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Abstract. A discrete stochastic Razumikhin-type theorem is established to

investigate whether the Euler–Maruyama (EM) scheme can reproduce the mo-
ment exponential stability of exact solutions of stochastic functional differen-

tial equations (SFDEs). In addition, the Chebyshev inequality and the Borel-

Cantelli lemma are applied to show the almost sure stability of the EM ap-
proximate solutions of SFDEs. To show our idea clearly, these results are used

to discuss stability of numerical solutions of two classes of special SFDEs, in-

cluding stochastic delay differential equations (SDDEs) with variable delay and
stochastically perturbed equations.

1. Introduction. The stability analysis of numerical methods for stochastic dif-
ferential equations (SDEs) has received increasing attention in recent years. Due to
the presence of stochastic factors, stability here means mainly moment stability (M-
stability), in particular mean-square stability, called as MS-stability, and trajectory
stability (T-stability), that is almost sure stability, which is a direct extension of the
deterministic stability concept. T-stability was defined in [13] for weak solutions
and extended to strong solutions in [3], for which it is equivalent to the asymptotic
stability property. MS-stability was defined and investigated for various kinds of
numerical schemes of SDEs in [14]. In addition, [2, 6, 7] examined the almost sure
and the moment stability of numerical solutions of SDEs, while [12] extended these
techniques to examine almost sure and moment exponential stability for stochastic
differential equations with Markovian switching (SDEwMS). The pth moment ex-
ponential stability for SDDEs with fixed delay was discussed in [1] in terms of the
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discrete Halanay inequality, while [16] investigated the almost sure exponential sta-
bility of the numerical approximations of SDDEs by using continuous and discrete
semimartingale convergence theorems and in [17], the authors extended this tech-
nique to examine the almost sure exponential stability of the numerical solutions of
SFDEs.

This paper will use the Razumikhin-type technique to examine the stability of
numerical solutions of SFDEs. Consider the n-dimensional SFDE

dx(t) = f(t, xt)dt+ g(t, xt)dw(t), t ≥ 0 (1.1)

with initial data x0 = ξ ∈ CbF0
([−τ, 0];Rn), namely, ξ is a bounded, F0-measurable

C([−τ, 0];Rn)-valued random process defined on [−τ, 0], where xt =: xt(θ) = {x(t+
θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rn), f : R+ × C([−τ, 0];Rn) → Rn, g : R+ ×
C([−τ, 0];Rn) → Rn×m are Borel measurable, w(t) is an m-dimensional Brownian
motion. The initial data ξ satisfies sup−τ≤θ≤0 E|ξ(θ)|p <∞ for p > 0.

Let the step size 4 be a fraction of the delay τ , namely, 4 = τ/M for some
integer M . Then the EM method (see [11, 15, 17]) applied to (1.1) produces{

xk = ξ(k4), −M ≤ k ≤ 0,
xk+1 = xk + f(k4, ykM)4+ g(k4, ykM)4wk, k ≥ 0,

(1.2)

where 4wk = w((k + 1)4)− w(k4) is the Brownian motion increment and ykM is
a C([−τ, 0];Rn)-valued random variable defined by piecewise linear interpolation:

ykM =: ykM(θ) = xk+i +
θ − i4
4

(xk+1+i − xk+i),

for i4 ≤ θ ≤ (i+ 1)4, i = −M,−M + 1, · · · ,−1. (1.3)

Razumikhin-type theorems are well-known (for example, see [4, 5, 9, 10]) in the
stability theory of both ordinary and stochastic differential equations. To consider
the stability of deterministic difference equations, some papers (for example, [8,
18, 19]) examined the Razumikhin-type theorems for deterministic delay difference
equations. Motivated by these papers, this paper establishes a discrete Razumikhin-
type theorem for the pth moment exponential stability of the EM scheme (1.2). By
the Chebyshev inequality and the Borel-Cantelli lemma, this paper also investigates
the almost sure stability of the EM scheme (1.2). The analysis thus also includes
almost sure exponential stability. To illustrate our ideas clearly, these results are
applied to SDDEs with variable delay and stochastically perturbed equations and
thus generalize some existing results (for example, [1] and [7]).

In the next section, we introduce some necessary notations and definitions. Sec-
tion 3 reviews the Razumikhin-type theorem on the exponential stability for SFDE
(1.1), and then we establish the discrete Razumikhin-type theorem. To show our
idea more clearly, In Section 4, we examine stability of exact and numerical solutions
of SDDEs with variable delay as an important class of SFDEs. We also examine
stochastically perturbed equations in section 5 and deal with a class of linear sto-
chastic Volterra delay-integro-differential equations (SVDIDEs) as a special case of
stochastically perturbed equations.

2. Notations and definitions. Throughout this paper, unless otherwise specified,
we use the following notations. Let | · | be the Euclidean norm in Rn. If A is a
vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is
denoted by |A| =

√
trace(ATA). Let τ > 0 and C([−τ, 0],Rn) denote the family of

continuous functions from [−τ, 0] to Rn. The inner product of x, y in Rn is denoted
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by 〈x, y〉 or xT y. If a, b ∈ R, let a ∨ b = max{a, b} and a ∧ b = min{a, b}. N
represents the set of the integer numbers, namely, N = {0, 1, · · · , } and let N−M =
{0,−1,−2, · · · ,−M} for some positive integers M .

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions, namely, it is right continuous and increasing while F0 contains
all P-null sets. Let w(t) = (w1(t), · · · , wm(t))T be an m-dimensional Brownian
motion defined on this probability space. Denote by CbF0

([−τ, 0];Rn) the family of
all bounded, F0-measurable C([−τ, 0];Rn)-valued stochastic processes on [−τ, 0].
Let p > 0 and LpFt

([−τ, 0];Rn) be the family of Ft-measurable stochastic processes

ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} such that ‖ϕ‖pE := sup−τ≤θ≤0 E|ϕ(θ)|p < ∞. If x(t) is
an Rn-valued stochastic process, define xt = {x(t + θ) : −τ ≤ θ ≤ 0} for t ≥ 0.
Let C2(Rn;R+) denote the family of all nonnegative functions V (x) on Rn which
are continuously twice differentiable. For a function V ∈ C2(Rn;R+), define an
operator LV from R+ × C([−τ, 0];Rn) to R by

LV (t, ϕ) = Vx(ϕ(0))f(t, ϕ) +
1

2
trace[gT (t, ϕ)Vxx(ϕ(0))g(t, ϕ)]. (2.1)

Then the expectation of LV along the solution x(t) of Eq. (1.1) is given by
ELV (t, xt). To indicate dependence on the initial data ξ, the solution will often be
written x(t) = x(t, ξ).

