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Asteroids and comets are of strategic importance for science in an effort to uncover the formation, evolution and 

composition of the Solar System. Near-Earth objects (NEOs) are of particular interest because of their accessibility 
from Earth, but also because of their speculated wealth of material resources. The possibility of retrieving entire 
NEOs from accessible heliocentric orbits and moving them into the Earth’s neighbourhood is today a credible 
possibility considered by NASA, within its Asteroid Initiative Framework, and examined in several recent scientific 
publications. This paper searches for asteroid retrieval trajectories that benefit from several resonant Earth 
encounters to decrease at each encounter the transfer Δv cost. Particularly, the paper focuses on the Amor asteroid 
population, which have the encounters always occurring outside the Earth’s sphere of influence. Thus, the patched 
conic approximation is rendered essentially not applicable. Numerical exploration in the framework of the Circular 
Restricted Three Body Problem (CR3BP) becomes computationally expensive when combined with the 
sensitivities of multiple Earth encounters. Hence, this paper proposes a 3D extension of the energy kick function 
to rapidly assess all possible third-body effects into the asteroid’s trajectory. The osculating elements of the asteroid 
can be updated by means of Picard’s first iteration on each Keplerian element, where the perturbing forces of the 
third body (i.e., the Earth) are given by the Lagrange’s planetary equations. This allows a rapid scanning process of 
sequences of Earth encounters that may in turn allow a favourable perturbation to the asteroid orbital elements. 

I. INTRODUCTION 
In recent years, significant interest has been 

devoted to the understanding of minor bodies of the 
Solar System, including near-Earth and main belt 
asteroids and comets. NASA, ESA and JAXA have 
conceived a series of missions to obtain data from 
such bodies, having in mind that their characterisation 
not only provides a deeper insight into the formation 
of the Solar System, but also represents a 
technological challenge for space exploration. Near 
Earth Objects (NEOs) in particular have also stepped 
into prominence because of two important issues: 
they are among the easiest bodies to reach from the 
Earth and they may represent a potential impact 
threat. 

The debate on the potential for future exploitation 
of NEOs, and possible synergies with science [1] and 
planetary protection, is clearly intensifying in recent 
years. Evidence can be found in the growing body of 
scientific literature on the topic of asteroid 

exploitation, as well as in recent mission proposals, 
such as the Keck asteroid retrieval mission [2], and in 
the interest from the commercial space sector in their 
potential resources*. 

Indeed, the interest for these neighbouring 
celestial bodies may have reached a tipping point 
early this year with two important events: the 
Chelyabinsk meteor, which was intensively covered 
by media, and the announcement of NASA’s latest 
mission concept within the Asteroid Initiative 
Framework: to rendezvous with an asteroid, lasso it 
and haul it back to Earth neighbourhood to then being 
visited by astronauts by 2021†.  

Inspired by all of this, a recent publication [3] puts 
forward a new subcategory of asteroids: the Easily 
Retrievable Objects, or EROs. These are Near Earth 
Objects that can be gravitationally captured in bound 

* http://www.planetaryresources.com/ 
†http://www.nasa.gov/sites/default/files/files/AsteroidRedirect

Mission_FS_508_2.pdf 
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periodic orbits around the collinear libration points L1 
and L2 of the Sun-Earth system under a certain Δv 
threshold, which was arbitrarily selected in García et 
al. [3] as 500 m/s. 

García et al. [3]  describe a robust methodology to 
search among a vast number of near Earth asteroids 
for advantageous candidates for retrieval missions. 
The retrieval trajectories considered aimed at the 
insertion of the asteroid into a periodic libration 
points orbits. These libration point orbits (LPOs) can 
also serve as target gateways to other Sun-Earth-
Moon system orbits of interest, through transit orbits 
inside Earth’s Hill sphere and heteroclinic 
connections between libration points.  

García et al. [3] however considered only retrieval 
trajectories that target the Earth at the following Earth 
encounter. The work thus disregarded the possibility 
of taking advantage of multiple Earth encounters in 
order to obtain further benefit from third-body effects 
that may decrease the transfer costs even more. 
Clearly, the reason not to consider multiple Earth 
encounters was that this type of transfers entails very 
long times of flight, since the synodic period for 
retrieval targets tends to be very large. This paper 
however will not consider transfer time constraints 
and will thus explore the possibility of long Earth 
resonant sequences. 

Dynamical system theory provides effective 
methodologies to compute quasi-ballistic transfers, 
however exploring a full set of these trajectories can 
become computationally expensive, and even more so 
when combined with the sensitivities of multiple 
Earth encounters. Hence, this paper also proposes an 
alternative method for preliminary design of low-
energy transfers exploiting multiple Earth resonant 
gravity assists. 

 Instead of the computationally expensive process 
of numerically propagating a large set of stable 
invariant manifold trajectories, we propose to use a 
3D extension of the energy kick function [4] to 
rapidly assess all possible third-body effects into the 
asteroid’s trajectory. The osculating elements of the 
asteroid can be updated by means of Picard’s first 
iteration on each Keplerian element, where the 
perturbing forces of the third body (i.e., the Earth) are 
given by the Lagrange’s planetary equations. This 
allows a rapid scanning process of sequences of Earth 
encounters that may in turn allow a favourable 
perturbation to the asteroid orbital elements. The 
procedure can then be used to optimise sequences of 
gravity assists for realistic target objects for asteroid 
retrieval missions. 

