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We consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power
budget, target BER, andmaximum permissible QAMmodulation order. Compared to the standard GPA, which is optimal in terms
of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only.
These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate
how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case
of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of
residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes,
while greatly reducing complexity, perform best in two separate and distinct SNR regions.

1. Introduction

In OFDM, multiplexing over multiple-input multiple-output
(MIMO) channels, or general transmultiplexing techniques,
a number of independent subcarriers or subchannels arise for
transmission,which differ in SNR. Maximising the channel
capacity or data throughput under the constraint of limited
transmit power leads to the well-known and simple water-
filling algorithm [1]. Water-filling is generally followed by
bit loading, where 𝑏

𝑖
bits are allocated to the QAM symbols

transmitted over the 𝑖th subchannel. To achieve an identical
target bit error ratio (BER) across all subchannels leads to
𝑏
𝑖
∈ R, which needs to be rounded off to the nearest integer

𝑏
(r)
𝑖

= ⌊𝑏
𝑖
⌋, thus lowering the overall throughput. Further-

more, unboundedmodulation orders 𝑏(r)
𝑖

→ ∞ in the case of
infinite SNR are required to efficiently utilise the transmit
power but are practically unfeasible.

In order to optimise capacity and throughput, a wide
range of methods has been suggested in the literature. Pure
water-filling-based solutions have been reported in [2–4],

leading to some of the above stated problems. Reallocation
of the excess power when realising the target BER given
𝑏
(r)
𝑖

∈ Z and the SNR in the 𝑖th subchannel has led to a
rate-optimal algorithm known as the greedy algorithm [5,
6], of which a number of different variations have emerged
constraining either the average BER [7] or the total power
[8]. For a good review of greedy algorithms, please refer
to [9]. Owing to the iterative nature of these algorithms to
optimally achieve their respective objective functions, the
computational complexity dramatically increases with the
number of subchannels. The situation becomes practically
prohibitive for multicarrier systems (such as OFDM) as the
number of subcarriers is usually high and can reach, for
example, up to 2

13 for digital video broadcasting (DVB)
for terrestrial (DVB-T) or handheld (DVB-H) applications
[10–12].

While achieving rate optimality, the family of greedy
algorithms is also known to be greedy in terms of computing
requirements. Therefore, reduced complexity schemes are
either water-filling-based only [2] or aim at simplifications
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[13]. In this paper we propose a novel suboptimal greedy
algorithm, whereby the power reallocation is performed in
subsets of the subchannels. We show that with simple overall
power redistribution between groups, two different methods
in terms of approximate overall optimisation can be pro-
posed. These suboptimal schemes, while greatly simplifying
complexity, hardly sacrifice any performance compared to
the full GPA algorithm, provided that the proper algorithmic
version is selected for specific SNR regions.

Different from our previous work in [14], the interest
of this paper is focusing on the simplification achievements
of our proposed power allocation scheme compared to the
standard greedy approach by further elaborating on the
complexity analysis of both algorithms. Moreover, results
for multicarrier systems are included which highlight the
significant reduction in complexity gained by our approach.
The rest of the paper is organised as follows. In Section 2,
the standard greedy approach is first reviewed including
the initialisation step of uniform power allocation (UPA).
Our proposed reduced-complexity schemes are presented in
Section 3, where computational complexity is analysed and
evaluated in Section 4. Simulation results are discussed in
Section 5 and conclusions are drawn in Section 6.

2. The Greedy Approach

In this section, the greedy approach for the power allocation
problem tomaximise the transmission rate over a multichan-
nel system is introduced.

2.1. Constrained Optimisation Problem. We are interested
in the problem of maximising the transmission rate over
a multichannel system. This problem could arise from any
transmultiplexed communications system, such as narrow-
band MIMO systems decoupled by an SVD for precoding
and equalisation [15]. Given an𝑁

𝑅
×𝑁
𝑇
narrowbandMIMO

system with 𝑁
𝑅

receive and 𝑁
𝑇

transmit antennas, the
channel can be characterised by a matrix H ∈ C𝑁𝑅×𝑁𝑇 of
complex coefficients ℎ

𝑖𝑗
which describe the gains between

the 𝑗th transmit to the 𝑖th receive antennas. The singular
value decomposition (SVD) in this case can be used to
decouple the system H into 𝑁 = rank(H) ≤ min(𝑁

𝑇
, 𝑁
𝑅
)

subchannels whose gains are equal to the singular values
𝜎
𝑖
, 𝑖 = 1, . . . , 𝑁, that are ordered such that 𝜎

𝑖
≥ 𝜎
𝑖+1

for all 𝑖.
This is likely to result in different SNRs for each subchannel,
and if all subchannels are allocated the same number of bits
and transmit power, the overall system performance will be
dominated by the worst subchannel with gain 𝑔

𝑁
.