In this paper, it is assumed that there exists a unique solution x(t, ξ) to Eq.
(1.1) for any initial data ξ ∈ CbF0

([−τ, 0];Rn) and for any p > 0, the pth moment
of this solution is finite, namely E(sup−τ≤t<∞ |x(t, ξ)|p) < ∞. For example, the
linear growth condition may guarantee the boundedness of the pth moment (see
[10, Theorems 5.2.5 and 5.4.1, Pages 153 and 158]). For the purpose of stability,
assume that f(t, 0) = g(t, 0) = 0. This implies that Eq. (1.1) admits a trivial
solution x(t, 0) ≡ 0. The following definitions of stability for SFDEs and its EM
scheme are required.

Definition 2.1. The trivial solution of Eq. (1.1) or, simply, Eq. (1.1) is said to be
exponentially stable in the pth moment if for any initial data ξ ∈ CbF0

([−τ, 0];Rn),

lim sup
t→∞

1

t
logE|x(t, ξ)|p < 0 (2.2)

and almost surely exponentially stable if

lim sup
t→∞

1

t
log |x(t, ξ)| < 0 a.s. (2.3)

Definition 2.2. The EM scheme (1.2) is said to be exponentially stable in the pth
moment if for given stepsize4 > 0 and any bounded initial sequence {ξ(k4)}k∈N−M

if

lim sup
k→∞

1

k4
logE|xk|p < 0 (2.4)

and almost surely exponentially stable if

lim sup
k→∞

1

k4
log |xk| < 0 a.s. (2.5)

In this paper, our aim is to examine whether stability of the numerical solution
for (1.2) can reproduce stability of the exact solution of equation (1.1) in the senses
of the moment and almost sure.
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3. Stability of SFDEs and the EM scheme. Razumikhin-type theorems are
very important in stability analysis. The classical Razumikhin theorem for deter-
ministic functional differential equations can be found in Hale et al [5], while Mao
(see [9, 10]) extended it to SFDEs. The method was also used for deterministic
delay differential equations with random delays in [4]. In this section, a discrete
Razumikhin-type theorem on exponential stability of (1.2) is established and used
to examine the stability of numerical solutions.

3.1. Stability of the exact solutions of SFDEs. For the convenience of the
reader, the well-known Razumikhin-type theorem on exponential stability for SFDEs
is stated (see [9, 10]). Note that E(sup−τ≤t<∞ |x(t, ξ)|p) < ∞ may guarantee that
ELV (ϕ) in condition (ii) of the following theorem is well defined.

Theorem 3.1. Let ζ, p, c1, c2 all be positive constants and q > 1. Assume that
there exists a function V ∈ C2(Rn;R+) such that the following conditions hold:

(i) c1|x|p ≤ V (x) ≤ c2|x|p for all x ∈ Rn;
(ii) ELV (t, ϕ) ≤ −ζEV (ϕ(0)) for all t ≥ 0 and those ϕ ∈ LpFt

([−τ, 0];Rn) which
obeys EV (ϕ(θ)) < qEV (ϕ(0)) on −τ ≤ θ ≤ 0.

Then for all ξ ∈ CbF0
([−τ, 0];Rn), the solution of (1.1) has the property that

E|x(t, ξ)|p ≤ c2
c1
‖ξ‖pEe

−λt on t ≥ 0, (3.1)

where λ = [log(q)/τ ] ∧ ζ.

To explain this idea, applying the Itô formula to eλtV (x(t)), one sees that to
have the pth moment exponential stability, it would require that ELV (t, xt) ≤
−λEV (x(t)) for all t ≥ 0. As a result, one would be forced to impose very severe
restrictions on the functionals f and g. However, by this theorem, one needs to
require ELV (t, xt) ≤ −ζEV (x(t)) if EV (xt) ≤ qEV (x(t)). f and g can be much
weakened. This is the basic idea of this theorem. Mao [9, 10] gave a classic proof
for this theorem. Another proof, which is different, is given in Appendix A.

Although the pth moment exponential stability and almost sure exponential sta-
bility of the exact solution do not imply each other in general, under an irrestrictive
condition the pth moment exponential stability implies almost sure exponential
stability (cf. [9, 10]).

Theorem 3.2. Let p ≥ 1. Assume that there is a constant K > 0 such that for
every solution x(t) of (1.1),

E(|f(t, xt)|p + |g(t, xt)|p) ≤ K sup
−τ≤θ≤0

E|x(t+ θ)|p on t ≥ 0. (3.2)

Then (3.1) implies

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ −λ

p
a.s. (3.3)

In other words, the pth moment exponential stability implies almost sure exponential
stability.

3.2. Stability of numerical solutions of SFDEs. To consider the stability of
difference equations, some papers (for example, [8, 18]) examine the Razumikhin-
type theorems for deterministic delay difference equations. In this subsection, we
establish the Razumikhin-type theorem on exponential stability of the EM scheme
(1.2).
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Theorem 3.3. Fix 4 > 0. Let ζM, pM, c1M, c2M all be positive constants, qM > 1
and 4ζM < 1. Assume that there exists a function VM : Rn → R+ such that the
following conditions hold: for the sequence {xk} defined by (1.2),

(i) c1M|xk|pM ≤ VM(xk) ≤ c2M|xk|pM ;
(ii) for all i ∈ N−M , EVM(xk+i) ≤ qMEVM(xk) implies that

EVM(xk+1) ≤ (1− ζM4)EVM(xk);

(iii) for some ǐ ∈ N−M − {0}, EVM(xk+ǐ) > e(M+1)λM4EVM(xk) implies that

EVM(xk+1) ≤ 1/qM max
i∈N−M

EVM(xk+i),

where λM = [log qM/((M + 1)4)] ∧ [log(1− ζM4)−1/4].

Then for any bounded initial sequence {ξ(k4)}k∈N−M
,

E|xk|pM ≤
c2M
c1M
‖ξ‖pME e−λMk4, for all k ≥ 0. (3.4)

namely, the sequence {xk}k≥1 is pth moment exponentially stable.