II. EASILY RETRIEVABLE OBJECTS 
Current interplanetary spacecraft have masses on 

the order of 103 kg, while an asteroid of 10 meters 
diameter will most likely have a mass of the order of 

106 kg. Hence, already moving such a small object, or 
an even larger one, with the same ease that a 
scientific payload is transported today, would demand 
propulsion systems orders of magnitudes more 
powerful and efficient; or alternatively, orbital 
transfers orders of magnitude less demanding than 
those to reach other planets in the Solar System.  

Solar System transport phenomena, such as the 
rapid orbital transitions experienced by comets 
Oterma and Gehrels 3, from heliocentric orbits with 
periapsis outside Jupiter’s orbit to apoapsis within 
Jupiter’s orbit, or the Kirkwood gaps in the main 
asteroid belt, are some manifestations of the 
sensitivities of multi-body dynamics. The same 
underlying principles that enable these phenomena 
allow also excellent opportunities to design 
surprisingly low energy transfers.   
II.I Low Energy Transport conduits 

As is well known, the phase space near the 
equilibrium regions in the CR3BP can be divided into 
four broad classes of motion; bound motion near the 
equilibrium position, asymptotic trajectories that 
approach or depart from the latter, transit trajectories, 
and, non-transit trajectories (see Figure 1).  

 
Figure 1: Schematic representation of the four 

categories of motion near the L2 point (represented by the 
set of axes in the figure): periodic motion around L2 (i.e., 
halo orbit), hyperbolic invariant manifold structure (i.e., set 
of stable hyperbolic invariant manifold trajectories), transit 
trajectory and non transit trajectory. 

In García et al. [3], a systematic search for 
asteroids whose unperturbed trajectories laid close to 
stable invariant manifold trajectories belonging either 
to planar Lyapunov, vertical Lyapunov or Halo orbits 
was performed. A final list with 12 objects was 
provided whose trajectories fulfilled the requirement 
that they could be modified with impulsive 
manoeuvres below a total cost of 500 m/s and set into 
a stable manifold trajectory leading to a bound motion 
near the Earth. This final list of asteroids is 
reproduced here in Table 1. 
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 a 
[AU] e 

i 
[deg] 

MOID 
[AU] 

Diameter 
[m] Type 

Δv 
[m/s] 

2006 RH120 1.033 0.024 0.595 0.0171 2.3-  7.4 

2Hn 
2Hs 
2V 
2P 

0.058 
0.107 
0.187 
0.298 

2010 VQ98 1.023 0.027 1.476 0.0048 4.3-13.6 
2V 
2Hs 
2Hn 

0.181 
0.393 
0.487 

2007 UN12 1.054 0.060 0.235 0.0011 3.4-10.6 

2P 
2Hn 
2Hs 
2V 

0.199 
0.271 
0.327 
0.434 

2010 UE51 1.055 0.060 0.624 0.0084 4.1-12.9 

2Hn 
2P 
2V 
2Hs 

0.249 
0.340 
0.470 
0.474 

2008 EA9 1.059 0.080 0.424 0.0014 5.6-16.9 2P 0.328 

2011 UD21 0.980 0.030 1.062 0.0043 3.8-12.0 
1Hn 
1V 
1Hs 

0.356 
0.421 
0.436 

2009 BD 1.062 0.052 1.267 0.0053 4.2-13.4 2Hs 
2V 

0.392 
0.487 

2008 UA202 1.033 0.069 0.264 2.5∙10-4 2.4-  7.7 
2Hs 
2P 
2Hn 

0.393 
0.425 
0.467 

2011 BL45 1.033 0.069 3.049 0.0040 6.9-22.0 2V 0.400 
2011 MD 1.056 0.037 2.446 0.0018 4.6-14.4 2V 0.422 

2000 SG344 0.978 0.067 0.111 8.3∙10-4 20.7-65.5 
1P 
1Hs 
1Hn 

0.443 
0.449 
0.468 

1991 VG 1.027 0.049 1.445 0.0037 3.9-12.5 2Hn 
2V 

0.465 
0.466 

Table 1: ERO characteristics for transfer trajectories 
with Δv below 500 m/s. The type of transfer is indicated by 
a 1 or 2 indicating L1 or L2 plus the letter P for planar 
Lyapunov, V for vertical Lyapunov, and Hn or Hs for north 
and south halo. 

II.II Targeting capture trajectories 
A hyperbolic invariant manifold structure, such as 

the one depicted in Figure 1, consists of an infinite set 
of trajectories associated with bound motion near the 
equilibrium position. Particularly, the stable set 
consists of an infinite number of trajectories 
exponentially approaching a periodic or quasi-
periodic orbit. Thus, if an asteroid’s unperturbed orbit 
lies near one of these trajectories, a gentle push may 
insert the object into a trajectory leading to a bound 
motion near the Earth.  