Another popular multiplex system is either SISO or
MIMOOFDM.Without loss of generalisation, in the follow-
ingwe assume a SISOOFDMsystem,whereby the ISI channel
is characterised by an FIR vector h = [ℎ

0
⋅ ⋅ ⋅ ℎ
𝐿
] ∈ C𝐿+1 of

order 𝐿. If this OFDM system is based on an𝑁-point discrete
Fourier transform (DFT), then the resulting 𝑁 subcarriers
experience different gains 𝑔

𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁, that represent the

Fourier coefficients of the channel impulse response; that is,
𝑔
𝑖
= ∑
𝐿−1

𝑙=0
ℎ
𝑙
𝑒
𝑗2𝜋𝑖𝑙/𝑁. The 𝑖th subcarrier with gain 𝑔

𝑖
will be

used to transmit 𝑏
𝑖
bits per symbol.

In both cases considered previously, 𝑁 independent
subcarriers or subchannels arise, whereby in the following
we will use both terms synonymously. To optimise the
data throughput across such a system with 𝑁 independent
subchannels, in this paper we consider the maximisation of
the sum-rate

max
𝑁

∑

𝑖=1

𝑏
𝑖
, (1)

constrained by the total power budget, the target bit error
ratio (BER), and the maximum permissible QAM modula-
tion order. These constraints can be formulated as

𝑁

∑

𝑖=1

𝑃
𝑖
≤ 𝑃budget,

P
𝑏,𝑖

= P
target
𝑏

, 𝑏
𝑖
≤ 𝑏

max
, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑁,

(2)

where 𝑃
𝑖
is the amount of power allocated to the 𝑖th subchan-

nel to achieve a BERP
𝑏,𝑖
and 𝑏

max is themaximumnumber of
permissible bits allocated to a subchannel. Note that the target
BERs are assumed to be equal, that is,P

𝑏,𝑖
= P

target
𝑏

in (2) for
all subchannels 𝑖 = 1, . . . , 𝑁, and therefore the subscript 𝑖will
be dropped from the BER notation, that is,P

𝑏,𝑖
= P
𝑏
.

The channel-to-noise ratio of the 𝑖th subchannel can be
defined as

CNR
𝑖
=

𝑔
2

𝑖

N
0

, (3)

whereN
0
is the total noise power at the receiver, whereas the

SNR of this subchannel is

𝛾
𝑖
= 𝑃
𝑖
× CNR

𝑖
. (4)

We consider rectangular 𝑀-QAM modulation of order
𝑀
𝑘
, 1 ≤ 𝑘 ≤ 𝐾, where 𝑀

𝐾
is the maximum QAM constel-

lation, that is, permissible by the transmission system, that is,
𝑀
𝐾

= 2
𝑏
max
. The BER of this modulation scheme is given by

[16]
P
𝑏

=

{{{{{

{{{{{

{

𝑄(√2𝛾
𝑖
) for BPSK,

1 − [1 − 2 (1 − 1/√𝑀
𝑘
) 𝑄 (√3𝛾

𝑖
/ (𝑀
𝑘
− 1))]

2

log
2
𝑀
𝑘

for 𝑀-QAM.

(5)

Assuming availability of channel state information (CSI) at
the transmitter, symbols of 𝑏

𝑘
-bits, 𝑏

𝑘
= log
2
𝑀
𝑘
can be loaded

to a subcarrier with minimum required SNR to achieve
P

target
𝑏

obtained from (5) as

𝛾
QAM
𝑘

=

{{{{{{{

{{{{{{{

{

1

2
[𝑄
−1

(P
target
𝑏

)]
2

for BPSK,

𝑀
𝑘
− 1

3

[
[

[

𝑄
−1

(

1 − √1 − P
target
𝑏

⋅ log
2
𝑀
𝑘

2 (1 − 1/√𝑀
𝑘
)

)
]
]

]

2

for 𝑀-QAM,

(6)
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Initialisation:
(1) Set power available for GPA to 𝑃

gpa
𝑎

= 𝑃
ex in (12b)

For each subchannel 𝑖 do the following:
(2) Set 𝑏gpa

𝑖
= 𝑏
𝑢

𝑖
in (10) and index 𝑘

𝑖
= 𝑘 in (9)

(3) Cal. the min required upgrade power 𝑃up
𝑖

=

𝛾
QAM
𝑘𝑖+1

− 𝛾
QAM
𝑘𝑖

CNR
𝑖

Recursion:
while 𝑃

gpa
𝑎

≥ min(𝑃up
𝑖

) and min(𝑘
𝑖
) < 𝐾, 1 ≤ 𝑖 ≤ 𝑁

(4) 𝑗 = argmin
1≤𝑖≤𝑁

(𝑃
up
𝑖

)