Remark Compared with Theorem 3.1, Theorem 3.3 needs an additional condi-
tion (iii). To explain necessity of this condition, let us recall the proof of Theorem
3.1 in Appendix A. We may observe that continuity plays an important role in The-
orem 3.1 and its proof. Condition (ii) of Theorem 3.1 shows that EV (x(t + θ)) <
qEV (x(t)) implies ELV (t, x(t + θ)) ≤ −ζEV (x(t)), by which continuity gives that
EV (x(t)) is decreasing. However, the EM scheme does not hold continuity. Con-
dition (ii) of Theorem 3.3 shows that for any i ∈ N−M , EVM(xk+i) ≤ qMEVM(xk)
implies that EVM(xk+1) ≤ (1− ζM4)EVM(xk), but this condition cannot guarantee
the decreasing trend of EVM(xk+1) when EVM(xk+i) > qMEVM(xk). To guarantee
the decreasing trend of EVM(xk+1) when condition (ii) does not hold, it is necessary
to add the additional condition (iii).

Proof. Define the sequence

uk = max
i∈N−M

{eλM(k+i)4EVM(xk+i)}, for all k ∈ N.

It will be shown that uk+1 ≤ uk.
Also define

ī = ī(k) = max{i ∈ N−M , uk = eλM(k+i)4EVM(xk+i)}.

Then

uk = eλM(k+ī)4EVM(xk+ī).

When ī ≤ −1, then for any i ∈ N−M − {0},

eλM(k+i+1)4EVM(xk+i+1) ≤ eλM(k+ī)4EVM(xk+ī), (3.5)

which implies that

max
i∈N−M−{0}

{eλM(k+i+1)4EVM(xk+i+1)} ≤ eλM(k+ī)4EVM(xk+ī) = uk. (3.6)

In fact,

eλM(k+1)4EVM(xk+1) ≤ eλM(k+ī)4EVM(xk+ī) = uk (3.7)

also holds, which will now be shown. By the definition of ī,

uk = eλM(k+ī)4EVM(xk+ī) > eλMk4EVM(xk),
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which implies that

EVM(xk+ī) > e−λM ī4EVM(xk) ≥ eλM4EVM(xk)

since ī ≤ −1. By the definition of λM, it follows from condition (iii) that

max
i∈N−M

EVM(xk+i) ≥ qMEVM(xk+1)

≥ eλM(M+1)4EVM(xk+1),

which implies that

eλM(k+1)4EVM(xk+1) ≤ e(k+1)λM4e−(M+1)λM4 max
i∈N−M

{EVM(xk+i)}

≤ max
i∈N−M

{eλM(k−M)4EVM(xk+i)}

≤ max
i∈N−M

{eλM(k+i)4EVM(xk+i)} = uk.

Hence, (3.7) holds. This, together with (3.6) yields that

uk+1 ≤ uk when ī ≤ −1. (3.8)

If ī = 0, then for any i ∈ N−M , by the definition of ī,

eλM(k+i)4EVM(xk+i) ≤ eλMk4EVM(xk).

Hence, by the definition of λM,

EVM(xk+i) ≤ e−λMi4EVM(xk)

≤ eλMM4EVM(xk)

< eλM(M+1)4EVM(xk)

≤ qMEVM(xk). (3.9)

Condition (ii) gives

EVM(xk+1) ≤ (1− ζM4)EVM(xk). (3.10)

Therefore

uk+1 − uk = eλM(k+1)4EVM(xk+1)− eλMk4EVM(xk)

≤ eλM(k+1)4[EVM(xk+1)− EVM(xk)] + eλMk4(eλM4 − 1)EVM(xk)

≤ −ζM4eλM(k+1)4EVM(xk) + eλMk4(eλM4 − 1)EVM(xk)

= eλMk4(eλM4 − 1− ζMeλM44)EVM(xk).

The definition of λM gives eλM4(1− ζM4) ≤ 1. Thus uk+1 ≤ uk also holds for ī = 0.
This, together with (3.8), yields uk+1 ≤ uk for all k ∈ N. By the definition of uk
and condition (i), for all i ∈ N−M ,

eλM(k+i)4EVM(xk+i) ≤ u0

= max
i∈N−M

{eλMi4EVM(xi)}

≤ max
i∈N−M

{EVM(xi)}

≤ c2M max
i∈N−M

{E|xi|pM}

= c2M‖ξ‖pME .

Hence

eλMk4EVM(xk) ≤ c2M‖ξ‖pME .
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Condition (i) gives

E|xk|pM ≤
c2M
c1M
‖ξ‖pME e−λMk4, (3.11)

as required.

In the special case when both ζM and qM are independent of 4, namely ζM = ζ
and qM = q, since τ = M4 and limM→0(1− ζ4)−1/4 = eζ , it is easy to see that

lim
M→0

λM =
log q

τ
∧ ζ,

which is λ specified in Theorem 3.1.
The following simple theorem gives a link between the pth moment exponential

stability and almost sure exponential stability of the EM scheme.

Theorem 3.4. For any pM > 0, (3.4) implies

lim sup
k→∞

1

k4
log |xk| ≤ −

λM
pM
, a.s. (3.12)

In other words, the pth moment exponential stability of the EM scheme implies the
almost sure exponential stability.

Proof. By the Chebyshev inequality and (3.4), for any integer k > 0,

P{|xk|pM > k2e−λMk4} ≤
c2M‖ξ‖pME
c1Mk2

.

Then, by the Borel-Cantelli lemma, it follows that for almost all ω ∈ Ω there exists
a random variable k0(ω) such that for any k > k0(ω),

|xk|pM ≤ k2e−λMk4,

which implies that for almost all ω ∈ Ω,

1

k4
log |xk| ≤ −

λM
pM

+
2 log k

λMpMk4
whenever k ≥ k0(ω). Letting k →∞ yields (3.12), as required.

