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We consider resource allocation problems where inputs are allocated to different entities such

as activities, projects or departments. In such problems a common goal is achieving a desired

balance in the allocation over different categories of the entities. We propose a bi-criteria

framework for trading balance off against effi ciency. We define and categorize indicators based

on balance distribution and propose formulations and solution algorithms which provide insight

into the balance-effi ciency tradeoff. We illustrate our models by applying them to the data

of a portfolio selection problem faced by a science funding agency and to randomly generated

large-sized problem instances to demonstrate computational feasibility.

1 Introduction

Resource allocation (distribution) is a process by which resources (inputs) are allocated

to different entities such as activities, projects or departments [1]. The inputs are usually

allocated in a way that maximizes some output value.

A common goal in resource allocation in organizations alongside maximization of

output (effi ciency) is “balance”[1]. Balance can be sought in terms of various attributes

such as risk (high risk vs. sure bets), internal vs. outsourced work, distribution of
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resources across industries, various markets the business is in, different project types

etc. [2]. Failure to achieve a balanced portfolio is often revealed by a decision maker

(DM) who claims that there is “too much”or “too little”resource going to activities of

a particular type.

A related concept considered in many allocation decisions is equity (fairness). How-

ever, as we use the term, a “perfectly balanced distribution” is not necessarily a dis-

tribution where each category receives the same amount. We define balance as a more

general concept, of which equity might be considered as a special case. We assume that

the DM has a balance distribution based on which she evaluates the balance in a given

distribution. We refer to a distribution that has the “desired proportions”shown by the

balance distribution as a “perfectly balanced distribution”even if this distribution gives

some categories more than the others. Equity concerns can be represented as the special

case where the DM’s balance distribution gives each category an equal amount.

The contributions of the current study are as follows:

• We propose a means to handle balance concerns alongside effi ciency concerns in al-

location problems and hence provide a bi-criteria framework to think about trading

balance off against effi ciency.

• We discuss ways to measure the deviation from a distribution which the DM con-

siders as balanced and hence define and classify imbalance indicators.

• We propose formulations and algorithms which provide insight to the decision mak-

ers in general resource allocation settings.

Section 2 discusses an example allocation setting. Section 3 discusses alternative ways

in which balance concerns have been handled in mathematical programming models and

provides a brief review of related works from the literature. Section 4 introduces some

imbalance indicators, which can be used to assess the degree of balance in a distribution.

We introduce these indicators as another criterion to be optimized in the classical maxi-

mize output setting and provide bi-criteria models in section 5. In section 6 we discuss a

way to solve the bi-criteria models and obtain nondominated solutions. We provide the
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results of our computational experiments on the performance of the suggested approach

in section 7. We also provide results for 3-criteria extensions of the approach as well as

a tabu search algorithm that can be used to solve large-sized problems. We conclude our

discussion in Section 8.

2 The Balance Concept

Consider a setting where a DM is faced with m R&D projects and s/he will decide which

ones to initiate given an available budget, B, which typically is not suffi cient to initiate

all projects. Each project i incurs a cost (input) ci and returns an output value bi.

Suppose that it is possible to categorize the projects into n categories (e.g. based on the

technological area or based on the department they are proposed by) and each project

belongs to one (and only one) of these categories.

Each feasible portfolio corresponds to two portfolio-related distributions: a distrib-

ution of the budget B to different project categories and a distribution that shows the

contribution of each category in terms of the output. Suppose that the DM wants to

ensure balance in one or both of these distributions as well as having a high total output

from the selected portfolio.

This is an example of an allocation problem in which the DM has concerns about

ensuring balance. In this study we provide a general framework that can be used for

many allocation problems. To have a structured discussion, we will illustrate the general

idea using this R&D project selection example and discuss possible generalizations in the

conclusion.

We distinguish the cases based on the space balance is sought, i.e. based on whether

balance is sought in the input distribution or the output distribution. Which balance

concept is more appropriate depends on the nature of the problem. For example in

healthcare, the policy maker may want a balanced input allocation on the grounds that

people should be responsible for their own health and the policy makers can only be

responsible for providing them with a balanced allocation of inputs. On the other hand,
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the policy maker may prefer a balanced distribution of health (the output) on the grounds

that health policy should aim at equal health for all.

3 Literature Review on Incorporating Balance into

Models

In this section we mention some noteworthy studies that consider the balance concept

in portfolio selection and allocation decisions in an explicit way. We refer the inter-

ested reader to [3] for a more detailed discussion on balance in project portfolio selection

problems. There is also a broad range of applications in which equity concerns are incor-

porated into mathematical models, including but not limited to drug allocation [4], HIV

prevention funds allocation [5], water allocation [6], bandwidth allocation [7], workload

allocation [8], and location-allocation problems in homeland defense [9].

Effi ciency concerns are reflected to the model by maximizing the total output. From

a modelling point of view, balance concerns may be handled in two ways:

• Modifying the feasible region by introducing constraints: In this approach the an-

alyst changes the feasible region of the problem so that the feasible allocations will

ensure a certain degree of balance.

[10] considers selecting a portfolio of solar energy projects using multiattribute pref-

erence theory. As a way of ensuring a balanced portfolio, they use lower bounds on the

number (or monetary value) of the projects of a certain type that are included in a port-

folio. Similarly, [11] uses linear programming to maximize the total technical score of

funded projects on a smoking intervention study. Balance related constraints are used

to ensure geographic equity in project proposal fundings and to ensure “a spread” of

changes across different quartiles of the population with respect to smoking preference

and decline in smoking rate. [12] proposes an integer programming model for selecting

and scheduling an optimal project portfolio. The balance related constraints enforce an

upper limit on the percentage of total investment made on different project categories,
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such as high risk and long term projects. The authors illustrate their approach by solving

a small-size problem with 12 projects. [13] considers a multi-dimensional integer knap-

sack problem and introduces constraints to incorporate balance concerns into the model.