(5) 𝑘
𝑗
= 𝑘
𝑗
+ 1, 𝑃gpa

𝑎
= 𝑃

gpa
𝑎

− 𝑃
up
𝑗

if 𝑘
𝑗
= 1

(6) 𝑏
gpa
𝑗

= log
2
𝑀
1
, 𝑃

up
𝑗

=
𝛾
QAM
2

− 𝛾
QAM
1

CNR
𝑗

elseif 𝑘
𝑗
< 𝐾

(7) 𝑏
gpa
𝑗

= 𝑏
gpa
𝑗

+ log
2

𝑀
𝑘𝑗

𝑀
𝑘𝑗−1

, 𝑃
up
𝑗

=

𝛾
QAM
𝑘𝑗+1

− 𝛾
QAM
𝑘𝑗

CNR
𝑗

else

(8) 𝑏
gpa
𝑗

= 𝑏
gpa
𝑗

+ log
2

𝑀
𝑘𝑗

𝑀
𝑘𝑗−1

, 𝑃
up
𝑗

= +∞

end
end

Algorithm 1: Full GPA algorithm applied to the initialisation step of the UPA algorithm.

where 𝑄
−1 is the inverse of the well-known 𝑄 function

𝑄 (𝑥) =
1

√2𝜋
∫

∞

𝑥

𝑒
−𝑢
2
/2
𝑑𝑢. (7)

Based on (6), the bit loading problem is solved in two steps—
(i) a uniform power allocation (UPA) initialisation step and
(ii) the greedy algorithm step—which are both described
below.

2.2. Subchannel Grouping and UPA Algorithm. The uniform
power allocation is performed by the following steps.

(1) Calculate 𝛾
QAM
𝑘

for all 𝑀
𝑘
, 1 ≤ 𝑘 ≤ 𝐾, and P

𝑏
=

P
target
𝑏

using (6).
(2) Equally allocate 𝑃budget among all subchannels 1 ≤ 𝑖 ≤

𝑁:

𝛾
𝑖
= 𝑃
𝑖
× CNR

𝑖
=

𝑃budget

𝑁
× CNR

𝑖
. (8)

(3) Allocate subchannels according to their SNR 𝛾
𝑖
to

QAM groups G
𝑘
, 0 ≤ 𝑘 ≤ 𝐾, bounded by QAM levels

𝛾
QAM
𝑘

and 𝛾
QAM
𝑘+1

with 𝛾
QAM
0

= 0 and 𝛾
QAM
𝐾+1

= +∞ (cf.
Figure 1) such that

𝛾
𝑖
≥ 𝛾

QAM
𝑘

, 𝛾
𝑖
< 𝛾

QAM
𝑘+1

. (9)

(4) For each group G
𝑘
, load subchannels within this

group with QAM constellation 𝑀
𝑘
and compute the

group’s total allocated bits:

𝐵
𝑢

𝑘
= ∑

𝑖∈G𝑘

𝑏
𝑢

𝑖,𝑘
= ∑

𝑖∈G𝑘

log
2
𝑀
𝑘
, (10)

with 𝐵
𝑢

0
= 0. It is clear at this point and from step (3) that

subchannels are resided into QAM groups of SNR levels that
are below their actual SNRs, 𝛾

𝑖
≥ 𝛾

QAM
𝑘

, therefore leaving
some unused (excess) power:

𝑃
ex
𝑘

= ∑

𝑖∈G𝑘

𝛾
𝑖
− 𝛾

QAM
𝑘

CNR
𝑖

= ∑

𝑖∈G𝑘

𝑃
𝑖
−

𝛾
QAM
𝑘

CNR
𝑖

= 𝑁
𝑘

𝑃budget

𝑁
− ∑

𝑖∈G𝑘

𝛾
QAM
𝑘

CNR
𝑖

,

(11)

where 𝑁
𝑘
, 1 ≤ 𝑘 ≤ 𝐾, is the number of subchannels that

occupies the QAM group G
𝑘
.

(5) Overall, the allocated bits and the used power for the
uniform power allocation scheme are therefore

𝐵
𝑢
=

𝐾

∑

𝑘=1

𝐵
𝑢

𝑘
, (12a)

𝑃
used
𝑢

= 𝑃budget − 𝑃
ex
, (12b)

where 𝑃
ex

= ∑
𝐾

𝑘=0
𝑃
ex
𝑘

is the total excess power that remains
unallocated under the UPA scheme.