4. Stability of exact and numerical solutions of SDDEs with variable
delay. Although Theorems 3.1 and 3.3 have similar expressions, it is not easy to
observe whether stability of the numerical solution (1.2) may reproduce stability
of the exact solution to Eq. (1.1) since these two theorems are not related to co-
efficients f and g explicitly. To show this property clearly, this section considers
stability of exact and numerical solutions of SDDEs with variable delay, which are
a very important class of SFDEs. The pth moment stability of the numerical so-
lution of SDDEs with fixed delay was considered in [1] using the discrete Halanay
inequality and the almost sure exponential stability of the numerical approxima-
tions of SDDEs with fixed delay was considered in [16] by using continuous and
discrete semimartingale convergence theorems. Here the time delay is allowed to be
a function of time, namely variable delay. In particular, the SDDE

dx(t) = F (x(t), x(t− δ(t)))dt+G(x(t), x(t− δ(t)))dw(t), (4.1)

will be considered, where δ : [0,∞) → [0, τ ] represents the variable delay and
F : Rn × Rn → Rn, G = [Gij ]n×m : Rn × Rn → Rn×m are Borel measurable
functions with F (0, 0) = 0, G(0, 0) = 0 for the purpose of stability. Note that F
and G could be rewritten as F (ϕ(0), ϕ(−δ(t))) and G(ϕ(0), ϕ(−δ(t))) in functional
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form. By letting f(t, ϕ) = F (ϕ(0), ϕ(−δ(t))) and g(t, ϕ) = G(ϕ(0), ϕ(−δ(t))), the
operator (2.1) becomes

LV (x, y) = Vx(x)F (x, y) +
1

2
trace[GT (x, y)Vxx(x)G(x, y)] (4.2)

for any x, y ∈ Rn. Applying Theorem 3.1 gives the following result (see [10, Theorem
6.4, p177]).

Theorem 4.1. Let λ1, λ2, p, c1, c2 all be positive numbers. Assume that there
exists a function V ∈ C2(Rn;R+) such that condition (i) of Theorem 3.1 holds and

LV (x, y) ≤ −λ1V (x) + λ2V (y) (4.3)

for all (x, y) ∈ Rn × Rn, where LV (x, y) is defined by (4.2). If λ1 > λ2, then Eq.
(4.1) is pth moment exponentially stable, namely

lim sup
t→∞

logE|x(t, ξ)|p

t
≤ −(λ1 − qλ2),

where q ∈ (1, λ1/λ2) is the unique root of λ1−qλ2 = log(q)/τ . If, in addition, there
is a K > 0 such that for any x, y ∈ Rn,

|F (x, y)| ∨ |G(x, y)| ≤ K(|x|+ |y|), (4.4)

then Eq. (4.1) is also almost surely exponentially stable, specifically with

lim sup
t→∞

log |x(t, ξ)|
t

≤ −λ1 − qλ2

p
.

Now consider the stability of the numerical solution of Eq. (4.1). The EM scheme
of (4.1) is{

xk = ξ(k4), k ∈ N−M ,
xk+1 = xk + F (xk, xk−δk)4+G(xk, xk−δk)4wk, k ≥ 0,

(4.5)

where δk = bδ(t)c ∈ {0, 1, 2, · · · ,M} in which bxc represents the integer part of x,
that is, the nearest grid-point on the left of the delayed argument is used to replace
the exact point. Applying Theorem 3.3 to the EM approximation (4.5) yields the
following result:

Theorem 4.2. Fix 4 > 0. Let λ1M, λ2M, pM, c1M, c2M all be positive constants.
Assume that there exists a function VM : Rn → R+ such that condition (i) of
Theorem 3.3 holds and for the sequence {xk}k≥1 determined by (4.5),

EVM(xk+1) ≤ (1− λ1M4)EVM(xk) + λ2M4EVM(xk−δk) (4.6)

for all δk ∈ {0, 1, · · · ,M}. If λ1M > λ2M and (λ1M − λ2M)4 < 1, then for any
bounded initial sequence {ξ(k4)}k∈N−M

,

lim sup
k→∞

logE|xk|pM
k4

≤ −(λ1M − qMλ2M) < 0, (4.7)

and

lim sup
k→∞

log |xk|
k4

≤ −λ1M − qMλ2M

pM
< 0, a.s. (4.8)

where qM ∈ (1, λ1M/λ2M) is the unique root of the equation

λ1M − qMλ2M =
log qM

(M + 1)4
.
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Proof. The key steps in applying Theorem 3.3 are to verify conditions (ii) and
(iii). Since λ1M > λ2M, for any δk ∈ {0, 1, · · · ,M}, if VM(xk−δk) ≤ qMEVM(xk), by
condition (4.6),

EVM(xk+1) ≤ (1− λ1M4)EVM(xk) + λ2M4EVM(xk−δk)

= [1− (λ1M − qMλ2M)4]EVM(xk).

Choosing ζM = λ1M − qMλ2M and noting that ζM4 < 1, it is obvious that condition
(ii) of Theorem 3.3 holds. Noting that λ1M > λ2M, by the definition of qM,

1− λ1M4+ qMλ2M4 ∈ (0, 1). (4.9)

Let

λM = λ1M − qMλ2M =
log qM

(M + 1)4
.

This, together with (4.9), yields

(1− λ1M4)e−(M+1)λM4 + λ2M4 ≤
1

qM
. (4.10)

Hence, for some ǐ ∈ N−M − {0}, if EVM(xk−ǐ) > e(M+1)λM4EVM(xk), by condition
(4.6) and inequality (4.10),

VM(xk+1) ≤ (1− λ1M4)e−(M+1)λM4EVM(xk−ǐ) + λ2M4EVM(xk−δk)

≤ [(1− λ1M4)e−(M+1)λM4 + λ2M4] max
i∈N−M

EVM(xk+i)

≤ 1

qM
max
i∈N−M

EVM(xk+i),

which implies that condition (iii) of Theorem 3.3 holds. Hence Theorem 3.3 implies
the desired assertion (4.7). By condition (4.4), applying Theorem 3.4 gives (4.8),
which completes the proof.

In Theorem 4.1, the key condition is (4.3), which may deduce condition (ii)
of Theorem 3.1. In Theorem 3.3, the key condition is (4.6), which may deduce
conditions (ii) and (iii). This implies that the additional condition (iii) of Theorem
3.3 disappears. Note that conditions (4.3) and (4.6) are similar. This admits us
to further examine stability of the exact and numerical solution of Eq. (4.1). The
rest of this section examines the condition under which the mean square and almost
sure exponential stability of the stochastic sequence {xk}k≥0 defined by (4.5) may
reproduce the corresponding stability of the solution x(t) of Eq. (4.1). The following
assumptions on coefficients F and G will be imposed:

Assumption 1. Assume that there is a ζ̂ > 0 such that

xTF (x, 0) ≤ −ζ̂|x|2 for all x ∈ Rn. (4.11)

Assume also that there are nonnegative numbers α0, α1, β0 and β1 such that for
any x, x̄, y ∈ R,

|F (x, 0)− F (x̄, y)| ≤ α0|x− x̄|+ α1|y|
and

trace[GT (x, y)G(x, y)] ≤ β0|x|2 + β1|y|2.

