
This version is available at https://strathprints.strath.ac.uk/46648/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Large Morphing Spacecraft for Flexible Science Missions
Andreas Borggräfe, Jeannette Heiligers, Matteo Ceriotti, Colin Mclnnes
Advanced Space Concepts Laboratory, Department of Mechanical & Aerospace Engineering

Sailships in Space
Solar sail technology offers a new capability to enable fast, efficient and low cost science missions throughout the Solar system. Unlike conventional, chemical and electric thrusters, the mission duration is therefore limited only by the lifetime of the onboard subsystems and the intensity of the lightweight sail membrane. This makes a solar sail the ideal candidate for a wide range of space missions, including space weather forecasting and exploration of asteroids. However, the thrust from solar radiation pressure is limited to be always directed away from the Sun, and its magnitude follows an inverse-square law with solar distance, making the sail less efficient at large distances from the Sun.

A Multifunctional Platform
In order to increase the range of potential mission applications, we are investigating future reconfigurable spacecraft able to change their shape during the mission. It is envisaged to use the membrane of a solar sail as a multi-functional platform that can deliver additional key mission functions such as power collection, optical communications and a more flexible thrust control.

Morphing Solar Sails
To this aim, we are introducing concepts of shape change and continuously variable optical properties to large geosensor (lightweight) spacecraft. The dynamics of a flexible sail membrane with a variable surface reflectivity distribution are investigated, which can be achieved through the use of electro-chromic coatings. These consist of an electro-active material that changes its surface reflectivity according to an applied electric charge.

Modelling
The sail membrane is modelled as a single surface framed by a simply supporting rigid boom structure. When changing the reflectivity coefficient across the sail membrane, the forces and torques acting on the sail can be controlled without changing the incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity distribution across the membrane, the load distribution due to solar radiation pressure can also be manipulated to control the billowing of the membrane. By an appropriate choice of spatial reflectivity across the membrane, specific geometries can be generated (see Fig. 5), such as a parabolic reflector, thus enabling a multi-functional sail.

Conclusions
Future morphing solar sails can use distributed electro-chromic elements across the membrane to apply shape changes during the mission. This novel concept of optical reconfiguration can potentially extend solar sail mission applications and further enable flexible thrust vector control without using moving attitude control devices. Further project steps will also consider segmented sail panels connected by hinges that are easier to be deployed and controlled within the space environment. Additional opportunities exist in the use of the large available solar sail area for distributed payloads such as a phased array to generate a high-gain antenna.

Applications
For example, the sail may start at Earth escape in a flat thrust mode, using its membrane as a remote sensing device or as a large-aperture communication antenna. In close proximity to the target body, the sail reconfigures to a parabolic shape, to acquire data from the asteroid surface and further sending it back to Earth for examination.

Fig. 1 Flat sail in thrust mode
Fig. 2 Parabolic sail in antenna mode
Fig. 3 Parabolic sail in power collection mode
Fig. 4 Sail in attitude control mode
Fig. 5 Deflected shapes of a circular sail membrane (radius R = 100 m) with uniform light pressure distribution and for different surface reflectivities: 20% (blue), 60% (orange) and 100% (white). Plot limited to one quarter of total sail area.