2.3. Full Greedy Power Allocation (GPA) Algorithm. The
second step towards the GPA is described next. Based on
the initialisation step described in the UPA,the full GPA
algorithm [8] performs an iterative redistribution of the
unallocated power of the UPA algorithm 𝑃

ex by applying the
algorithmic steps detailed in Algorithm 1. At each iteration,
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Figure 1: Subchannel grouping into 𝐾 + 1 QAM groups based on their SNRs in (8) and step (3) of Section 2.2 for (a) a multicarrier system
and (b) an ordered multicarrier system or a SVD-based MIMO system.

this algorithm tries to increase bit loading by upgrading
(to the next higher QAM level) the subchannel with the
least power requirements through an exhaustive search by
performing step (4) in Algorithm 1 for all subchannels 𝑁.
When either (i) the remaining power cannot support any
further upgrades or (ii) all subchannels appear in the highest
QAM level 𝐾, the algorithm stops, resulting in the bit
allocation and power usage given by, respectively,

𝐵gpa =

𝑁

∑

𝑖=1

𝑏
gpa
𝑖

, (13a)

𝑃
used
gpa = 𝑃budget − 𝑃

gpa
𝑑

. (13b)

3. Proposed Low-Cost GPA Schemes

Given 𝐵
𝑢

𝑘
as defined in (10) and 𝑃

ex
𝑘

in (11), three low-cost
greedy algorithms are proposed to efficiently utilise the total
excess power of the uniform power allocation in (12b) using
theQAMgrouping concept.More precisely, GPA is separately
accomplished for each QAM group G

𝑘
aiming to increase

the total bit allocation to this group and therefore the overall
allocated bits. Based on the way of utilising 𝑃

ex
𝑘
, we propose

three different algorithms, which below are referred to as
(i) grouped GPA (g-GPA), (ii) power moving-up GPA (Mu-
GPA), and (iii) power moving-down GPA (Md-GPA).

3.1. Grouped GPA (g-GPA) Algorithm. As discussed in
Section 2, optimum discrete bit loading constrained by total
power and maximum permissible QAM order can be per-
formed by theGPA approach.However, the direct application
of the GPA algorithm is computationally very costly due to
the fact that at each iteration an exhaustive sorting of all
subchannels 𝑁 is required as evident from Algorithm 1.

A simplification of the GPA algorithm can be achieved
if subchannels are first divided into QAM groups G

𝑘
, 0 ≤

𝑘 ≤ 𝐾, according to their SNRs as shown in Figure 1(a).
After subchannel ordering or due to the implicit ordering
of the singular values in case of SVD-based decoupling of
MIMO systems, the grouping as shown in Figure 1(b) arises.
The GPA algorithm is therefore independently applied to
each group G

𝑘
, trying to allocate as much of the excess

power 𝑃
ex
𝑘

within this QAM group as possible. This excess
power is iteratively allocated to subchannels within this group
according to the greedy concept with the aim of upgrading as
many subchannels as possible to the next QAM level.

The pseudocode of the g-GPA algorithm for the 𝑘thQAM
group 𝐺

𝑘
is given in Algorithm 2.

Note that, different from the standard GPA, this algo-
rithm permits upgrades to the next QAM level only for a
given QAM group, with 𝑃

up
𝑗

set to +∞ in steps (5) and (6) in
Algorithm 2. Therefore, some left-over (LO) power 𝑃

LO
𝑘

may
remain for eachQAMgroupG

𝑘
, resulting in a total LO power

𝑃
LO
g =

𝐾−1

∑

𝑘=0

𝑃
LO
𝑘

+ 𝑃
ex
𝐾

. (14)

Intuitively, for the overall performance of the g-GPA algo-
rithm, the algorithm in Algorithm 2 has to be executed 𝐾

times, once for each QAM group from 𝐺
0
to 𝐺
𝐾−1

, resulting
in the system achieving the following bit allocation and power
usage, respectively:

𝐵g =

𝐾−1

∑

𝑘=0

𝐵
g
𝑘
+ 𝐵
𝑢

𝐾
, (15a)

𝑃
used
g = 𝑃budget − 𝑃

LO
g . (15b)

3.2. Power Moving-Up GPA (Mu-GPA) Algorithm. The g-
GPA algorithm results in unused power 𝑃

LO
𝑘

for each QAM
group.This residual power can be exploited in a second stage,
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(1) ∀𝑖 ∈ G
𝑘
, calculate the upgrade power 𝑃up

𝑖
= (𝛾

QAM
𝑘+1

− 𝛾
QAM
𝑘

) /CNR
𝑖

(2) Initiate 𝑏
g
𝑖,𝑘

= 𝑏
𝑢

𝑖,𝑘
in (10) and 𝑃

LO
𝑘

= 𝑃
ex
𝑘
in (11)

while 𝑃
LO
𝑘

≥ min(𝑃up
𝑖

)

(3) 𝑗 = argmin
𝑖∈G𝑘

(𝑃
up
𝑖

)

(4) 𝑃
LO
𝑘

= 𝑃
LO
𝑘

− 𝑃
up
𝑗

if 𝑘 = 0

(5) 𝑏
g
𝑗,𝑘

= log
2
𝑀
1
, 𝑃up
𝑗

= +∞

else
(6) 𝑏

g
𝑗,𝑘

= 𝑏
g
𝑗,𝑘

+ log
2

𝑀
𝑘+1

𝑀
𝑘

, 𝑃up
𝑗

= +∞

end
end

(7) Evaluate 𝐵
g
𝑘
= ∑
𝑖∈𝐺𝑘

𝑏
g
𝑖,𝑘
and 𝑃

LO
𝑘

Algorithm 2: g-GPA algorithm for subchannels in the 𝑘th QAM group 𝐺
𝑘
.