Assumption 2. For any x, y ∈ Rn, there exists a constant K > 0 such that

|F (x, y)|2 ≤ K(|x|2 + |y|2).
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Note that Assumptions 1 and 2 implies that both F and G satisfy the linear
growth condition. These two assumptions, together with the local Lipschitz condi-
tion for F and G may guarantee that there is a unique solution to Eq. (4.1) and
this solution is pth bounded. Assumptions 1 and 2 may also guarantee the following
stability of the trivial solution.

Theorem 4.3. Let Assumption 1 hold and define λ1 = 2ζ̂−β0−α1 and λ2 = α1+β1.
If

λ1 > λ2, (4.12)

then for any initial data ξ ∈ CbF0
([−τ, 0];Rn),

lim sup
t→∞

1

t
logE|x(t, ξ)|2 ≤ −(λ1 − qλ2), (4.13)

where q ∈ (1, λ1/λ2) is the unique root of the equation

λ1 − qλ2 =
log q

τ
, (4.14)

namely, the solution x(t, ξ) of Eq. (4.1) is mean square exponentially stable. In
addition, if Assumption 2 also holds,

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ −λ1 − qλ2

2
a.s. (4.15)

Proof. Choose V (x) = |x|2. By Assumption 1, applying the operator (4.2) yields
that for any x, y ∈ Rn,

LV (x, y) = 2xTF (x, y) + trace[GT (x, y)G(x, y)]

= 2xTF (x, 0) + 2xT [F (x, y)− F (x, 0)] + trace[GT (x, y)G(x, y)]

≤ −2ζ̂|x|2 + 2α1|x||y|+ β0|x|2 + β1|y|2

≤ −2ζ̂|x|2 + α1|x|2 + α1|y|2 + β0|x|2 + β1|y|2

≤ −λ1|x|2 + λ2|y|2.

Noting that λ1 > λ2, applying Theorem 4.1 yields the desired results (4.13) and
(4.15), as required.

Consider now whether the EM scheme (4.5) reproduces stability of the exact
solution of Eq. (4.1).

Theorem 4.4. Under Assumptions 1 and 2, if (4.12) holds, then for any bounded
initial sequence {ξ(k4)}k∈N−M

, for any ε ∈ (0, λ1 − qλ2), where λ1, λ2 and q
are defined by Theorem 4.3, there exists a 4∗ > 0, for any 4 < 4∗, the EM
approximation (4.5) has properties

lim sup
k→∞

1

k4
logE|xk|2 ≤ −(λ1 − qλ2 − ε) (4.16)

and

lim sup
k→∞

1

k4
log |xk| ≤ −

λ1 − qλ2 − ε
2

, a.s. (4.17)
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Proof. By the EM approximation (4.5),

|xk+1|2 = |xk|2 + 2〈xk, F (xk, xk−δk)4〉+ |F (xk, xk−δk)|242

+

n∑
i=1

( m∑
j=1

Gij(xk, xk−δk)4wjk
)2

+Mk

= |xk|2 + 2〈xk, F (xk, 0)4〉+ 2〈xk, F (xk, xk−δk)4− F (xk, 0)4〉

+|F (xk, xk−δk)|242 +

n∑
i=1

( m∑
j=1

Gij(xk, xk−δk)4wjk
)2

+Mk,

whereMk = 2〈xk+F (xk, xk−δk)4, G(xk, xk−δk)4wk〉. It is obvious that E(Mk|FkM)
= 0. Assumption 2 gives

2〈xk, F (xk, 0)4〉 ≤ −2ζ̂|xk|24

and Assumption 1 gives

2〈xk, F (xk, xk−δk)4− F (xk, 0)4〉 ≤ 2|xk||F (xk, xk−δk)− F (xk, 0)|4
≤ 2α1|xk||xk−δk |4
≤ α1|xk|24+ α1|xk−δk |24.

Moreover,

E
[ n∑
i=1

( m∑
j=1

Gij(xk, xk−δk)4wjk
)2∣∣∣FkM] ≤ trace[GT (xk, xk−δk)G(xk, xk−δk)4]

≤ β0|xk|24+ β1|xk−δk |24,

so

E(|xk+1|2|FkM) ≤ (1−λ14+K42)|xk|2+α14|xk−δk |2+K42|xk−δk |2+β14|xk−δk |2.

Taking expectation on both sides then gives

E|xk+1|2 ≤ [1− (λ1 −K4)4]E|xk|2 + (λ2 +K4)4E|xk−δk |2. (4.18)

Define λ1M = λ1 − K4 and λ2M = λ2 + K4. Let 4∗1 = (λ1 − λ2)/(2K). Then
for any 4 ≤ 4∗1, λ1M > λ2M and condition (4.6) of Theorem 4.1 holds. Applying
Theorem 4.1 yields

lim sup
k→∞

logE|xk|2

k4
≤ −λ̂M < 0, (4.19)

and

lim sup
k→∞

log |xk|
k4

≤ − λ̂M
2
< 0, a.s. (4.20)

where λ̂M = λ1M − qMλ2M and qM ∈ (1, λ1M/λ2M) is the unique root of the equation
λ1M − qMλ2M = log(qM)/((M + 1)4). Define the function

hM(x) = λ1M − λ2Mx−
log x

τ +4
.

It is clear that h(·) is a monotone decreasing function and for any x ∈ (1, λ1/λ2),

lim
4→0

hM(x) = h0(x) = λ1 − λ2x−
log x

τ
.
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By definitions of qM and q, hM(qM) = 0 and h0(q) = 0. Since h(·) is a monotone
function,

lim
4→0

qM = q

and

lim
4→0

λ̂M = λ̂,

where λ̂ = λ1 − qλ2. Hence, for any ε ∈ (0, λ̂), there exists a 4∗2 > 0 such that for
any 4 < 4∗2,

λ̂M > λ̂− ε.
Choosing 4∗ = 4∗1 ∧ 4∗2, for any 4 < 4∗, (4.19) and (4.20) therefore yield the
desired assertions (4.16) and (4.17).

