if R0 > 1,

lim sup
T→∞

1

T
log

[
n∑

k=1

wkεk
(dEk + εk)(d

I
k + γk)

(
Ek +

dEk + εk
εk

Ik

)]

≤ (R0 − 1) max
1≤k≤n

{dIk + γk}+R0

n∑
j=1

(dIj + γj)−
1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

) .
If R0 ≤ 1, taking (9.4) and (9.6) into account, then

lim sup
T→∞

1

T
log

[
n∑

k=1

wkεk
(dEk + εk)(d

I
k + γk)

(
Ek +

dEk + εk
εk

Ik

)]

≤ R0

n∑
j=1

(dIj + γj)−
1

2
∑n

k=1

(
1
θ2k

+ 1
ρ2k

) .
Finally, since

lim sup
T→∞

1

T
log

n∑
k=1

wkεk
(dEk + εk)(d

I
k + γk)

(
Ek +

dEk + εk
εk

Ik

)
= max

1≤k≤n

{
lim sup
T→∞

1

T
logEk, lim sup

T→∞

1

T
log Ik

}
,

(4.1) holds.
At last, we concentrate on Sk. We next show that Sk is stable in distribution. To do this, we

introduce a new stochastic process Sk,ε(t) which is defined by its initial condition Sk,ε(0) = Sk(0) and
the stochastic differential equation

dSk,ε = [Λk − (dSk + ε)Sk,ε]dt+ σkSk,εdBk(t).

First, we prove
lim inf
t→∞

(Sk(t)− Sk,ε(t)) ≥ 0, a.e. (9.7)

Consider

d(Sk − Sk,ε) =

(ε− n∑
j=1

βk,jIj)Sk − (dSk + ε)(Sk − Sk,ε)

 dt+ σk(Sk − Sk,ε)dBk(t). (9.8)

The solution is given by

Sk(t)− Sk,ε(t) = exp

{
−(dSk + ε+

σ2
k

2
)t+ σkBk(t)

}

·
∫ t

0
exp

{
(dSk + ε+

σ2
k

2
)s− σkBk(s)

}ε−
n∑

j=1

βk,jIj(s)

Sk(s)ds.

If Ik → 0, 1 ≤ k ≤ n, a.e., then for almost ω ∈ Ω, ∃ T = T (ω) such that

ε >
n∑

j=1

βk,jIj(t), ∀t > T.
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Hence, for almost ω ∈ Ω, for any t > T ,

Sk(t)− Sk,ε(t) ≥ exp

{
−(dSk + ε+

σ2
k

2
)t+ σkBk(t)

}

·
∫ T

0
exp

{
(dSk + ε+

σ2
k

2
)s− σkBk(s)

}ε−
n∑

j=1

βk,jIj(s)

Sk(s)ds.

Therefore,

lim inf
t→∞

(S(t)− Sk,ε(t)) ≥ 0, a.e.

Next, note that Xk ≥ Sk,ε, a.e. and

d(Xk − Sk,ε) = [εSk,ε − dSk (Xk − Sk,ε)]dt+ σk(Xk − Sk,ε)dBk(t).

Taking expectation of the equation above, yields

E |Xk(T )− Sk,ε(T )| =
∫ T

0

[
εSk,ε(t)− dSk (Xk(t)− Sk,ε(t))

]
dt

≤
∫ T

0

[
εXk(t)− dSk |Xk(t)− Sk,ε|

]
dt.

Hence

E |Xk(T )− Sk,ε(T )| ≤
ε supu≥0EXk(u)

dSk

(
1− exp{−dSkT}

)
.

This implies
lim inf
ε→0

lim
T→∞

E|Xk(T )− Sk,ε(T )| = 0. (9.9)

Combing (9.7), (9.9) and the fact that Sk(t) ≤ Xk(t), we get

lim
T→∞

(Xk(T )− Sk(T )) = 0, in probability.