When the set of trajectories forming the stable 
invariant manifold are close to the Earth, they need to 
be propagated numerically using the equations of 
motion of the CR3BP. However, if the distance to 
Earth is large, these orbits behave as any other 
classical Keplerian orbit.  

Hence, in [3], these stable invariant trajectories 
where propagated backwards to a planar section 
located at a π/8 angle with the Sun-Earth line. This 
section corresponds roughly to a distance to Earth of 

the order of 0.4 AU, where the gravitational influence 
of the planet can already be considered small. From 
this section outwards, these trajectories could then be 
well approximated in two-body motion, and thus 
described analytically by means of their constant 
orbital elements. These constant orbital elements at 
the π/8 section are independent of the final insertion 
time under the CR3BP assumption. Note that the only 
exception is the longitude of the perihelion, i.e., the 
sum of the right ascension of the ascending node and 
the argument of perihelion, which varies with a 
simple function of time due to the motion of the Earth 
on its orbit [2]. 

 
Figure 2: Schematic representation of a transfer to L2 

Finally, as depicted in Figure 2, the sets of orbital 
elements associated with stable invariant manifold 
trajectories at the π/8 section can be used as a bullseye 
orbit targeting for Earth capture trajectories. The 
targeting can be solved by means of a heliocentric 
Lambert arc of a restricted two-body problem with 
two impulsive burns, one to depart from the NEO, the 
final one for insertion into the manifold, with the 
insertion constrained to take place before the arrival 
at the section. 
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Figure 3: Capture opportunities of asteroid 2009 BD 

during consecutive encounters of the Earth, if these 
encounters where trimmed to achieve beneficial third body 
effects.  

Figure 3 shows an example of a capture transfer as 
found in [3]. It was found that asteroid 2009 BD 
could be captured in a vertical Lyapunov orbit with 
Jacobi constant of 3.00011 by means of a Δv 
manoeuvre costing 490 m/s. As proposed by this 
paper, by trimming the right encounter with the Earth, 
which will be discussed further in later sections, it 
will be shown here that during an hypothetical second 
encounter with the Earth the same asteroid could be 
captured into the same periodic orbit with a Δv of 338 
m/s. If allowed further revolutions in the synodic 
reference frame, a third encounter capture could be 
achieved with 238 m/s, and finally during a forth 
encounter with 174 m/s.  
II.III Pruning: The Analytic Transfer. 

The search for asteroid retrieval opportunities 
carried out in [3] required to explore a vast catalogue 
of NEOs (~9,000 objects). Hence, preliminary 
pruning of objects that did not offer a good chance for 
low cost capture opportunities became a necessity, 
due to the high computational costs involved in 
optimizing a retrieval trajectory.  

With this purpose, a filter based on a Δv cost 
estimate computed as a bi-impulsive transfer with 
both burns assumed at aphelion and perihelion was 
implemented. Either of the two burns is also 
responsible for correcting the inclination required to 
reach a given invariant manifold trajectory. The Δv 
required to modify the semi-major axis can be 
expressed as: 

 
0

2 1 2 1
Δ a s s

f

v
r a r a

µ µ= − − −
   
   

  
  (1) 

where µS is the Sun’s gravitational constant, a0 and af 
are the initial and final semi-major axis before and 
after the burn, and r is the distance to the Sun at 
which the burn is made (perihelion or aphelion 

distance). On the other hand the Δv required to 
modify the inclination at either apsis can be 
approximated by: 

 ( )*

0

Δ 2 Δ / 2s
iv r sin i

a

µ
=   (2) 

where Δi is the required inclination change, and r* 
corresponds to the ratio of perihelion and aphelion 
distance if the burn is performed at aphelion, or its 
inverse if performed at perihelion. 

The total estimated cost is then calculated as: 

 2 2 2 2

1 1 2 2Δ Δ Δ Δ Δt a i a iv v v v v= + + +   (3) 
with one burn performed at each of the apsis, and one 
of the two inclination change Δv assumed zero. The 
estimated transfer Δv corresponds thus to the 
minimum of four cases: aphelion burn modifying 
perihelion and inclination followed by a perihelion 
burn modifying aphelion, perihelion burn modifying 
aphelion and inclination followed by an aphelion burn 
modifying perihelion, and the equivalent ones in 
which the inclination change is done in the second 
burn. 

Note that Eq.(1) and Eq.(2) only take into 
consideration the shape and inclination of the orbits, 
ignoring the rest of the orbital elements: the right 
ascension of the ascending node Ω and argument of 
pericentre ω. Hence, the resultant estimates from 
Eq. (3) would correspond to the theoretical minimum 
for a Lambert arc transfer, if phasing was optimal. 
Nevertheless, as will be shown later, the results of the 
filter provide a rather accurate estimate of the transfer 
and will be used in this paper to assess the resonant 
encounter sequences that provide a better chance to 
reduce the costs of an asteroid retrieval trajectory.  

III. EARTH RESONANT ENCOUNTERS 
In a similar fashion to the multiple Earth and 

Venus gravity assist, introduced by Hollenbeck [5], 
that is today commonly used to decrease the cost to 
reach the outer planets, the following sections aim to 
investigate the feasibility to introduce one or multiple 
Earth encounters on the asteroid capture trajectories 
investigated in [3] in order to achieve further 
reduction of the transfer Δv at the cost of larger 
transfer times. 