The constraints are used to apply upper and lower bounds on the fraction of the resources

allocated to different project categories. The authors, however, mostly focus on the lin-

ear programming relaxation of the integer programming formulation and hence assume

that partial resource allocation to projects is possible. [14] develops a nonlinear integer

programming model to optimize a portfolio of (possibly interdependent) product develop-

ment improvement projects over multiple periods. The projects are categorized based on

the strategic objectives that they support and balance over different objectives is ensured

by incorporating a constraint that shows the minimum number of projects from each

category. [15] discusses a multi-criteria decision analysis (MCDA) framework to allocate

fishing rights to candidates in South Africa. As part of their decision support system they

provide an integer formulation for the candidate selection problem in which balance con-

cerns are reflected using constraints. These constraints ensure that the proportion of the

number of candidates selected from a designated group exceeds a minimum desired level

for this group. [2] propose a DEA (Data Envelopment Analysis) based methodology to

construct and evaluate balanced portfolios of R&D projects with binary interactions. As

part of their proposed methodology, they compute indices of risk, effi ciency and balance

for each project. They use a maximum threshold for risk index and minimal thresholds

for effi ciency and balance indices and screen the initial list of candidate projects. Only

the ones that satisfy the requirements set by the indices are considered further. A similar

approach is used in [16] to evaluate R&D projects in different stages of their life cycle.

[17] develop a fuzzy R&D project selection model in which balance in spending be-

tween different strategic goals is enforced in constraints. These constraints specify upper

and lower bounds on the spending for each strategic goal (see also [18]).

• Modifying the objective: In this approach the analyst increases the number of

criteria of the corresponding model; turning it into a bi/multi criteria problem.

The approach we take falls into this category. We use this approach as it is possible
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to observe the trade-off between different criteria by finding different solutions to

the problem.

Modifying the objective typically relies on the use of a balance indicator, zI(x), which

assigns a value that shows the level of balance in a distribution x. Using the indicator

one can define a balance criterion along with the effi ciency criterion (zT (x)).

Note that if balance is considered over different aspects such as technology areas,

markets etc., it is possible to use a balance indicator for each aspect and hence generate a

multi criteria model. [19], [20], [21] and [22] use multiattribute models which tackle bal-

ance concerns over multiple attributes and then use Multiattribute Value/Multiattribute

Utility models to aggregate the set of attributes into a single index. One of the restric-

tions on the generality of the proposed models is the assumption that the number of

items in the subset is constant. Moreover, an additive value function may not always be

appropriate, and even when it is appropriate, determining weights may not be easy.

[23] models the concern for balance as a separate set of criteria which minimize the

deviation from the ideal allocation of manpower to different project categories and also

to different client categories. With additional criteria which are not balance related,

he formulates a multi-criteria decision making (MCDM) model for the project portfolio

selection problem. The reference point approach (see [24]) is used, which involves solving

non-linear integer programming problems subject to linear resource constraints. The

approach is used in an interactive setting. For various reasons including the technical

diffi culty due to nonlinearity, a heuristic method is used to solve the resulting optimization

problems. The same approach is also used in [25].

As it expresses balance criteria as measures of deviation from a desired allocation,

this approach is similar to the approach used to incorporate balance in this paper. We,

however, mostly focus on a bi-criteria setting and use linear (integer) models whenever

possible. The underlying reason for this choice is the ease of presentation. The ideas pro-

posed here are easily generalizable to multidimensional settings where balance is desired

over multiple attributes. Balance concern for each such attribute can be reflected as a

criterion to the model and appropriate multicriteria optimization or heuristic methods
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can be implemented to obtain solutions. The emphasis of this paper is to introduce the

idea of balance distribution based balance indicator as a way of handling balance concerns

in an explicit and tractable way.

Unlike [23], we do not assume an interactive setting; we rather present the DM with a

dispersed subset of nondominated portfolios. This is an alternative approach to the one

used in [23]; empirical research should be performed to see which one is more appropriate

in different problem environments. We provide graphical displays of the set of nondomi-

nated solutions which visualize the tradeoffbetween effi ciency and balance. These graphs

can be used as a starting point for further discussion with decision makers.

We also provide an explicit link between inequality measurement literature by making

an analogy between the perfect balance line and the perfect equality line. This will be

explained in detail in the next section. We discuss different indicators that can be used

to assess imbalance. Our solution approach allows one to incorporate different imbalance

indicators into the same model and hence observe the tradeoff between them.

4 Imbalance Indicators

In this section we propose imbalance indicators that measure how different a distribution

is from an ideally balanced distribution. The indicators rely on a balance distribution

which is provided by the DM. This balance distribution shows how the DM would allocate

a certain amount of the input/output across the categories involved. This might be for

example, the status quo or previous year’s allocation.

We will use the following terminology and notation to frame our discussion:

We refer to the entities over which the balance is sought as categories. J = {1, 2, ..., n}

is the set of the categories. The vector x ∈ Rm is used to show the decision vector

related to input allocation. Note that m is not necessarily equal to n unless we make

explicit allocation decisions to categories themselves. For example, in the project selection

problem m is the number of projects and x is the corresponding binary decision vector

and we expect n < m unless each project is considered as a different category.

7



x can be continuous or discrete and includes the decision variables which dictate the

input allocation to categories (this dictation can be indirect as in the project selection

problem: in that case, x shows the portfolio of projects, from which we can infer the

allocation to categories). Any function defined over the input allocation is a function of

the decision vector x. Let a(x) ∈ Rn be the distribution over which the balance is sought,

hence it can either show the input or the output distribution to categories.

We denote the balance distribution of either input or output by r ∈ Rn where rj is the

amount allocated to category j in the balance distribution. Which of these (input/output)

is intended will be clear from context. For notational simplicity we will normalize the

balance distribution so as to obtain balance shares (proportions) for each category. Let

us denote the balance share of category j as αj. By definition αj = rj/
∑

j∈J rj. Hence,

α ∈ Rn is the balance distribution in terms of shares.

Suppose that given α, we want to assess how balanced a distribution a(x) is. Using α,

we can obtain a target point r(x) as follows: r(x)j = αj ∗
∑

j∈J a(x)j.One can think of the

elements of r(x) ∈ Rn as target (desired) amounts for the different categories involved.