Yes

End

No

For all QAM groups:

Apply g-GPA algorithm for
subchannels in group G0 with Pex

0

Apply g-GPA algorithm for

Is k = K

Compute final left-over power and overall
allocated bits using (16) and (17a), respectively

Gk, 0 ≤ k ≤ K

set b
i,k

= bMu
i,k

to obtain PLO
0 and B

Mu-g Mu-g
0 = ∑i∈G0

bi,0

Set k = 1

subchannels in group Gk with PLO
k−1 + Pex

k

to obtain PLO
k and B

k
= ∑i∈G𝑘

b
i,k

Update k = k + 1

Mu-g Mu-g

Mu-g

Figure 2: Flowchart of the Mu-GPA algorithm.

whereby we first proposed to move power upwards starting
from the lowestQAMgroup, as outlined in Figure 3(a) and by
the flowchart in Figure 2.This modifies the g-GPA algorithm
by considering the LO power 𝑃LO

0
of the QAM group G

0
after

running the g-GPA algorithm on that group and assigns this

power for redistribution to group G
1
. Any LO power after

running g-GPA on G
1
is then passed further upwards to G

2

and so forth. At the 𝑘th algorithmic iteration, the Mu-GPA
algorithm is working with G

𝑘
and tries to allocate the sum

of the excess power missed by the UPA algorithm of that
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Left-over power
transfer direction

g-GPA
algorithm

g-GPA
algorithm

g-GPA
algorithm

Final left-over
power

⋱

Group G0

Group G1

+

+

Pex
K

PLO
K−1Pex

2

PLO
1

Pex
1

PLO
0
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Group GK−1

+

(a)

Pex
K−2
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K−1

Pex
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⋱

+

+

+

(b)

Figure 3: Algorithmic arrangements for (a) Mu-GPA algorithm and (b) Md-GPA algorithm with final left-over powers given, respectively,
in (16) and (18).

group as well as the LO power of the application of the g-GPA
algorithm to the previous group G

𝑘−1
, that is, 𝑃ex

𝑘
+ 𝑃

LO
𝑘−1

(cf.
Figure 3(a)). Finally, the LO power resulting from the QAM
group G

𝐾−1
is added to the excess power of the Kth QAM

group 𝑃
ex
𝐾

to end up with a final LO power

𝑃
LO
Mu-g = 𝑃

LO
𝐾−1

+ 𝑃
ex
𝐾

. (16)

The overall number of allocated bits and the amount of used
power for Mu-GPA are, respectively,

𝐵Mu-g =

𝐾−1

∑

𝑘=0

𝐵
Mu-g
𝑘

+ 𝐵
𝑢

𝐾
, (17a)

𝑃
used
Mu-g = 𝑃budget − 𝑃

LO
Mu-g. (17b)

3.3. Power Moving-Down GPA (Md-GPA) Algorithm. A sec-
ond algorithm is proposed to exploit the residual power 𝑃

LO
𝑘

of each QAM group but in a reverse direction compared
to the Mu-GPA algorithm of Section 3.2. Starting from the
highest-indexed QAM group G

𝑘−1
downwards to the lowest-

indexed QAM group G
0
, the Md-GPA algorithm, similar to

the Mu-GPA algorithm, tries to improve the bit allocation
by efficiently utilising 𝑃

LO
𝑘

, 𝐾 − 1 ≥ 𝑘 ≥ 1, plus the excess
power 𝑃

ex
𝐾
. These procedures are illustrated in Figure 3(b)

which show the direction of the LO power flow. Proceeding
downwards, at the 𝑘th stage the Md-GPA scheme applies the
g-GPA algorithm for the available power that comprises both
the excess powermissed by theUPAalgorithmof the previous
QAM group (G

𝑘+1
in this case) and the LO power of the

previous stage, that is,𝑃ex
𝑘+1

+𝑃
LO
𝑘+1

.Therefore, the excess power
of the QAM group under consideration along with its LO
power is not utilised within this group but is transferred to
the next working group.This will finally result in a LO power
of

𝑃
LO
Md-g = 𝑃

LO
0

+ 𝑃
ex
0

. (18)

The overall number of allocated bits and the amount of used
power for Md-GPA are, respectively,

𝐵Md-g =

𝐾−1

∑

𝑘=0

𝐵
Md-g
𝑘

+ 𝐵
𝑢

𝐾
, (19)

𝑃
used
Md-g = 𝑃budget − 𝑃

LO
Md-g. (20)

4. Computational Complexity Evaluation

In order to address the significance of the proposed power
loading schemes in terms of simplicity compared to the full
GPA algorithm, the computational complexity of both g-
GPA and GPA algorithms is evaluated. Instead of jointly
applying the GPA algorithm across all subchannels which
consequently requires high system complexity especially for
large numbers of subchannels, the g-GPA algorithm only
addresses a subset of subchannels within a specific QAM
group at a time. Beyond the effect of the QAM grouping
concept, a further reduction in complexity can be achieved
if subchannels are ordered with respect to their gains CNR

𝑖
,

as found with SVD-based decoupling of MIMO systems. In
this case, search step (3) in Algorithm 2 can be replaced by a
simple incremental indexing.