This paper however focuses its efforts on a 
subcategory of near Earth asteroid that does not cross 
the orbit of the Earth, i.e., the Amor objects. This 
places a further constraint on the analysis of the 
‘endgame problem’ [6] (as the search for energy-
reducing series of flybys before the final capture into 
a planetary body is generally referred to). That is due 
to the fact that Amor orbits will never encounter the 
Earth within its sphere of influence, and thus, the 
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patched conic approximation is rendered essentially 
not applicable.  

It is therefore necessary either to perform a 
numerical exploration in the CR3BP, or alternatively 
use a general perturbation method capable to describe 
the third-body effects when relatively close to the 
secondary. Hence, the classical Legendre polynomial 
expansion of the third-body disturbing function [7] 
cannot be applied here since it requires the distance to 
the test particle (e.g., spacecraft or asteroid) to be 
much smaller than the distance to the perturbing 
body.   

The use of a 3D extension of the energy kick 
function previously developed by other authors [4] 
for a planar case is thus here investigated. The 
intention is to build an approximated perturbing force 
that by means of Picard’s first iteration allows us to 
update each orbital element after an Earth encounter. 
Hence, if a semi-analytical tool to estimate the motion 
in the CR3BP is available, a global search for 
favourable encounter sequences can be made 
effectively.   

IV. KEPLERIAN MAP 
Considering the restricted case of the 3BP, the 

Hamiltonian in the inertial reference frame of a test 
particle moving within a 3D CR3BP framework can 
be written as: 

 ( )2 2 2

1 2

1 1
2iner x y zH p p p

r r
µ µ−

= + + − −   (4) 

where px, py and pz are the conjugate momenta, µ the 
non-dimensional mass parameter and r1 and r2 the 
distance to the primary and secondary mass of the 
system, respectively (i.e., Sun and Earth in the case at 
hand, as shown in Figure 4).  

 

 
Figure 4: Relationship between distances in the 

three-body problem. 

The distances to the primary r1 and secondary r2 can 
be described with spherical coordinates (r, θ), where r 
is the distance from the barycentre to the test particle 
and θ the angle between r̂  and  the direction between 
the primaries x̂ . Thus, by the law of cosines, r1 and r2 
can be expressed as: 

 
( )

( ) ( )

2 2 2

1

22 2

2

2 cos

1 2 1 cos

r r r

r r r

µ µ π θ

µ µ θ

= + − −

= + − − −
  (5) 

The mass parameter µ considered in this paper is 
3.0032080443x10-6  (note that this neglects the mass 
of the Moon). In Eq. (4) µ is a small parameter, and 
thus suitable to be used to describe the perturbation of 
the secondary mass on the 2 body motion of an object 
orbiting the primary mass.  

Since µ/r<<1, the r1 distance can be written as: 
 ( )2

1 cosr r µ θ µ= + + Ο   (6) 
using Taylor series and truncating to the first order in 
µ. Hence Eq. (4) can be rewritten as: 

 ( )2 2 2 2
2

2

1 1 1 cos 1
( )

2

iner

x y z

H

p p p
r r r r

θ
µ µ

=

+ + − + + − + Ο
  

      

 (7) 

Finally, µ/r2 can also be truncated to the first order in 
µ, which allows us to write more conveniently: 

 2( )inerH K R Oµ µ= + +   (8) 
where K is the 2-body problem Hamiltonian and R the 
first order perturbed part, expressed as: 

 
22

1 cos 1

1 2 cos
R

r rr r

θ

θ
= − + +

+ −
  (9) 

The angle θ between r̂  and x̂  direction can be 
described as a function of the osculating elements of 
the test particle as: 

 ( ) ( )
cos
cos cos sin sin cosrot rot i

θ
ν ω ν ω

=

Ω ⋅ + − Ω ⋅ + ⋅
 (10) 

where Ωrot is the ascending node of the test particle 
measured from the rotating x̂  direction, thus ν

⊕
Ω − , 

where ν
⊕

is the true anomaly of the secondary object. 
Finally, since R is a small perturbation and we can 
still assume that the main motion of the test particle is 
going to be a Keplerian orbit, r can then be expressed 
as: 

 
1 cos

pr
e ν

=
+

. (11) 

The above description allows us to express Eq. (9) 
as a function of Keplerian elements, and it is thus 
well suited to be integrated by means of Lagrange’s 
Planetary Equations in order to obtain a good estimate 
of the rate of change of the osculating elements.  
IV.I Semi-major axis kick 

Expressing the first order perturbed potential as: 
 R Rµ′ = ,  (12) 

the variation of semi-major axis can be written as:  

 2

2da b R
dt nr

µ
ν
∂

=
∂

  (13) 

Integrating Eq.(13) over an entire orbit, the rate of 
semi-major axis change per orbit is obtained: 
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/2

2
/2

2 1T

T

b Ra dt
n r

µ
ν−

∂
∆ =

∂∫   (14) 

Note that, similarly to Ross and Scheeres [4], the 
integration is performed from the periapsis passage. 
The complete orbit is then integrated by integrating 
half an orbit backwards and half forward. This was 
considered convenient, among other reasons to 
minimize possible problems during the numerical 
integration procedure, but a priori other integration 
limits may be possible.  