Since Xk(T ) converges weakly to distribution νk, so does Sk(T ) as T → ∞. The proof of

lim
T→∞

1

T

∫ T

0
E

(
Sk(t)−

Λk

dSk

)2

dt =
σ2
kΛ

2
k

(2dSk − σ2
k)(d

S
k )

2

is left in Theorem 5.1.

Proof of Theorem 5.1 First, by ergodic property of (9.1), we get

lim
T→∞

1

T

∫ T

0

∣∣∣∣Xk(t)−
Λk

dSk

∣∣∣∣ dt = ∫ ∞

0

∣∣∣∣x− Λk

dSk

∣∣∣∣ νk(dx). (9.10)

Note that

∫ ∞

0

∣∣∣∣x− Λk

dSk

∣∣∣∣ νk(dx) ≤
(∫ ∞

0

(
x− Λk

dSk

)2

νk(dx)

) 1
2

by Hölder inequality, and for any m >

0, the ergodicity of Xk implies∫ ∞

0

(
x− Λk

dSk

)2

∧mνk(dx) = lim
T→∞

1

T

∫ T

0
E

(
Xk(t)−

Λk

dSk

)2

∧mdt ≤ lim sup
T→∞

1

T

∫ T

0
E

(
Xk(t)−

Λk

dSk

)2

dt.
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Let m → ∞, we have∫ ∞

0

(
x− Λk

dSk

)2

νk(dx) ≤ lim sup
T→∞

1

T

∫ T

0
E

(
Xk(t)−

Λk

dSk

)2

dt. (9.11)

Applying Itô’s formula to

(
Xk(t)−

Λk

dSk

)2

, then

(
Xk(t)−

Λk

dSk

)2

=

∫ t

0

[
2

(
Xk(s)−

Λk

dSk

)
(Λk − dSkXk(s)) + σ2

kX
2
k(s)

]
ds

+ 2

∫ t

0
σk

(
Xk(s)−

Λk

dSk

)
Xk(s)dBk(s)

= −2dSk

∫ t

0

(
Xk(s)−

Λk

dSk

)2

ds+ σ2
k

∫ t

0
X2

k(s)ds

+ 2

∫ t

0
σk

(
Xk(s)−

Λk

dSk

)
Xk(s)dBk(s)

= −(2dSk − σ2
k)

∫ t

0

(
Xk(s)−

Λk

dSk

)2

ds+
2Λkσk
dSk

∫ t

0

(
Xk(s)−

Λk

dSk

)
ds

+ σ2
k

(
Λk

dSk

)2

t+ 2

∫ t

0
σk

(
Xk(s)−

Λk

dSk

)
Xk(s)dBk(s).

Taking expectation on both sides of the above equation and using the fact that lim
T→∞

1

T

∫ T

0
EXk(t)dt =

Λk

dSk
, if 2dSk > σ2

k, then sup
t≥0

E

(
Xk(t)−

Λk

dSk

)2

< ∞,

lim
T→∞

1

T

∫ T

0
E

(
Xk(t)−

Λk

dSk

)2

dt =
σ2
kΛ

2
k

(2dSk − σ2
k)(d

S
k )

2
. (9.12)

and by limt→∞(Xk(t)− Sk(t)) = 0 in probability, we have

lim
T→∞

1

T

∫ T

0
E

(
Sk(t)−

Λk

dSk

)2

dt =
σ2
kΛ

2
k

(2dSk − σ2
k)(d

S
k )

2
.