We denote the componentwise deviations of the distribution a(x) from the correspond-

ing r(x) as d(x)j ∀j ∈ J . That is, d(x)j = |a(x)j − r(x)j| =
∣∣∣a(x)j − αj ∗∑j∈J a(x)j

∣∣∣
∀j ∈ J.

Figure 4.1 visualizes componentwise deviations in a 2 dimensional environment. Note

that except r, all the terms are functions of the input allocation x. d1 and d2 are the

componentwise distances of point a to the inflated balance point.
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Figure 4.1: Distances from the balance point in 2D

It does not seem appropriate to capture balance using a distance measure from the

balance distribution itself (r). The rescaling of r, i.e. generating r(x), is necessary to

obtain an appropriate evaluation. Consider, for example, the case where r = (1, 2),

that is the DM considers (1, 2) as a balanced distribution, and we want to assess how

balanced distribution a(x) = (2, 4) is. Using just a distance measure would mislead us by

concluding that (2, 4) is not balanced (as the componentwise absolute deviations between

(1, 2) and (2, 4) are not equal to zero). However if (1, 2) is balanced, it would seem natural

to suppose that (2, 4) is also balanced. This is clearly seen when we rescale r = (1, 2)

with respect to (2, 4). We find r(x) = (1/3, 2/3)a(x) = (2, 4). Since a(x) = r(x), the

componentwise deviations are all zero hence we capture that a(x) has perfect balance.

That is why, we avoid using just a distance measure from the given balance distribution to

account for balance and instead generate a balance line based on the balance distribution.

The intuition behind our approach generalizes the perfect equality line concept used in

inequality measurement theory ([26]). The perfect equality line consists of points whose

components are equal in all dimensions, i.e, it consists of the distributions where everyone
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gets the same income. Despite being different in the total income, all points on this line

are considered to have perfect equality, i.e. zero inequality. Similarly, we derive a line

of perfect balance passing through the origin and the balance point (see Figure 4.1) and

derive our balance indicators accordingly.

We now define the four imbalance indicators as follows.

Indicator 1: The total proportional deviation from the target.

I1(x) =

∑
j∈J d(x)j∑
j∈J a(x)j

=

∑
j∈J

∣∣∣a(x)j − αj ∗∑j∈J a(x)j

∣∣∣∑
j∈J a(x)j

=
∑
j∈J
| a(x)j∑

j∈J a(x)j
− αj|

This is the sum of the absolute differences between the actual share and the desired

share for each category. Taken in its input oriented sense, this indicator is the fraction of

input which is misallocated. Taking the proportional deviation also implies the following:

of two alternative distributions with the same total absolute distance from the balance

line, the one that has a larger sum will have a smaller imbalance value, hence will be

favoured. Special cases of I1(x) where the balance distribution is the one with perfect

equality, i.e., each category receives an equal share, have been used in the literature (e.g.,

in [27]).

Indicator 2: The maximum proportional deviation from the target. Unlike I1(x) this

indicator focuses only on the worst-off deviation.

I2(x) =
Maxj∈J{d(x)j}∑

j∈J a(x)j
=Maxj∈J |

a(x)j∑
j∈J a(x)j

− αj|

Indicator 3: The total componentwise proportional deviation. Compared to the first

two indicators this is a more individual oriented measure as it is the sum of fractional

misallocations to each party.

I3(x) =
∑
j∈J

d(x)j
r(x)j

=
∑
j∈J

∣∣∣a(x)j − αj ∗∑j∈J a(x)j

∣∣∣
αj ∗

∑
j∈J a(x)j

=
∑
j∈J

1

αj
| a(x)j∑

j∈J a(x)j
− αj|
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This measure is a weighted sum of the absolute differences between the actual share

and the desired share for each category where weight for category j is 1
αj
. This allows

one to penalize the deviations from the categories that are already assigned a low target

share value. We note that for this measure to be meaningful, one should have αj > 0 for

all j.

Indicator 4: The maximum proportional deviation from the corresponding target

value over all elements of the distribution. Unlike I3(x) this indicator focuses only on the

worst-off deviation.

I4(x) =Max
j∈J
{d(x)j
r(x)j

} =Max
j∈J
{ 1
αj
| a(x)j∑

j∈J a(x)j
− αj|}

Which indicator one chooses to use, might have material significance for the solutions

which are bi-criteria effi cient in the biobjective formulations. However, when n is low

as in Proposition 1, whichever indicator one chooses, one will get the same ordering and

thus the same effi cient frontier. Hence in this case, which indicator one chooses does not

matter: one can choose any indicator and be confident of getting the same result.

Proposition 1 For n ≤ 3 we have I1(x) = 2 ∗ I2(x). Moreover when n = 2 the four

indices provide us with the same order. That is, for any two distributions x1 and x2 where

n = 2 (that is a(x1), a(x2) ∈ R2), the following holds: I1(x1) ≥ I1(x
2) ⇐⇒ I2(x

1) ≥

I2(x
2) ⇐⇒ I3(x

1) ≥ I3(x
2) ⇐⇒ I4(x

1) ≥ I4(x
2).

Proof is provided in Appendix A.

Remark 2 In general, Proposition 1 no longer holds for I1(x); I3(x); I4(x) and I2(x);

I3(x); I4(x) in problems where n > 2. As for I1(x) and I2(x) it no longer holds when

n > 3.

Proof is provided in Appendix A.

Table 4.1 summarizes the classification of the imbalance indicators.
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Table 4.1: Imbalance Indicators

Imbalance Indicators
Objective\Focus Collective Individual Oriented

Sum I1(x) =
∑
j∈J d(x)j∑
j∈J a(x)j

I3(x) =
∑
j∈J

d(x)j
r(x)j

Bottleneck I2(x) =
Maxj∈J{d(x)j}∑

j∈J a(x)j
I4(x) =Max

j∈J
{d(x)j
r(x)j
}

5 Bi-criteria Models

In this section we develop bi-criteria models for allocation problems with objectives of

maximizing total output and minimizing an imbalance indicator.