Theorems 4.3 and 4.4 can be applied to the linear SDDE system

dx(t) = [Ax(t) +Bx(t− δ(t))]dt+ [Cx(t) +Dx(t− δ(t))]dw(t) (4.21)

with the initial data ξ ∈ CbF0
([−τ, 0];Rn), where A,B,C,D ∈ Rn×n and δ(t) ∈ [0, τ ].

The corresponding EM approximation of Eq. (4.21) is{
xk = ξ(k4), k ∈ N−M ,
xk+1 = xk + [Axk +Bxk−δk ]4+ [Cxk +Dxk−δk ]4wk, k ≥ 0,

(4.22)

Let λmax(A + AT ) represent the maximum eigenvalue of the symmetric matrix
A+AT and note that

xTAx ≤ 1

2
λmax(A+AT )|x|2.

Also note that

|Ax−Ax̄−By| ≤ |A||x− x̄|+ |B||y|
and

|Cx+Dy|2 ≤ 2|C|2|x|2 + 2|D|2|y|2.
It is obvious that F (x, y) = Ax+ By and G(x, y) = Cx+Dy satisfy Assumptions
1 and 2 if λmax(A + AT ) < 0. Applying Theorems 4.3 and 4.4 gives the following
result directly.

Theorem 4.5. If −λmax(AT +A) > 2(|B|+ |C|2 + |D|2), then for any initial data
ξ ∈ CbF0

([−τ, 0];Rn), the solution x(t, ξ) of (4.21) satisfies

lim sup
t→∞

1

t
E|x(t, ξ)|2 ≤ −(λ1 − qλ2) (4.23)

and

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ −λ1 − qλ2

2
, a.s. (4.24)

where λ1 = −λmax(AT + A) − 2|C|2 − |B|, λ2 = |B| + 2|D|2 and q ∈ (1, λ1/λ2) is
the unique root of the equation

λ1 − qλ2 =
log q

τ
.

For any ε ∈ (0, λ1− qλ2), there exists a 4∗ > 0 such that for any 4 < 4∗, the EM
approximation xk of (4.22) has the properties

lim sup
k→∞

1

k4
E|xk|2 ≤ −(λ1 − qλ2) + ε (4.25)
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and

lim sup
k→∞

1

k4
log |xk| ≤ −

λ1 − qλ2 − ε
2

, a.s. (4.26)

5. Exponential stability of exact and numerical solutions to stochastically
perturbed equations. In general, any systems are often subject to environmental
noise and history. If a system is asymptotically stable, it is therefore interesting
to determine how much stochastic perturbation and history effect this system can
tolerate without losing the property of asymptotic stability. Such a point of view is
described as the problem of robust stability, which is an important issue for stochas-
tically perturbed equations. To examine the problem whether the EM scheme can
reproduce this property of stochastically perturbed equations, let us consider the
equation

dx(t) = (ψ(x(t)) + F (xt))dt+ g(xt)dw(t) (5.1)

with the initial data x0 = ξ ∈ CbF0
([−τ, 0];Rn), where

ψ : Rn → Rn, F : C([−τ, 0];Rn)→ Rn, g = [gij ]n×m : C([−τ, 0];Rn)→ Rn×m

and ψ(0) ≡ 0, F (0) ≡ 0 and g(0) ≡ 0 for the purpose of stability. Eq. (5.1) can
be regarded as the perturbed equation by stochastic noise and time delay of the
ordinary differential equation

ẋ(t) = ψ(x(t)).

Define f(ϕ) = ψ(ϕ(0))+F (ϕ). (5.1) may return to (1.1). Moreover, for the function
V ∈ C2(Rn;R+), LV becomes

LV (ϕ) = Vx(ϕ(0))[ψ(ϕ(0)) + F (ϕ)] +
1

2
trace[gT (ϕ)Vxx(ϕ(0))g(ϕ)]. (5.2)

The EM method (1.2) applied to (5.1) has the form{
xk = ξ(k4), k ∈ N−M ,
xk+1 = xk + [ψ(xk) + F (ykM)]4+ g(ykM)4wk, k ≥ 0.

(5.3)

Let η and µ be two probability measures on [−τ, 0], namely,
∫ 0

−τ dη =
∫ 0

−τ dµ =

1 (in this paper, probability measures may be extended to any right-continuous
nondecreasing functions). We impose the following assumptions for coefficients ψ,
F and G.

Assumption 3. There is a constant K̄ such that |ψ(x)|2 ≤ K̄|x|2.

Assumption 4. There is a constant ζ̄ > 0 such that

〈x, ψ(x)〉 ≤ −ζ̄|x|2 for all x ∈ Rn, (5.4)

and there are constants K1 and K2 and two probability measures η and µ on [−τ, 0]
such that

|F (ϕ)| ≤ K1

∫ 0

−τ
|ϕ(θ)|dη and trace[gT (ϕ)g(ϕ)] ≤ K2

∫ 0

−τ
|ϕ(θ)|2dµ (5.5)

for all ϕ ∈ C([−τ, 0];Rn).

(5.4) is from the one-sided Lipschitz condition since ψ(0) = 0. (5.5) is the linear
growth condition on F and g (cf. [10, 11]). Assumptions 3 and 4, together with
the local Lipschitz conditions on ψ, F and g, may guarantee that Eq. (5.1) exists
a unique solution and this solution is pth bounded. Under these conditions, let us
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examine the mean square and almost sure exponential stability of the exact solution
to (5.1) and the numerical solution to (5.3).

Theorem 5.1. Let ᾱ = 2ζ̄ −K1, β̄ = K1 +K2. Under Assumption 4, if

ᾱ > β̄, (5.6)

then for any initial data ξ ∈ CbF0
([−τ, 0];Rn),

E|x(t, ξ)|2 ≤ ‖ξ‖2Ee−λ̄t, (5.7)

where λ̄ = ᾱ− qβ̄ and q ∈ (1, ᾱ/β̄) is the unique solution of the equation

ᾱ− qβ̄ =
log q

τ
. (5.8)

In addition, if Assumption 3 holds, then

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ − λ̄

2
a.s. (5.9)

that is, the trivial solution of Eq. (5.1) is also almost surely exponentially stable.