Taking (9.10), (9.11) and (9.12) into account, yields

lim
T→∞

1

T

∫ T

0

∣∣∣∣Xk(t)−
Λk

dSk

∣∣∣∣ dt = ∫ ∞

0

∣∣∣∣x− Λk

dSk

∣∣∣∣ νk(dx) ≤ σkΛk

dSk

√
2dSk − σ2

k

. (9.13)

Secondly, in (9.4), note that

V (t)−1
n∑

k=1

n∑
j=1

ekβkj

(
Sk(t)−

Λk

dSk

)
Ij(t) ≤ V (t)−1

n∑
k=1

n∑
j=1

ekβkj

(
Xk(t)−

Λk

dSk

)
Ij(t)

≤
n∑

k=1

n∑
j=1

wkβkjεk(d
I
j + γj)

wj(dEk + εk)(d
I
k + γk)

∣∣∣∣Xk(t)−
Λk

dSk

∣∣∣∣ ,
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together with (9.13), implying

lim sup
T→∞

1

T

∫ T

0
V (t)−1

n∑
k=1

n∑
j=1

ekβk,j

(
Sk(t)−

Λk

dSk

)
Ij(t)dt ≤ M2. (9.14)

where

M2 =

n∑
k=1

n∑
j=1

σkwkβkjεkΛk(d
I
j + γj)

dSkwj(dEk + εk)(d
I
k + γk)

√
2dSk − σ2

k

≤ max
1≤k≤n

 σk√
2dSk − σ2

k


n∑

j=1

n∑
k=1

wkβkjεkΛk

dSk (d
E
k + εk)(d

I
k + γk)

·
dIj + γj

wj

≤ max
1≤k≤n

 σk√
2dSk − σ2

k


n∑

j=1

R0wj ·
dIj + γj

wj

= max
1≤k≤n

 σk√
2dSk − σ2

k


n∑

j=1

R0(d
I
j + γj).

Taking (9.4) and (9.14) into account, we get (5.1).

Thirdly, we study the exponential bounds of
∣∣∣ESk(t)− Λk

dSk

∣∣∣. Let hk(t) := EXk(t)−
Λk

dSk
and take

the expectation on both sides of Eq. (9.1), we have

h′k(t) = −dSkh(t).

Then

EXk(t)−
Λk

dSk
= hk(t) = hk(0) exp{−dSk t}, (9.15)

together with comparison theorem, implying

ESk(t)−
Λk

dSk
≤ EXk(t)−

Λk

dSk
= hk(0) exp{−dSk t}. (9.16)

Meanwhile, (9.8) yields

gεk(t) := E (Sk(t)− Sk,ε(t)) =

∫ t

0
E(ε−

n∑
j=1

βk,jIj(s))Sk(s)ds− (dSk + ε)

∫ t

0
E(Sk(s)− Sk,ε(s))ds.

Since Ij , 1 ≤ j ≤ n converge exponentially to 0, ESk(t) converges to
Λk

dSk
and lim inf

t→∞
E (Sk(t)− Sk,ε(t)) ≥

E lim inf
t→∞

(Sk(t)− Sk,ε(t)) ≥ 0 (see (9.7)), for any δ > 0, there exists T0 > 0 such that for any t ≥ T0,

E(ε−
n∑

j=1

βk,jIj(t))Sk(t) ≥
εΛk

2dSk
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and
gεk(t) = E (Sk(t)− Sk,ε(t)) ≥ −δ.

By computation, for any t ≥ T0,

E (Sk(t)− Sk,ε(t)) ≥ gεk(T0) exp{−(dSk + ε)(t− T0)}+
εΛk

2dSk (d
S
k + ε)

(
1− exp{−(dSk + ε)(t− T0)}

)
,

together with (9.15), implies for any t ≥ T0,

ESk(t)−
Λk

dSk
= E (Sk(t)− Sk,ε(t)) + ESk,ε(t)−

Λk

dSk + ε
+

Λk

dSk + ε
− Λk

dSk

≥ gεk(T0) exp{−(dSk + ε)(t− T0)}+
εΛk

2dSk (d
S
k + ε)

(
1− exp{−(dSk + ε)(t− T0)}

)
+ hk(0) exp{−(dSk + ε)t}+ Λk

dSk + ε
− Λk

dSk
.

By gεk(T0) ≥ −δ, let ε → 0, then for any t ≥ T0,

ESk(t)−
Λk

dSk
≥ (hk(0)− δ) exp{−dSk t},

together with (9.16), yields (5.2).
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