Although all the models we discuss are based on the same general idea, they differ

in technical aspects depending on the problem type, i.e., based on whether the alloca-

tion is discrete or continuous and whether the balance is sought in the output or input

distribution.

For our project selection problem we provide mixed integer formulations for the bi-

criteria models, which exploit the fact that the decision variables are 0-1 variables to

tackle nonlinearity due to the imbalance indicators.

We first provide a complete analysis for the case the DM desires a balanced input

distribution as this problem naturally arises in many situations. It is straightforward to

develop models for the case where a balanced output distribution is desired when we have

a discrete setting.

5.1 Discrete Allocation

The general method proposed in this paper is applicable to different combinatorial prob-

lems that can be formulated as a binary integer problem (BIP), like some location prob-

lems. We use project selection problems as an example.

Consider the project selection problem discussed in Section 2. Suppose that the DM

wants to have a portfolio where input is allocated to different project types in a balanced

way and gives an example input allocation r ∈ Rn, which he considers balanced. The

corresponding proportional allocation is denoted as α ∈ Rn as before.

12



We use an m× n incidence matrix G with elements gij for i ∈ I and j ∈ J as follows:

gij =
1 if project i belongs to category j

0 otherwise
The binary variable associated with each project is as follows:

xi =
1 if project i is initiated

0 otherwise
for i ∈ I

Note that we seek balance in the input space and a(x)j =
∑
i∈I
cigijxi for all j ∈ J,

that is, the input allocated to a certain category is the sum of the costs of the initiated

projects in that category. In what follows, we assume that at least one of the projects

will be initiated in a feasible solution. We also have
∑

j∈J a(x)j =
∑

i∈I cixi.

We now provide an example model that uses the indicator I1(x) as the second objec-

tive. For the project selection problem I1(x) is as follows:

I1(x) =

∑
j∈J

∣∣∣αj ∗∑j∈J a(x)j − a(x)j
∣∣∣∑

j∈J a(x)j
=

∑
j∈J
∣∣∑

i∈I αjcixi −
∑

i∈I cigijxi
∣∣∑

i∈I cixi
.

We have the following model where we use variables ZT and ZI to denote zT (x) and zI(x),

respectively.

Max {ZT ,−ZI} (5.1a)

s.t.
∑
i∈I

cixi ≤ B (5.1b)

ZT =
∑
i∈I

bixi (5.1c)

ZI =

∑
j∈J
∣∣∑

i∈I αjcixi −
∑

i∈I cigijxi
∣∣∑

i∈I cixi
(5.1d)

xi ∈ {0, 1} ∀i ∈ I (5.1e)

The above model is nonlinear due to constraint set 5.1d. We linearize it by introducing

auxiliary variables dj, yj and tj and obtain the following MIP model (See [28] and [29]

for more information on such linearizations):
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Model 1

Max {ZT ,−ZI} (5.2a)

s.t.
∑
i∈I

cixi ≤ B (5.2b)

ZT =
∑
i∈I

bixi (5.2c)

∑
i∈I

ci(αj − gij)xi ≤ dj ∀j ∈ J (5.2d)

∑
i∈I

ci(gij − αj)xi ≤ dj ∀j ∈ J (5.2e)

dj −
∑
i∈I

ci(αj − gij)xi ≤ 2 ∗ dUB ∗ yj ∀j ∈ J (5.2f)

dj −
∑
i∈I

ci(gij − αj)xi ≤ 2 ∗ dUB ∗ (1− yj) ∀j ∈ J (5.2g)

ZLB
I xi ≤ ti ≤ ZUB

I xi ∀i ∈ I (5.2h)

ZLB
I (1− xi) ≤ ZI − ti ≤ ZUB

I (1− xi) ∀i ∈ I (5.2i)∑
j∈J

dj =
∑
i∈I

citi (5.2j)

xi ∈ {0, 1} ∀i ∈ I (5.2k)

yj ∈ {0, 1} ∀j ∈ J (5.2l)

ti ≥ 0 ∀i ∈ I (5.2m)

Constraint set 5.2b ensures that the total budget is not exceeded and the constraint

set 5.2c defines ZT , total output of the portfolio. We define new variables djs that show

the absolute distances, i.e. dj =
∣∣∑

i∈I ci(αj − gij)xi
∣∣ ∀i. Constraint sets 5.2d, 5.2e, 5.2f,

5.2g and auxiliary binary variables (yjs) are used to define the absolute distances (djs)

and tackle the nonlinearity due to the absolute function. dUB is an upper bound for

the continuous dj variables. We use the same upper bound for all the dj variables and

calculate the bound as follows: dUB =
∑

i∈I ci. Constraint sets 5.2h, 5.2i and 5.2j are used

to tackle the nonlinearity due to the ratio terms in the definition of ZI (see constraint set
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5.1d) as follows: In constraint set 5.1d we have
∑

j∈J dj = ZI ∗
∑

i∈I cixi =
∑

i∈I ciZIxi.

We define auxiliary continuous variables ti such that ti = ZI ∗ xi ∀i ∈ I hence obtain

constraint set 5.2j. Constraint sets 5.2h and 5.2i ensure that ti = ZI ∗ xi ∀i hold. ZUB
I

and ZLB
I are upper and lower bound parameters for ZI , respectively. From the definition

of ZI , ZLB
I = 0. We define ZUB

I as follows: ZUB
I = n ∗ dUB/Min

i
{ci}.

Model 1 has 2m+2n+2 variables and 2m+4n+3 constraints excluding set constraints.

Remark 1 dUB is an upper bound for all dj.

Proof. dj =
∣∣∑

i∈I ci(αj − gij)xi
∣∣ = ∑i∈I ci |αj − gij|xi. Since both 0 ≤ αj ≤ 1 ∀j and

0 ≤ gij ≤ 1 ∀i, j we have |αj − gij| ≤ 1. Hence
∣∣∑

i∈I ci(αj − gij)xi
∣∣ ≤ ∑i∈I cixi ≤∑

i∈I ci.