Proof. Choose V (x) = |x|2. For any ε > 0, recall the elementary inequality 2|xy| ≤
ε|x|2 + ε−1|y|2. By the Hölder inequality, for any ε > 0, applying Assumption 4
gives

LV (ϕ) = 2〈ϕ(0), ψ(ϕ(0)) + F (ϕ)〉+ trace[gT (ϕ)g(ϕ)]

≤ −2ζ̄|ϕ(0)|2 + ε−1|ϕ(0)|2 + ε|F (ϕ)|2 + trace[gT (ϕ)g(ϕ)]

≤ (−2ζ̄ + ε−1)|ϕ(0)|2 + εK2
1

∫ 0

−τ
|ϕ(θ)|2dη +K2

∫ 0

−τ
|ϕ(θ)|2dµ

For all ϕ ∈ L2
Ft

([−τ, 0];Rn) satisfying E|ϕ(θ)|2 < q|ϕ(0)|2, choosing ε = K−1
1 , we

therefore have

ELV (ϕ) ≤ [−2ζ̄ +K1 + (K1 +K2)q]E|ϕ(0)|2 = −(ᾱ− β̄q)E|ϕ(0)|2.

Note that condition (5.6) implies ᾱ > β̄q. This shows that condition (ii) in Theorem
3.1 holds. By definition of q, applying Theorem 3.1 gives the assertion (5.7). By
Assumptions 3 and 4, applying the Hölder inequality yields

E|f(ϕ)|2 ≤ 2E|ψ(ϕ(0))|2 + 2E|F (ϕ)|2

≤ 2K̄E|ϕ(0)|2 + 2K2
1

∫ 0

−τ
E|ϕ(θ)|2dη

≤ 2(K̄ +K2
1 ) sup
−τ≤θ≤0

E|ϕ(θ)|2

and

E|g(ϕ)|2 ≤ K2

∫ 0

−τ
E|ϕ(θ)|2dµ ≤ K2 sup

−τ≤θ≤0
E|ϕ(θ)|2,

which implies that condition (3.2) holds. Applying Theorem 3.2 therefore gives the
almost sure stability (5.9), as required.

Theorem 5.1 gives a criterion on how large the stochastic noise and time delay
perturbation that equation ẋ(t) = ψ(x(t)) can tolerate so that the perturbed equa-
tion Eq. (5.1) remains exponential stability. We now examine the stability of the
numerical solutions.
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Theorem 5.2. Under Assumptions 3 and 4, if condition (5.6) holds, then for any
ε ∈ (0, λ̄), where λ̄ is defined by Theorem 5.1, there is a 4∗ > 0 such that for any
4 < 4∗, the EM approximation (5.3) has the properties

E|xk|2 ≤ ‖ξ‖2Ee−(λ̄−ε)k4, (5.10)

and

lim sup
k→∞

1

k4
log |xk| ≤ −

λ̄− ε
2

, a.s. (5.11)

Proof. By (5.3), applying Assumption 3 yields

|xk+1|2 = |xk|2 + 2〈xk, ψ(xk)4〉+ 2〈xk, F (ykM)4〉+ |ψ(xk) + F (ykM)|242

+

n∑
i=1

( m∑
j=1

gij(ykM)4wjk
)2

+Mk

≤ (1− 2ζ̄4)|xk|2 + 2|xk||F (ykM)|4+ 2(|ψ(xk)|2 + |F (ykM)|2)42

+

n∑
i=1

( m∑
j=1

gij(ykM)4wjk
)2

+Mk, (5.12)

where Mk = 2〈xk + (ψ(xk) + F (ykM))4, g(ykM)4wk〉. Obviously, E(Mk|FkM) = 0.
For any ε > 0,

2|xk||F (ykM)| ≤ ε−1|xk|2 + ε|F (ykM)|2.
By Assumption 4 and the Hölder inequality, we have

|F (ykM)|2 ≤ K2
1

∫ 0

−τ
|ykM(θ)|2dη.

By Assumption 4, we may estimate that

E
[ n∑
i=1

( m∑
j=1

gij(ykM)4wjk
)2∣∣∣FkM] =

n∑
i=1

m∑
j=1

g2
ij(ykM)4

= trace[gT (ykM)g(ykM)]4

≤ K24
∫ 0

−τ
|ykM(θ)|2dµ.

By these estimates, taking the conditional expectation in (5.12) and choosing ε =
K−1

1 yield

E(|xk+1|2|FkM) ≤ [1− (2ζ̄ −K1)4+ 2K̄42]|xk|2 +K24
∫ 0

−τ
|ykM(θ)|2dµ

+(K14+ 2K2
142)

∫ 0

−τ
|ykM(θ)|2dη. (5.13)

By definition (1.3) of ykM(θ), for any θ ∈ [i4, (i+ 1)4], i ∈ N−M − {0}, we have

E|ykM(θ)|2 ≤ E
∣∣∣θ − i44 xk+i+1 +

(i+ 1)4− θ
4

xk+i

∣∣∣2
≤ E

(θ − i4
4

|xk+i+1|2 +
(i+ 1)4− θ

4
|xk+i|2

)
≤ sup

i∈N−M

E|xk+i|2.
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So, taking expectation on the both sides in (5.13) gives

E|xk+1|2 ≤ (1− ᾱ4+ 2K̄42)E|xk|2 + (β̄4+ 2K2
142) sup

i∈N−M

E|xk+i|2. (5.14)

Let ᾱM = ᾱ − 2K̄4 and β̄M = β̄ + 2K2
14. Note that ᾱ > β̄. Letting 4∗1 =

(ᾱ− β̄)/[2(K̄+K2
1 )], then for any 4 < 4∗1, ᾱM > β̄M. It is obvious that there exists

a 4∗2 > 0 such that for any 4 < 4∗1 ∧ 4∗2 such that there exists qM ∈ (1, ᾱM/β̄M)
satisfying 1 − (ᾱM − qMβ)4 ∈ (0, 1), which implies that condition (ii) of Theorem
3.3 holds. Define

λ̄M = ᾱM − qMβ̄M =
log qM

(M + 1)4
.