Referring to Algorithms 1 and 2, the computational com-
plexities of both GPA and g-GPA algorithms are summarised
in Table 1, whereby the number of operations (NoO) is
computed for each algorithm. We consider the cases where
subchannel SNRs are either ordered prior to involving g-GPA
or the ordering is left to any of the g-GPAs. Note that for
the GPA algorithm, ordering of subchannels does not led
to any improvement in complexity as search step (4) in the
while loop—which represents the bottleneck of the overall
computations—has to include all subchannels. This is due to
the fact that by relaxing the grouping concept it is possible to
find subchannels in lower QAM levels that need less power
to upgrade than others in higher QAM levels, whereas in the
case of the g-GPA algorithm, initial sorting of subchannels
according to their CNR

𝑖
is sufficient to avoid the repetitive

search/sorting step (3) of Algorithm 2 as this algorithm is
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Table 1: Computational analysis for both GPA and g-GPA algorithms.

Algorithm Number of operations (NoO)
GPA 𝐿

1
(2𝑁 + 7) + 4𝑁 + 1

g-GPA (no order)
𝐾−1

∑
𝑘=0

𝐿
𝑘

2
(2𝑁
𝑘
+ 4) + 2𝑁

𝑘
+ 2 ≈ 𝐿

2
(2

𝑁

𝐾
+ 4) + 2

𝑁

𝐾
+ 2

g-GPA (order)
𝐾−1

∑
𝑘=0

𝐿
𝑘

2
(𝑁
𝑘
+ 5) + 2𝑁

𝑘
+ 2 ≈ 𝐿

2
(
𝑁

𝐾
+ 5) + 2

𝑁

𝐾
+ 2

independently applied to subchannels that are bounded by
one QAM level only.

The quantities 𝐿
1
and 𝐿

𝑘

2
in Table 1 denote, respectively,

the averaged number of iterations of the while loops for
the GPA algorithm in Algorithm 1 and the g-GPA algorithm
in Algorithm 2. Note that it is expected that 𝐿

1
≥ 𝐿
2

=

∑
𝐾−1

𝑘=0
𝐿
𝑘

2
as 𝑃

ex in (11) collected from all subchannels has to
be redistributed by the GPA algorithm, while 𝑃

ex
𝑘

collected
from only subchannels 𝑖 ∈ G

𝑘
is considered by the g-GPA

algorithm.
Obviously, 𝑁

𝑘
in (11) cannot be easily quantified as

it depends on both the operating SNR and CNR
𝑖
, which

for Rayleigh channels is a chi-squared distributed random
variable. Therefore, the complexity of g-GPA is evaluated
in a heuristic fashion. In the worst case and by assuming
that subchannels are uniformly distributed across all QAM
groups, that is, 𝑁

𝑘
= 𝑁/𝐾, the complexity of the g-GPA

algorithm can be approximated as given in Table 1 which is
lower than its GPA counterpart.

5. Simulation Results and Discussion

Sections 3.2 and 3.3 have shown that both Mu-GPA and Md-
GPA algorithms work very similarly in utilising the power
𝑃
LO
𝑘

that remains unused after applying the g-GPA algorithm
to all groups 𝑘, 0 ≤ 𝑘 ≤ 𝐾 − 1. The two algorithms
differ in the direction in which 𝑃

LO
𝑘

is transferred. Below
we compare by simulations the bit allocation performance
of the two algorithms with the UPA, GPA, and g-GPA
approaches. Two sets of simulations are conducted to explore
the achieved data throughput of the considered algorithms
for the case of narrowband MIMO and OFDM-multicarrier
systems, whereby the latter is characterised by a much higher
number of subchannels.