It is possible to include additional constraints in cases where certain projects are

mutually exclusive for some underlying technical reasons. We note that these are easily

handled computationally, hence for ease of presentation we do not include such constraints

into the formulation explicitly. The models involving I2(x), I3(x) and I4(x) are very

similar hence are provided in Appendix B.

It is straightforward to develop models for the case where a balanced output distri-

bution is desired when we have a discrete setting. The model will be the same except

the following: We use bi instead of ci in constraint sets 5.2d, 5.2e, 5.2f, 5.2g and 5.2j and

change dUB and ZUB
I accordingly.

5.2 Continuous Allocation

Suppose that a DM should decide how to allocate a given input B among m projects

but this time the allocation can be performed in a continuous manner. We use the same

notation as in the discrete case with a difference in the decision variable and output

definition.

Let xi be the allocated input to project i and let fi(xi) be the resulting output.

The input allocated to category j denoted as a(x)j is a linear function of x such that

a(x)j =
∑
i∈I
gijxi for all j ∈ J . In such cases the total input allocation is always B, i.e.,
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∑
j∈J a(x)j = B. Note that the properties of the production functions fi(xi) will affect

the complexity of the problem and the resulting models may be diffi cult to solve when e.g.

these functions are nonlinear. However, if production functions are concave it is possible

to use piecewise linearization and obtain a linear problem as we show in the example in

the next section.

Recall that the indicators in the discrete setting have decision variables in the de-

nominator and hence require linearization. As Remark ?? shows the balance criterion no

longer requires such linearization in the input oriented continuous setting.

Remark 2 For the continuous allocation the indicators (I1(x),I2(x),I3(x) and I4(x)) in

the input oriented setting reduce to linear functions of deviations.

Proof. Given a balance resource distribution α, I1(x) is as follows: I1(x) =
∑
j∈J |αjB−a(x)j |

B
=∑

j∈J d(x)j
B

. Hence minimizing I1(x) is equivalent to minimizing
∑

j∈J d(x)j. Similarly, it

is possible to show that minimizing I2(x), I3(x) and I4(x) are equivalent to minimizing

Max
j∈J
{d(x)j},

∑
j∈J

∏
i 6=j

αid(x)j, andMax
j
{
∏
i 6=j

αid(x)j}, respectively. Also note that one does

not need the auxiliary binary variables (e.g. yjs in model 1) to linearize the nonlinear-

ity due to the absolute function as we directly minimize linear functions of the absolute

distances.

6 Solution Approach

Our models are bi-criteria versions of the knapsack problem. In the discrete case knapsack

problem is considered to be a nondeterministic polynomial-time hard (NP-hard) problem

([30]).

We define set Z as follows: Z = {(ZT , ZI) : ZT = zT (x) and ZI = zI(x), x ∈ X}.

Definition 1 For two points (ZT , ZI) and (Z ′T , Z
′
I), (ZT , ZI) dominates (Z

′
T , Z

′
I) if ZT ≥

Z ′T and ZI ≤ Z ′I with strict inequality holding at least once.

Definition 2 A point (ZT , ZI) is nondominated and the corresponding solution (x) is

effi cient if there is no other point in Z that dominates it.
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We call all the nondominated solutions for a problem the nondominated set.

We use the epsilon constraint method to obtain nondominated (/effi cient) solutions

for the bi-criteria problems considered here. This method is based on sequentially solving

single objective problems in which the value of the second objective is controlled using a

constraint (see [31] and [32] for a discussion of the epsilon constraint method).

The general algorithm is as follows (note that lex max refers to lexicographic maxi-

mization).

Step 0. Solve lex max (zT (x),−zI(x))

s.t. x ∈ X

Let the optimal value for zI(x) be Z∗I

Step 1. If Z∗I ≤ ZLB
I Stop.

Otherwise, set k = Z∗I − Stepsize.

Step 2. Solve lex max (zT (x),−zI(x))

s.t. x ∈ X

zI(x) ≤ k

Let the optimal value for zI(x) be Z∗I

Go to Step 1.

When the objective function values are integer, it is possible to generate all nondom-

inated points with this method. In this paper we use the method to generate a subset

of the nondominated set as our objective function values are not necessarily integer. We

first generate the solution that has the maximum output (ZT ) value and obtain a non-

dominated solution at each iteration until we generate the one that has the minimum

imbalance (ZI) value. We use a parameter Stepsize to control the maximum difference
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between two consecutively generated nondominated points in terms of their imbalance

values. The smaller the Stepsize, the higher the number of nondominated solutions

found. On the other hand, the higher the computational time is. Note that it is also

possible to modify the algorithm such that it starts with the solution that has the mini-

mum imbalance and moves toward the ones with higher total output values by controlling

zT (x) by a constraint.

6.1 An Example Problem

We now provide a real life example for the input oriented discrete case based on data

given to us by a public sector agency whose R&D portfolio selection problem provided the

immediate motivation for the current work. The problem is a project selection problem

subject to the available budget. The cost and value figures for each project are tabulated

below (see Table 6.1). The values are a weighted average of performances of each project

over multiple criteria. Note that the projects are of three types and the cost values are

normalized to protect confidentiality. The budget and value correspond to input and

output, respectively.

Table 6.1: Data for the example problem

Project Index Project Type Cost Overall Value Project Index Project Type Cost Overall Value
1 Type 1 0.19 1.39 21 Type 2 0.88 1.71
2 Type 1 0.16 1.13 22 Type 2 0.86 1.34
3 Type 1 0.30 1.67 23 Type 3 0.05 2.15
4 Type 1 0.29 1.48 24 Type 3 0.18 2.47
5 Type 1 0.55 2.13 25 Type 3 0.16 1.96
6 Type 1 0.57 1.43 26 Type 3 0.31 3.42
7 Type 1 0.96 1.50 27 Type 3 0.43 3.92
8 Type 1 0.99 1.44 28 Type 3 0.42 3.42
9 Type 1 0.74 0.99 29 Type 3 0.42 2.97
10 Type 1 0.67 0.85 30 Type 3 0.33 2.29
11 Type 2 0.21 3.13 31 Type 3 0.37 1.67
12 Type 2 0.28 2.52 32 Type 3 0.59 2.60
13 Type 2 0.28 2.11 33 Type 3 0.42 1.79
14 Type 2 0.40 2.43 34 Type 3 0.96 4.08
15 Type 2 0.24 1.49 35 Type 3 0.54 2.11
16 Type 2 0.58 2.91 36 Type 3 0.54 2.08
17 Type 2 0.95 3.15 37 Type 3 0.90 3.25
18 Type 2 0.89 2.82 38 Type 3 0.75 2.20
19 Type 2 0.91 2.47 39 Type 3 0.81 2.06
20 Type 2 0.61 1.57