Equation (14) can be more conveniently 
integrated as a function of true anomaly: 

 
( )( )( )

2

, , , , , ,2 rotR a e i t
a d

an

π

π

ν ω ν
µ ν

ν−

∂ Ω Ω
∆ =

∂∫ .(15) 

Note that in Eq.(15) Ωrot is a function of time, which 
is expressed as a function of true anomaly, thus the 
integration does not resolve trivially. The full 
integration is summarized in the Appendix, which is 
currently solved by means of MATLAB’s quadl 
function, a high order method using an adaptive 
Gauss/Lobatto quadrature rule. 
IV.II Inclination kick 

The rate of change of the inclination during an 
Earth encounter can be computed as: 

 
cos 1

sin sin

di i R R

dt nab i nab i
µ

ω

∂ ∂
= −

∂ ∂Ω
 
 
 

 ,  (16) 

which, as in the case of the semi-major axis, can be 
more conveniently computed as: 

2 2
2 2 2 cos

sin

i

R Ri r d r d
n a b i

π π

π π

µ ν ν
ω− −

∆ =

 ∂ ∂
− ⋅ 

∂ ∂Ω 
∫ ∫

  (17) 

Complete integration is presented also in the 
Appendix section, and as in the previous case, is 
currently solved by means of MATLAB’s quadl 
function. 
IV.III Eccentricity kick 
The rate of change in eccentricity can be readily 
estimated using the Tisserand parameter as a first 
order approximation of the Jacobi Constant of the 
moving particle, which should remain constant along 
the entire trajectory. Hence,  

 0fe e e∆ = −   (18) 
where ef can be estimated as: 

 
( )

2
1

0 0

0 0

1
1

2 cos
a a

f

T
e

a a i i
+∆

−
= −

+ ∆

 
 + ∆ 

  (19) 

and T0 is the constant Tisserand parameter: 

 ( ) ( )2
0 0 0 0

0

1 2 1 cosT a e i
a

= + −   (20) 

IV.IV Argument of periapsis kick 
The rate of change of the argument of the 

periapsis can also be estimated as: 

 3

cos
sin

d b R i R
dt na e e nab i i
ω ∂ ∂
= −

∂ ∂
,  (21) 

which resolves into an integral such as: 

 

( )
2 2

22 4

1 cos

sin

R i R
r d r d

n a e e inab i

π π

π π

ω

ν ν
+ +

− −

∆ =

∂ ∂
−

∂ ∂∫ ∫
  (22) 

IV.V Integrated results and accuracy 
In order to assess how well Eq. (15), (17), (18) 

and (22) reproduce the orbital evolution of a particle 
moving within the framework of the CR3BP, we can 
now compare the orbital changes resultant of the 
above integrations with a propagation in the CR3BP. 
This is done for series of different sets of (a,e,i,ω) 
taken from interesting accessible asteroids found 
during previous work [3].  
 

 
Figure 5: Description of the angle α of the encounter. 

The actual encounter undergone by a (a,e,i,ω) set 
is uniquely defined by the angular distance between 
the Sun-Earth line and the projection of the periapsis 
line in the Earth orbital plane at the moment of the 
periapsis passage, here referred as α as described in 
Figure 5. Hence, by scanning all possible α angles for 
a set of (a,e,i,ω) we obtain an overall picture of the 
consequences of an Earth encounter for different 
encounter geometries (i.e., phasings). By comparing 
the results of these encounters propagated with 
CR3BP and the integrations described in this section 
we also obtain an estimate of its accuracy for 
different cases. This is done in the following manner: 
a set of (a,e,i,ω,α) defines the conditions at the 
periapsis with a given angular distance with the Earth. 
This set is both integrated using the Keplerian map 
and propagated half an orbit backwards and half an 
orbit forward in the CR3BP. The results are plotted 
for one case in Figure 6 to Figure 9. 
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Figure 6: Semi-major axis kick as a function of the 

angular distance of the periapsis passage for a 2012 LA-
like orbit (1.04 AU, 0.023, 3.13 deg).  

 
Figure 7: Inclination kick as a function of the 

angular distance of the periapsis passage a 2012 LA-like 
orbit (1.04 AU, 0.023, 3.13 deg). 

 
Figure 8: Eccentricity kick as a function of the 

angular distance of the periapsis passage a 2012 LA-like 
orbit (1.04 AU, 0.023, 3.13 deg). 

 

Figure 9: Argument of the periapsis ω kick as a 
function of the angular distance of the periapsis passage 
a 2012 LA-like orbit (1.04 AU, 0.023, 3.13 deg). 