Using the similar technique to the proof of Theorem 4.2 shows that condition (iii)
of Theorem 3.3 also holds. By definition of λM, applying Theorem 3.3 yields

lim sup
k→∞

logE|xk|2

k4
≤ −λ̄M < 0 (5.15)

and

lim sup
k→∞

log |xk|
k4

≤ − λ̄M
2
< 0, a.s. (5.16)

Define

h̄M(x) = ᾱM − β̄Mx−
log x

τ +4
.

Using the similar techniques to the proof of Theorem 4.4, limM→0 λ̄M = λ̄. Hence,
for any ε ∈ (0, λ̄), there exists a 4∗3 > 0 such that for any 4 < 4∗3,

λ̄M > λ̄− ε.
Choosing 4∗ = 4∗1 ∧ 4∗2 ∧ 4∗3, for any 4 < 4∗, (5.15) and (5.16) therefore yield
the desired assertions (5.10) and (5.11), as required.

As another special SFDEs, SVDIDEs arise widely in scientific fields such biology,
ecology, medicine and physics (cf. [1, 18]). The rest of this section considers the
following scalar linear SVDIDE

dx(t) =
[
− αx(t) + β

∫ t

t−τ
x(s)ds

]
dt+

[
σx(t) + ρ

∫ t

t−τ
x(s)ds

]
dw(t) (5.17)

with initial data ξ ∈ CbF0
([−τ, 0];R), where α, β, σ, ρ are constants and α > 0.

This equation may also be seen as a perturbed equation by stochastic noise and
time delay of the linear system ẋ(t) = −αx(t). Let dµ = ds/τ and η be a Dirac
measure in the origin and then dν = (σdη + ρτdµ)/(σ + ρτ). It is obvious that
both µ and ν are the probability measures on [−τ, 0]. Eq. (5.17) may therefore be
rewritten as

dx(t) =
[
−αx(t)+βτ

∫ 0

−τ
x(t+θ)dµ

]
dt+

[
(σ+ρτ)

∫ 0

−τ
x(t+θ)dν

]
dw(t). (5.18)

Define ψ(x) = −αx and

F (ϕ) = βτ

∫ 0

−τ
ϕ(θ)dµ, g(ϕ) = (σ + ρτ)

∫ 0

−τ
ϕ(θ)dν.

Eq. (5.17) may be rewritten as the stochastically perturbed equation (5.1). It
is obvious that Assumptions 3 and 4 hold with K̄ = α2, ζ̄ = α, K1 = |β|τ and
K2 = |σ + ρτ |.
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The EM method (1.2) applied to Eq. (5.17) has the form
xk = ξ(k4), k ∈ N−M ,

xk+1 = (1− α4)xk + β

M∑
i=0

xk−i42 +
(
σxk + ρ

M∑
i=0

xk−i4
)
4wk, k ≥ 0.

(5.19)
Then applying Theorems 5.1 and 5.2 gives stability of the exact and numerical
solutions of (5.17).

Theorem 5.3. If 2α > 2|β|τ+|σ+ρτ |, then for any initial data ξ ∈ CbF0
([−τ, 0];Rn),

the solution x(t, ξ) of (5.17) satisfies

lim sup
t→∞

1

t
E|x(t, ξ)|2 ≤ −(α̃− qβ̃) (5.20)

and

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ − α̃− qβ̃

2
, a.s. (5.21)

where α̃ = 2α− |β|τ , β̃ = |β|τ + |σ + ρτ | and q ∈ (1, α̃/β̃) is the unique root of the
equation

α̃− qβ̃ =
log q

τ
.

For any ε ∈ (0, (α̃− qβ̃)), there exists a 4∗ > 0 such that for any 4 < 4∗, the EM
approximation xk of (5.19) has the properties

lim sup
k→∞

1

k4
E|xk|2 ≤ −(α̃− qβ̃) + ε (5.22)

and

lim sup
k→∞

1

k4
log |xk| ≤ −

(α̃− qβ̃)− ε
2

, a.s. (5.23)

Appendix A: Proof of Theorem 3.1. If we can prove (3.1) for any λ ∈ (0, ζ ∧
log(q)/τ), we will complete the proof. This is equivalent to prove

eλtE|x(t)|p ≤ c2
c1
‖ξ‖pE =: κ on (t ≥ 0).

From the condition (i) we will complete the proof if we can prove that for any
t ≥ −τ ,

W (t) := eλtEV (x(t)) ≤ κc1. (A.1)

When t ∈ [−τ, 0],

W (t) ≤ EV (x(t)) ≤ c2E|x(t)|p ≤ c2‖ξ‖pE = κc1.

Then we claim (A.1) for all t ≥ 0. Otherwise, by the continuity of W (t), there
exists the smallest ρ ∈ [0,∞) such that for t ∈ [−τ, ρ], W (t) ≤ κc1 and W (ρ) = κc1
as well as W (ρ+ δ) > W (ρ) for all sufficiently small δ. Then for any t ∈ [ρ− τ, ρ],

EV (x(t)) = e−λtW (t)

≤ e−λtW (ρ)

= eλ(ρ−t)EV (x(ρ))

≤ eλτEV (x(ρ)). (A.2)

If EV (x(ρ)) = 0, by the condition (i), for any t ∈ [ρ− τ, ρ],

c1E|x(t)|p ≤ EV (x(t)) = 0,
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which means xρ = 0, a.s. From the existence and uniqueness of the solution, x(t) =
0, a.s. which contradicts the definition of ρ. We therefore have EV (x(ρ)) > 0. By
λ < log(q)/τ , which implies q > eλτ , (A.2) gives that

EV (xρ(θ)) < qEV (xρ(0)) on − τ ≤ θ ≤ 0.

Choosing ϕ = xρ, applying the condition (ii) yields

ELV (ρ, xρ) ≤ −ζEV (x(ρ)).

From λ < ζ and continuity of V (·), t ∈ [ρ− δ, ρ+ δ] for sufficient small δ,

ELV (t, xt) ≤ −λEV (x(t)).

We therefore have

W (ρ+ δ)−W (ρ) =

∫ ρ+δ

ρ

eλt[ELV (t, xt) + λEV (x(t))]dt ≤ 0,

which implies W (ρ + δ) ≤ W (ρ). This contradicts the definition of ρ. Therefore,
for any t ≥ −τ , (3.1) is satisfied, as desired.
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