Suppose that the agency has a budget (total input) of 9.31 units, which is about

45% of the total cost of all the projects available. Given this budget, the portfolio that

maximizes the total output has a total output of 59.32 and requires an input of 9.2 units.
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Figure 6.1: Solutions obtained using I3(x)

The allocation of this total input to the three type of projects are 1.49 units, 1.99 units,

5.72 units, for types 1, 2 and 3 respectively.

Suppose that the DM considers an input allocation that has equal percentages as

balanced. That is, in a perfectly balanced portfolio the total amount allocated to each

project type should be 33% of the overall input.

For explanatory purposes we will use one of the indicators, I3(x), and show the port-

folios obtained by solving the corresponding bi-criteria problems. A subset of the effi cient

portfolios obtained using I3(x) using Stepsize of 0.05 are visualized in Figure 6.1. The

figure shows 13 portfolios each of which is obtained through one iteration of the algorithm.

The first portfolio is the one that gives the maximum total output and type 3 projects

are allocated more input than the other two types in this portfolio. It is seen that in each

new solution the algorithm returns a portfolio where the three types are closer in input

usage. In the first iterations, balance is increased via increasing the input allocation

to type 2 projects. As we restrict the solution to become more and more balanced,

the allocation to type 1 projects increases. One can also see the amount of sacrifice from
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Figure 6.2: Effi ciency vs. Balance

effi ciency (total output) by moving towards more balanced portfolios in Figure 6.2, which

is the total output vs. imbalance graph.

The epsilon constraint approach allows us to visit the whole nondominated set in a

uniform way, i.e., we provide representative portfolios for different parts of the whole

nondominated set. Seeing such a uniform subset of the nondominated set has advantages

in terms of clarity and transparency. The results show the tradeoff between the effi ciency

and balance criteria. For example, moving from the first solution to the second one

sacrifices from effi ciency around 0.8% and this increases balance around 20%. On the

other hand, it is seen that as we restrict the solution to become more and more balanced,

the effi ciency sacrifice that we have to make may increase significantly. In addition

to seeing the tradeoff between the two criteria, one can have more information about

the solution structure. A quick review would give us an idea about the more “powerful”

projects, the ones that occur in most of the nondominated solutions. In the above example

we observed that the projects 1,3,4,5; 11,16; and 23, 24, 25, 26, 28, 29 are included in

most of the portfolios. As a way of simplifying the decision making process, these projects
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Figure 6.3: Different Balance Points

can be fixed and the others might be analyzed in more detail.

We have also generated solutions by using I1(x), I2(x) and I4(x) using a Stepsize of

0.05. We observed a similar trend as in Figure 6.1.

It is also possible to use other balance distributions and see the resulting solutions.

Figure 6.3 (a)-(d) show the first 10 solutions obtained using the balance distributions

(33, 33, 33); (60, 20, 20); (20, 20, 60); (20, 60, 20) respectively with I3(x). Note that in

the third case we report only 4 solutions as these were the only solutions obtained using

a Stepsize of 0.05 in the algorithm. This is because the output maximizing solution

already has low imbalance with respect to the given balance distribution. No significant

adjustment was necessary in this case.

As another example, we consider a linearized version of the above problem to analyze

the case where we have continuous allocations. We assume that the production functions

fi(xi) are concave of the form fi(xi) = si ∗xθii for all i. We generate si and θi values from

uniform distributions U(0, 5) and U(0, 0.5), respectively. We solve the problem using

piecewise linear approximation for the concave production functions. Figure 6.4 shows
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Figure 6.4: Continuous Case using I3(x) with balance distribution (0.33,0.33,0.33)

a set of effi cient allocations which are obtained setting Stepsize to 0.1. One can clearly

see that we move to more balanced allocations towards the end of the spectrum. Also

note that unlike the discrete case, all of the allocations have the same total input value.

The tradeoff between the two criteria is clearly seen in Figure 6.5, which shows the total

output value vs. imbalance value for this continuous case.
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Figure 6.5: Effi ciency vs. Balance in the Continuous Case

7 Computational Study

In this part we discuss the computational aspects of the recommended epsilon constraint

approach by providing the results of an experimental study. For the experimental study

we again use the project selection problem. The aim of this section is to see the size of

problems for which we can obtain a subset of the nondominated solutions to present the

DM in reasonable time, using the formulations developed in the previous sections of this

paper.

We consider the (discrete) project portfolio selection problem where m and n denote

the number of projects and the number of project categories, respectively. As in [32] the

output (bi) and the input (ci) values are randomly generated integers between 10 and

100. We set B = 0.5
∑
ci. We start with m =50 increasing in increments of 50. As for

n, we use 3 and 5. For each m and n combination, we generate 10 problem instances.

We use the (adaptive) epsilon constraint approach discussed in [32], which is a gen-

eralization of the scheme we discussed in section 6 for arbitrary numbers of objectives.

The algorithms are coded in Visual C++ and solved by a dual core (Intel Core i5 2.27
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GHz) computer with 4 GB RAM. The optimal solutions are found by CPLEX 12.2. The

solution times are expressed in central processing unit (CPU) seconds. We set a time

limit of 1 hour for the execution of the epsilon constraint approach.