A simple visual inspection of Figure 6 to Figure 9 
already suggests a high accuracy for the integrated 
results compared with the CR3BP prediction, 
especially for semi-major axis and inclination. This 
accuracy however needs to be set into context, before 
deciding about the quality of the integrated results. 
Firstly, the results from equations (15) to (22) are 
intended for a rapid assessment of the consequences 
of an encounter with the Earth. The type of encounter 
that asteroid 2012 LA undergoes with the Earth, for 
example, could not be reproduced by other classical 
approximations of astrodynamics, such as the patched 
conic approximation, and would require at a 
minimum a CR3BP framework to be understood. The 
integrals above provide a reasonable approximation 
without the need to propagate numerically the motion, 
which is a very useful advantage when performing 
global searches of trajectories. The advantages of this 
procedure will be clearer in the following sections.    
IV.VI Keplerian map update 

These estimates of the perturbed motion can be 
used to update the orbital elements of an object at 
each periapsis passage.  

Given a set of Keplerian elements of an object at 
its periapsis at an epoch, the angular distance α can be 
readily computed as: 

 ( )0 0 0arctan cos tanrot iα ω= Ω + ⋅   (23) 

where rotΩ   is 0 ν
⊕

Ω − , ν
⊕

 is the true anomaly of 
the Earth and the subscript 0 indicates the set of 
orbital elements before the first update.  

Knowing α0, the update on (a0,e0,i0,ω0) is defined 
by Eq.(15), (17), (18) and (22). At the next periapsis 
passage, α0 is updated by the mutual drift between the 
object and the Earth, as well as by the changes in Ω 
due to perturbations in inclination and argument of 
the periapsis: 
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where subscript n represent the iteration number. 

V. ENCOUNTER MAP 
The Keplerian map, introduced in the previous 

section, fails however in two important aspects when 
used to provide a good understanding of how the next 
planetary encounter will change the orbital elements 
of an asteroid. Firstly, if we define as an Earth 
encounter the period of time that an asteroid is close 
enough to Earth that its gravitational effect is non-
negligible, the Keplerian map fails to provide a 
complete picture of what occurs during an encounter, 
since an asteroid may undergo several periapsis 
passages during this time. It often happens that if an 
asteroid suffers several kicks these may partially 
cancel each other out.  

The second drawback is that it is difficult to know 
which is the angular α region of interest, since some 
orbits will feel the Earth at longer angular distances. 
The latter is of course not due to a magical increase in 
the gravity of the Earth, but a consequence of using 
the periapsis passage as a representation of the effect 
of the Earth on the entire orbit of the asteroid.  

Hence, it is hereafter referred as encounter map 
the added effect of all periapsis passages that an 
asteroid undergoes during the time the asteroid 
remains within a π/8 angular distance from the Earth-
Sun line. As discussed in [3], this angular distance 
corresponds roughly to a distance from Earth of the 
order of 0.4 AU, where the gravitational influence of 
the planet is considered small.   

As an example, we can now reproduce the semi-
major axis and inclination encounter map for asteroid 
2012 LA. Figure 10 and Figure 11 evidence the 
difference between the Keplerian map and the 
encounter map. In a sense, the encounter map is the 
summary of the integrated Earth’s disturbance during 
the period of time the asteroid is within 0.4 AU 
distance from the Earth. Figure 10 and Figure 11 also 
show the numerical results of the Earth’s perturbation 
and the predicted effect of the encounter that 
2012 LA will undergo in 2029. In this occasion, the 
numerical validation using the CR3BP is done by 
propagating the different initial conditions at the +π/8 
until these cross the section -π/8. Finally, these 
figures evidence the use of angle α as a target 
parameter that uniquely defines an encounter and the 
effects of it.  

 
Figure 10: Semi-major axis encounter map as a 

function of the angular distance of the periapsis passage 
for a 2012 LA-like orbit (1.04 AU, 0.023, 3.13 deg). 

 
Figure 11: Inclination encounter map as a function of 

the angular distance of the periapsis passage for a 2012 
LA-like orbit (1.04 AU, 0.023, 3.13 deg). 

V.I Search for resonant encounters 
The tool described above can now be used to 

perform a rapid search for advantageous resonant 
encounters with the Earth that may decrease the 
estimated cost of an asteroid capture transfer. As 
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discussed previously, hauling a large asteroid back to 
Earth with today’s propulsion technology requires 
extremely low energy trajectories. Thus, albeit much 
longer times of flight are expected, sequences of 
Earth encounters may ease enormously the 
technology necessary to carry out this type of 
missions. 

As described in [3], asteroid 2009 BD could 
potentially be inserted into a vertical Lyapunov orbit 
near the L2 point with a 490 m/s transfer starting on 
28th February 2021 and finishing on 21st September 
2025, thus a 4.5 years long transfer. However, if 
unperturbed this asteroid will undergo an encounter 
with the Earth early on 2023. The encounter is 
depicted in Figure 12, together with the capture 
alternative during the first Earth encounter.  

 
Figure 12. Schematic of the current (i.e., 

unperturbed) encounter geometry (black trajectory) 
and example of capture trajectory (red trajectory). 