5.1. Narrowband MIMO Case. The proposed loading
schemes are first tested on a 4 × 4 narrowband MIMO
system to investigate bit loading performance. The entries of
the channel matrix H are drawn from a complex Gaussian
distribution with zero mean and unit variance; that is,
ℎ
𝑖𝑗

∈ CN(0, 1). The subchannels are obtained by means
of an SVD, which provides optimal joint linear precoding
and equalisation in a number of senses [15] and yields
subchannel gains that are equivalent to the 4 singular values
of H. Results presented below refer to ensemble averages
across 10

4 different channel realisations for a target BER
of Ptarget
𝑏

= 10
−3 and various levels of SNRs using QAM

modulation schemes 𝑀
𝑘
= 2
𝑘
, 𝑘 = 1 ⋅ ⋅ ⋅ 𝐾, with 𝐾 = 6 being
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Figure 4: Overall throughput for a 4×4MIMO systemwith a target
BER ofPtarget

𝑏
= 10
−3.

the maximum permissible QAM level with constellation size
𝑀
𝐾

= 64, which is equivalent to encoding 6 bits per data
symbol.

The total system throughput is examined and shown in
Figure 4 for all proposed algorithms in addition to both UPA
and standard GPA algorithms. It is evident that UPA repre-
sents an inefficient way of bit loading since the performance
is approximately 2 to 5 dB below other algorithms when
operating under moderate SNRs between 10 and 30 dB, and
provides approximately only half the throughput in the SNR
region between 5 and 10 dB.

Of the proposed low-cost greedy algorithms, both Mu-
GPAandMd-GPAalgorithms outperform the g-GPAwithout
the refinement stage to allocate residual power across QAM
groups. Interestingly, Mu-GPA performs better at low SNR,
while Md-GPA performs better at higher SNRs. This can
be attributed to the fact that, for low-to-medium SNRs, 𝑃ex

𝐾

(which is missed by the Mu-GPA) will be relatively low
and can be allocated without violating the constraint on the
maximum QAM level 𝑀

𝐾
. In contrast, 𝑃ex

0
, which is missed

by the Md-GPA, is most likely to be high as evident from
(11) and Figure 1. For medium-to-high SNRs, 𝑃ex

𝐾
> 𝑃

ex
0

can
be expected to be high, and thus Md-GPA is likely to be
advantageous in its bit allocation, as themaximumQAMlevel
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Figure 5: Power used by the considered algorithms for a 4×4MIMO
system to achieve their respective throughput in Figure 4.
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Figure 6: Overall throughput for a 32-subcarrier system with a
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𝑏
= 10
−3.

constraint is beginning to be felt and𝑃
ex
𝐾
is fully utilised by the

Md-GPA algorithm.
Finally, for very high SNRs most subchannels will appear

in the highest QAM group G
𝐾

as their SNRs, 𝛾
𝑖
in (8),

exceed the highest QAM level 𝛾QAM
𝐾

in (6). As a result, the
overall system throughput of all different algorithms reaches
its expected maximum of 4 × 𝑏

max bits/symbol.
The data throughput performance of the various algo-

rithms can also be confirmed when considering the power
utilisation. Figure 5 shows the total transmit power budget
and the levels of power allocation that are reached by the
different algorithms. For Md-GPA and Mu-GPA it can be
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Figure 7: Power used by the considered algorithms for a 32-
subcarrier system to achieve their respective throughput in Figure 6.

noted that, within their respective superiority regions, both
are very close to the performance of the standard GPA which
demonstrates the efficient utilisation of the LO power missed
by the g-GPA algorithm. Nevertheless, at high SNR, both g-
GPA andMu-GPA algorithms behave like the UPA algorithm
due to the increase of 𝑃ex

𝐾
, which is missed by both of them

and therefore deteriorates their performances. Note that the
minimum theoretical transmit power that according to (6) is
required to load all subchannels with 𝑏

max averaged over all
10
4 channel realisations corresponds to an approximate SNR

of 38.17 dB as shown in Figure 5.

5.2. OFDM-Multicarrier Case. Another simulation set is con-
ducted to examine the performance of our proposed schemes
for an OFDM-multicarrier system with a significantly higher
number of subchannels as considered in Section 5.1. Here
we assume a SISO OFDM system, whereby the ISI channel
is characterised by an impulse response vector h of order
𝐿 = 6 with entries drawn from an independent complex
Gaussian process with zero mean and unit variance. Results
are conducted for a 32-subcarrier system averaged over 10

4

channel realisations for a target BER of Ptarget
𝑏

= 10
−3 and

varying SNR using the same QAMmodulation schemes as in
Section 5.1.

The total system throughput is shown in Figure 6 for all
proposed algorithms in addition to both UPA and standard
GPA algorithms. It is clearly shown that both Mu-GPA
and Md-GPA algorithms perform very close to the GPA
algorithm (with throughput loss ≤ 4 bits) within their SNR
favourable regions, which swap approximately at SNR =

25.82 dB. Figure 7 again shows the power usage of all algo-
rithms that is required to reach their respective throughput
in Figure 6. Compared to the optimum GPA, the Md-GPA
algorithm demonstrates very similar power utilisation with
some inferior performance due tomissing to allocate the final
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Table 2: Simulation results for the parametric analysis of the GPA and g-GPA algorithms given in Table 1 for a 1024-subcarrier system and
different SNR values.