We first discuss the results for problems where we seek balance in the input space as

in our experience most applications involve concerns about ensuring balance in the input

distribution to categories. In most cases we report the results for the models using I3

(I3(x)) as the imbalance indicator. That is because I3 is likely to be computationally

more complex than the others. We also report results for the cases where we introduce 2

imbalance indicators, in which case we use I3 and I2 (I2(x)) as the two indicators. The

balance distributions (r) are taken as (50, 30, 20) and (50, 30, 20, 10, 80) for the n = 3 and

n = 5 settings, respectively. Hence α is (0.5, 0.3, 0.2) and (0.26, 0.16, 0.11, 0.05, 0.42) for

these two settings.

We ran extensive experiments and we show a sample of the more interesting results

in Table 7.1. In this table we report the average and maximum values for solution

times and number of calls to CPLEX. We also report the average and minimum number

of nondominated solutions (|ND|) returned by the algorithm. Note that the number

of instances for which the algorithm could not terminate in 1 hour are indicated in

parenthesis for the settings where the maximum solution time is 3600 seconds and these

settings are reported in italics. The table also reports the value of the parameter Stepsize,

which is used to adjust the right hand side of the constraint restricting the criterion

value that is treated in the constraint for the bi-criteria problems. We report results for

problems with a single type of input (indicated as Inp=1) and with two types of inputs

(indicated as Inp=2).

For the instances where we obtain the nondominated set we set the optimality gap

(θ) to 0.01% for CPLEX. We optimize the model that minimizes the imbalance while

restricting the total output value with a constraint. As we assume integer values for

the total output, setting Stepsize to 1 ensures that none of the nondominated points is

missed.

As seen from Table 7.1 the cardinality of the nondominated set and the solution time
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required to solve the single-objective subproblems increase as the number of categories

increases. These results also indicate that for larger problems, the size of the nondomi-

nated set or the solution time of the single-objective subproblems may be prohibitively

large to allow us to obtain the whole nondominated frontier in reasonable time. How-

ever, in many cases presenting a large number of solutions to the decision maker may be

neither necessary nor desirable. We rather suggest obtaining a moderate number of solu-

tions which approximate the nondominated solutions and spread over the nondominated

region in a uniform way.

To determine an appropriate Stepsize value we find the two nondominated solutions

at the two ends of the nondominated frontier: The solution that has the largest ZT value

and the solution that has the smallest ZI value. These solutions provide us the maximum

and minimum total output values in the nondominated set: ZTMax =Max{ZT : (ZT , ZI)

∈ Z} and ZTMin = Min{ZT : (ZT , ZI) ∈ Z}, respectively. We set Stepsize = (ZTMax −

ZTMin)/40. We solve the single objective sub-problems with a predefined optimality gap

θ; hence find approximate nondominated solutions with a worst case quality guarantee.

We report the results in Table 7.1. We also report results for θ = 5% case with a fixed

Stepsize value of 1.

The results indicate that the solution times increase as n increases for fixedm although

the number of solutions returned decreases or stays similar. It indicates that the single

objective subproblems become more diffi cult when n increases. For fixed n, the solution

times and the average number of solutions increase as we increase m. As expected,

increasing the optimality gap parameter (θ) leads to a decrease in solution times. The

number of calls to CPLEX also decreases as θ increases, this is because the algorithm

starts with a solution that has larger imbalance values and hence returns solutions which

lie at the center of the frontier.

We next perform experiments for 3-criteria problems where there is a single input and

there are 2 different indicators. For these experiments we use I2 (collective-bottleneck

indicator) and I3 (individual oriented-sum indicator) as the two additional criteria to the

total output criterion. We express the two imbalance criteria in the form of constraints
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and set the corresponding Stepsize values as 0.05 and 0.5 for I2 and I3, respectively.

It is possible to observe the effect of the number of categories (n) to the solution

times. The effect of the number of projects on solution times does not seem to be as

predictable as the effect of the number of categories. In some settings we even observe

smaller solution times as m gets larger for fixed n.

We also note that the correlation coeffi cient between the values of the indicators I2

and I3 is quite high: it is between 0.8 and 0.96 for all settings. This indicates that for

most cases if a portfolio has a high I2 value, it is likely to have a high I3 value as well.

As expected, highest correlation is observed for the settings with n = 3 categories. This

is because, for such cases if the worst-off category has high deviation from the target it

is likely that the sum of all deviations will be high as well. As the number of categories

increases the effect of the worst-off value to the total deviation decreases, resulting in

differences between sum-oriented and bottleneck-oriented indicators.

Finally, we consider the case where there are two inputs. In this setting the projects

consume two inputs and return a single output. The output and input values are randomly

generated integers between 10 and 100, as before. The resulting model is a 3-criteria

model, where we have the total output criteria and two imbalance criteria corresponding

to the distributions of the two inputs over project categories. We report the results of our

experiments in Table 7.1 for θ = 5%, where we use I3 as the imbalance indicator. The

two imbalance criteria are incorporated in the form of constraints with the same Stepsize

values of 0.5.

It is seen from Table 7.1 that the solution times and the number of solutions increase

considerably when the number of categories increases. Moreover, as there are two different

inputs, the correlation between the values of the imbalance indicator that correspond to

distributions of these two inputs is expected to decrease compared to the previous 3-

criteria instances. The correlation coeffi cients were between 0.46 and 0.78 for the all the

settings.

Our computational results indicate that the heuristic version of the epsilon constraint

approach with appropriate Stepsize and optimality gap parameters can be used for small
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to medium-size problems. We observe that the solution times tend to increase significantly

as the number of categories increases. For large-size problems with more than 150 projects

different heuristic algorithms can be employed to obtain solutions in reasonable time.

We have also attempted to obtain nondominated solutions for problems for which

the imbalance criterion is defined over the output distribution to categories. We observe

that these problems are harder to solve. Even for the smallest problems considered

(m=50, n=3) the epsilon-constraint based heuristic with 5% optimality gap fails to return

solutions in 1 hour for some instances. To obtain solutions to these problems in reasonable

time heuristic algorithms can be explored. One such approach is described here and some

preliminary results are provided.