Despite the fact that the unperturbed 2009 BD will 
enter the region within a π/8 angular distance from 
the Sun-Earth line, the asteroid will remain relatively 
far from the Earth while crossing this region, and 
thus, it is expected that the Earth’s disturbance will be 
small. This is more clearly shown in the encounter 
maps for semi-major axis, eccentricity and argument 
of the periapsis shown in Figure 13, 14 and 15 
respectively, where a vertical and horizontal dotted 
line have been added to represent the unperturbed 
target α angle and the consequences of that approach. 

 
Figure 13. Semi-major axis encounter map as a 

function of the angular distance α for 2009 BD (1.06 AU, 
0.05, 1.26 deg). 

 
Figure 14. Inclination encounter map as a function of 

the angular distance α for 2009 BD (1.06 AU, 0.05, 
1.26 deg). 

 
Figure 15. Argument of the periapsis ω encounter 

map as a function of the angular distance α for 2009 BD 
(1.06 AU, 0.05, 1.26 deg). 

Once the encounter map of an asteroid is 
computed, the filter described in Section IV.I can be 
used to rapidly assess the convenience of a resonant 
encounter with the Earth. Figure 16 summarizes the 
Δv gain for an Earth-Earth sequence, as oppose to the 
direct capture of asteroid 2009 BD during the first 
Earth encounter, whose optimized solution required 
490 m/s [3]. 
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Figure 16. Dv gain by means of Encounter Map 

prediction. 

In order to compute Figure 16, an impulsive 
manoeuvre is assumed at the periapsis closest to the 
section –π/8, but outside the encounter region. Bear in 
mind that asteroids with semi-major axis larger than 
1 AU will, in average, move clockwise relatively to 
the Earth.  

This periapsis burn is intended to adjust the period 
of the asteroid in order to modify the angle α as 
required for the following encounter. Hence, if we 
require a shift the encounter angle by a Δα, the 
required change in semimajor axis Δa is estimated as: 

 
1

3 p

a
n a

µ α

π

− ⋅ ∆
∆ =   (25) 

where np is the number of complete orbits from the 
manoeuvre to the first periapsis passage within the 
encounter region.  

The cost of the manoeuvre to provide a change in 
semi-major axis as in Eq. (25) can be estimated using 
the Gauss’ form of the variational equations: 

 
22 p

a
v

a vα

µ ∆
∆ =    (26) 

where µ


 is the Sun’s gravitational constant and vp 
the velocity at the periapsis and Δvα is assumed in the 
tangential direction. Note that as a consequence of 
this phasing manoeuvre, the eccentricity is also 
changed by: 

 
( )2 1

p

e
e v

v α

+
∆ = ∆   (27) 

Hence, given a targeted encounter (i.e., defined by 
α), the Keplerian elements of the asteroid can be 
updated by means of Eq. (25), (27) and the encounter 
map previously computed. After that, the filter 
described in Section IV.I is used to come up with the 

lowest Δv estimate to target one of the 500 hyperbolic 
invariant manifold trajectories stored for the same 
Jacobi constant and type of LPO as the trajectory we 
want to improve, as computed in [3]. The result is 
then compared, not with the optimized trajectory, but 
also with the filter estimate for a capture to the same 
Jacobi constant and type of LPO as on the optimized 
trajectory. The latter is done to ensure a fair 
comparison.  

 
VI. EARTH RESONANT CAPTURE 

In this final section, the most promising asteroids 
found in [3] are reviewed in search of opportunities 
for quasi-ballistic capture by means of multiple 
resonant encounters with the Earth. 

The list of promising asteroid targets for retrieval 
was built by 24 different objects whose filter estimate 
for capture in one of the LPO stable manifold sets 
was lower than 1 km/s. This list was built by 7 Amor 
asteroids, 12 Apollo and 5 Atens. Since the Keplerian 
map approach assumes that the encounter occurs 
outside the sphere of influence of the Earth, only 
Amor objects could be considered now for analysis. 
Alternatives to circumvent this issue and extend the 
utilization of this tool to other types of orbits are 
discussed though in Section VII, which is left for 
future work.  

Table 2 shows the results of the search for 
sequences of beneficial resonant encounter with the 
Earth. This search was carried out by a global 
optimization carried out with Matlab’s ga function 
(genetic algorithm). The search was aimed to find the 
optimal sequence of α angles that allowed for an 
optimal change in Keplerian elements, and thus 
minimizing the final capture maneouvre for insertion 
into the stable manifold trajectory that delivers the 
asteroid into a periodic bound orbit. The sequences of 
Earth encounter were estimated by means of the 
encounter map calculated with the orbital elements of 
the asteroid previous to the first encounter.  

Two asteroids seem to be particularly suited to 
benefit from multiple Earth encounters, 2011 MD and 
2009 BD. These two objects achieves important 
reductions of the nominal Δv costs, for capture at the 
first encounter, around 7 and 3 –fold reductions 
respectively are achieved. On the other hand, other 
asteroids seem to be particularly inmune to further 
three body-benefits. All of these trajectories require 
the increase of the transfer time of flight by several 
decades, which is a direct consequence of the synodic 
period, thus the time bewteen consecutive encounters.  