Algorithm: GPA
SNR 15 dB 25 dB 35 dB
𝐿
1

112.5 600.6 621.2
NoO × 10

3 235.4 1,238.3 1,280.6
Algorithm: g-GPA

QAM groups 𝑁
𝑘

𝐿
𝑘

2
𝑁
𝑘

𝐿
𝑘

2
𝑁
𝑘

𝐿
𝑘

2

G0 1,024 103.2 946.8 425.1 234.7 140.6
G1 0 0 71.5 23.1 178.2 89.6
G2 0 0 5.7 0.89 293.0 140.2
G3 0 0 0 0 229.5 96.7
G4 0 0 0 0 80.9 27.0
G5 0 0 0 0 7.7 1.55
NoO × 10

3 (no order) 213.8 812.2 232.8
NoO × 10

3 (order) 108.3 408.5 118.9
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Figure 8: Average computation time comparison of the g-GPA and the GPA algorithms forPtarget
b = 10

−3 and varying 𝑁-subcarrier system
at different SNR applications for (a) 15 dB SNR and (b) 35 dB SNR.

LO power in (18). At higher SNRs, both Mu-GPA and g-GPA
algorithms converge to the power usage performance of the
UPA algorithm as 𝑃ex

𝐾
dominates other 𝑃ex

𝑘
, 0 ≤ 𝑘 ≤ K− 1, and

therefore only theMd-GPA algorithm is advantageous in this
region. The minimum theoretical transmit power required
to load all subcarriers with 𝑏

max in this case is shown to be
equivalent to an approximate SNR of 41.61 dB.

5.3. Computational Complexity Results. In order to evalu-
ate the computational complexity of the proposed scheme

compared to the standard GPA algorithm, the number of
algorithmic operations presented in the complexity analysis
in Section 4 is tested and compared for both g-GPA and GPA
algorithms using a 1024-subcarrier system. Table 2 gives the
simulation results of the number of operations—averaged
over 104 channel instances—for both “no order” and “order”
cases of the g-GPAalgorithmalongwith theGPAalgorithmat
three different values of SNR of 15 dB, 25 dB, and 35 dB. Note
that 𝐿

2
= ∑
𝐾−1

𝑘=0
𝐿
𝑘

2
is less than 𝐿

1
for all SNR values which

validates the complexity analysis of Section 4. Furthermore,
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a reduction of almost half the number of operations can
be gained by ordering subchannels of the g-GPA algorithm,
which results in an overall reduction factor compared to the
full GPA algorithm of approximately 2, 3, and an order of
magnitude for the considered SNR values, respectively (cf.
Table 2).

The complexity analysis can also be evaluated by inves-
tigating the computation time of both GPA and g-GPA
algorithms. Figure 8 shows the computation time against
the number of subcarriers 𝑁 for the g-GPA algorithm with
both “no order” and “order” cases compared to the GPA
algorithm. Two different SNRs values of 15 dB and 35 dB that
represent the approximate conditions of mobile and fixed
wireless communication, respectively, are considered in this
simulation. It is clear that the g-GPA algorithm has a higher
computational efficiency in particular for large values of 𝑁

and high SNRs, while the effect of subcarrier ordering is
also evident as discussed in Section 4. Assuming a close
correlation between the number of operations and their
computation time, it is noted that at 𝑁 = 1024 subcarriers
these results coincide with that of Table 2.

In a statistical fashion, Figure 9 demonstrates the cumu-
lative distribution function (CDF) of the computation time
for both algorithms at the same SNR values which reveals the
computational efficiency of the proposed g-GPA algorithm
and its modified versions of both Mu-GPA and Md-GPA.

6. Conclusions

Power allocation to achieve maximum data throughput
under constraints on the transmit power and the maximum
QAM level has been discussed. The optimum solution is
provided by the greedy power allocation (GPA) algorithm,
which operates across all subchannels but is computationally
very expensive. Therefore, in this paper suboptimal low-
complexity alternatives have been explored. The common
theme amongst the proposed algorithms is to restrict the

GPA algorithm to subsets of subchannels, which are grouped
according to the QAM levels assigned to them in the uniform
power allocation stage. In order to exploit excess (unused)
power in each subset, two algorithms were created which
carry left-over power forward into the next subset that is
optimised by a local greedy algorithm. Two different schemes
have been suggested, of which one moves the left-over
power upwards from the lowest to the highest subgroup,
where in the high SNR case a limitation by the maximum
defined QAM level can restrict the performance. A second
scheme moves the power from the highest towards the lower
subgroups, whereby at low SNR the channel quality in the
lowest subgroups may not be such that it can be lifted across
the lowest QAM level, and hence no bits may be loaded
with the excess power. However, in general both algorithms
perform very close to the GPA in their respective domains of
preferred operation, thus permitting to allocate power close
to the performance of the GPA at a much reduced cost.
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