 

IAC-12.C1.5.13x14763                                                                                                                                                                  Page 10 of 13 



  Capture at First Encounter Resonant Capture  
(Optimal Δv Gain/ToF) 

Resonant Capture  
(Maximum Δv reduction) 

 Target 
LPO 

Optimal 
Traj. 
[m/s] 

Filter 
Estimate 

[m/s] 

ToF 
[Years] 

 

Sequence Δv Gain 
[m/s] 

ToF 
[Years] 

Sequence Δv Gain 
[m/s] 

ToF 
[Years] 

1. 2011BL45 2V 400 387 6,3 EE -38 27,5 EEEEE -68 97,4 
2. 2012LA 2V 544 436 4,4 EE -26 23,0 EEEEE -54 82,3 
3. 2011MD 2V 422 421 4,3 EE -95 19,2 EEEEE -359 81,7 
4. 2011MD 2Hs 986 886 4,4 EEE -46 35,9 EEEEE -47 70,8 
5. 2011MD 2Hn 976 905 5,5 EEE -23 32,1 EEEE -32 45,0 
6. 2009BD 2V 493 468 4,6 EE -130 19,8 EEEE -295 59,8 
7. 2009BD 2P 687 608 2,5 EE 0 14,0 EE 0 14,0 
8. 2009BD 2Hs 399 411 4,6 EE -45 18,9 EEE -54 32,2 
9. 2009BD 2Hn 714 641 4 EE -33 17,4 EEEEE -44 52,4 

10. 2008HU4 2V 772 758 3,2 EE -79 12,0 EEE -138 21,9 
11. 2008HU4 2P 728 717 5,8 EEE -83 24,3 EEEEE -90 41,3 
12. 2008HU4 2Hs 663 575 4,7 EE -58 13,4 EEEE -107 34,0 
13. 2008HU4 2Hn 892 644 2,9 EE -39 11,7 EEE -60 21,5 
14. 1993HD 2P 712 689 4,2 EEE 0 17,0 EEE 0 17,0 
15. 1993HD 2Hs 881 836 1,7 EE -8 9,5 EEEEE -15 32,5 
16. 1993HD 2Hn 851 835 3,5 EE -8 11,4 EEEE -11 24,4 

Table 2: Capture trajectories and mass estimates for the best trajectory of each type. 
 

 
VII. CONCLUSIONS AND FUTURE WORK 

The work presented in this paper consists of two 
distinct parts: The first one is the on-going work on 
the asteroid retrieval problem, the second part is the 
development of a tool to describe semi-analytically 
the motion of a test particle (i.e., spacecraft or 
asteroid) in the CR3BP. These two parts will be 
discussed separately in this final section.  
 VII.I Keplerian and encounter map approximation 

This paper has discussed the early development of 
a semi-analytical general perturbation method to 
describe the motion of an object in the CR3BP. This 
method is based on a description of the CR3BP 
Hamiltonian with a series expansion in µ retaining 
only the first order perturbation.  

The tool has been validated by constantly 
comparing the Keplerian and encounter map 
estimates with the equivalent motion propagated with 
the CR3BP. By doing so, it can be concluded that the 
estimates given by the Keplerian map are accurate for 
types of orbits that remain relatively clear of the 
sphere of influence of the Earth and, thus, can be used 
for preliminary trajectory design in those cases. The 
fact that the tool uses classical orbital elements is also 
of some advantage for that purpose. 

The tool has been applied here to Amor type of 
asteroids, which remain relatively far from the sphere 
of influence of the Earth. However, it can also be 
successfully applied to other types of orbits, systems 
(e.g., Earth-Moon, Jupiter-Moons) and mission 
requirements (e.g., End-of-life, or disposal 
trajectories) [8]. The out-of-plane extension proposed 
here, with respect previous developments [4], has 
represented a significant advantage, since small 
variation of inclination yield large Δv gains.    

However, the integrations are currently 
implemented as numerical quadratures and no 
substantial time gain is achieved by using this tool. 
Nevertheless, future work should speed up the 
process by analytically solving the integrations, or 
parts of them, and thus gaining some competitive 
advantage over the option of performing a numerical 
propagation in the CR3BP.    
VII.II Easily Retrievable Objects 

The paper has explored the possibility of using 
multiple resonant encounters with the Earth on a 
reduced group of six asteroids (corresponding to 
Amors). The best retrieval options for capture at the 
first encounter required more than 400 m/s in order to 
place these objects in trajectories that lead to bound 
motion near the Earth. By carrying out a search using 
the algorithms developed in this paper several 
combinations of Earth encounters have been found 
that substantially reduce the capture requirements (see  
Table 2).    

Clearly, the drawback of these trajectories is that 
the time required to fly them is on the order of a few 
decades. However, in some instances, these 
trajectories may be necessary to allow space 
technology the capability to haul large masses. For 
example, asteroids 2009 BD and 2011 MD would not 
be able to be captured at the first Earth encounter due 
to the large Δv requirement, their expected mass 
(>106kg) and current propulsion technology [9], while 
at the current propulsion capability these objects 
could be captured with the encounter sequences found 
here. Lastly, it is also of interest to note that some 
asteroids seem to obtain little advantage from 
multiple Earth encounters, such as the case of 1993 
HD.  
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APPENDIX 
Semi-major axis kick 
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