We designed a tabu search (TS) heuristic that starts with the solution that maxi-

mizes the total output. Using this initial feasible solution, we try to find solutions with

improved balance values by searching its neighborhood. Given a solution, we search its

neighborhood by switching the status of the projects in a pairwise manner. That is, for

each pair of projects one of which is in the portfolio and the other is not, we exclude the

former and include the latter if such an interchange is feasible. We calculate the poten-

tial improvement in balance for each such move, and perform the move that leads to the

maximum improvement. We terminate when the number of non-improving moves reaches

to 250 or number of the iterations reaches to 1000. We set tabu tenure to 50, i.e., we do

not undo a selected move for the next 50 iterations. We use aspiration criterion as the

best solution, i.e., tabu status of the moves that improve the best solution is overridden.

We keep the candidate solutions in a set called incumbent set.

The TS algorithm executes to improve the ZI value. Meanwhile we keep track of

the corresponding ZT values and update the incumbent set whenever we find an eligible

solution, i.e., a solution which is non-dominated by the incumbent set.

Our experiments showed that the TS has satisfactory performance in terms of solution

quality and computational time. We now report computational results for TS. As it was

not possible to obtain the exact nondominated set for the case where we seek balance in

the output space we report the performance of the TS algorithm for the input-oriented
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Figure 7.1: TS algorithm vs. ECM for a problem with m=50 n=3

case. Figure 7.1 shows the solutions obtained by the TS algorithm and the (exact) epsilon

constraint method (ECM) in an example instance for m=50 n=3 case. As seen the TS

approximates the nondominated set quite well.
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Table 7.1: Performance results for the epsilon constraint approach

Inp=1
CPU Time |ND| Stepsize Calls to CPLEX

Criteria Gap m n Avg Max Avg Min Avg Max Avg Max
2 0 50 3 363.92 930.81 64 31 1.0 1.0 128 219

5 2024.80 3600 (1) 103 70 1.0 1.0 207 283

0.01 50 3 4.31 13.61 13 5 9.9 15.9 27 37
5 39.65 249.96 10 5 50.1 56.5 21 45

100 3 6.46 10.70 15 8 13.1 29.3 30 39
5 831.51 3600 (2) 16 2 53.1 95.0 40 51

150 3 8.04 11.78 16 13 16.3 24.8 33 43

0.05 50 3 0.69 0.98 7 4 9.9 15.9 14 19
5 3.98 16.07 6 3 50.1 56.5 14 21

100 3 1.94 3.77 10 4 13.1 29.3 21 41
5 10.01 24.21 12 5 44.4 57.1 26 39

150 3 3.88 5.48 12 6 16.3 24.8 25 39
5 25.15 74.90 15 9 55.4 81.6 31 43

50 3 1.24 1.86 11 8 1.0 1.0 24 37
5 20.68 46.29 35 22 1.0 1.0 71 103

100 3 4.31 6.53 20 5 1.0 1.0 40 69
5 94.50 271.34 70 26 1.0 1.0 142 257

150 3 8.82 14.97 26 15 1.0 1.0 53 95
5 181.16 664.59 77 23 1.0 1.0 154 333

3 0.01 50 3 10.11 30.51 10 2 - - 62 136
5 332.66 1060.22 40 8 - - 261 779

100 3 49.27 372.90 11 2 - - 56 84
5 2507.664 3600 (4) 65 9 - - 426 785

0.05 50 3 6.21 38.75 8 1 - - 47 83
5 612.30 3311.74 31 7 - - 190 444

100 3 7.93 11.36 9 3 - - 60 83
5 461.85 3600 (1) 29 9 - - 163 286

150 3 12.09 23.48 7 2 - - 55 100
5 395.25 1363.90 40 9 - - 224 585

Inp=2
3 0.05 50 3 138.80 1230.46 21 3 - - 97 263

5 2885.29 3600 (7) 84 11 - - 992 2095
100 3 23.44 143.64 15 4 - - 87 342

5 3253.64 3600 (9) 61 4 - - 328 328
150 3 15.02 31.25 9 5 - - 51 84
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We also compared TS with our (heuristic) epsilon constraint method (ECM) with 1%

optimality gap (ECM(1%)) with variable Stepsize values (As reported in Table 7.1). In

terms of solution time TS massively outperforms ECM as it takes less than 2 seconds

for TS to return a set of candidate solutions even for the largest problem instances con-

sidered as opposed to 363 seconds for ECM. However, the TS method clearly does not

give guarantees of optimality and so knowing how good the generated solutions are in

general is problematic. To assess the quality of solutions returned by the algorithms in

this particular case, we use three performance metrics, namely P, D1 and D2. We denote

the solutions returned by the TS or the heuristic ECM as the ANS (approximate non-

dominated set). P is the percentage of exact non-dominated objective vectors returned

by the TS (or heuristic ECM). D1 and D2 give information about the average and max-

imum distances between the points of the nondominated set and the points in set ANS,

respectively (See [33] for the formulations of these metrics).

Table 7.2 shows the results. To give an idea about the scale of the distance metric we

provide a graphical display of the solutions returned by the algorithms for an example

instance which has the average distance values for both TS and ECM. For this instance

TS has values of 0.07 and 0.13 and ECM(1%) has 0.01 and 0.03 for distance metrics D1

and D2, respectively.

As seen from the Table 7.2 and Figure 7.2, ECM outperforms the TS but the perfor-

mance of TS algorithm is still satisfactory for these problems.

Table 7.2: Performance results for TS and ECM with 1 optimality gap

P D1 D2
m n Algorithm Avg Min Avg Max Avg Max
50 3 TS 1.18 0 0.06 0.1 0.13 0.22

ECM (1%) 1.69 0 0.01 0.02 0.04 0.05

50 5 TS 0.68 0 0.05 0.09 0.12 0.24
ECM (1%) 13.83 0 0.01 0.02 0.05 0.13

For the output case we were unable to obtain the (approximate) nondominated set

in reasonable time using the epsilon constraint approach with 5% optimality gap. Figure

7.3 shows the results of the ECM with 5% optimality gap and TS for an example in-
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Figure 7.2: Comparison of ECM (Heuristic) and TS for an instance with average distance values

stance where m=50 and n=3. We leave a detailed comparative study of different solution

approaches for the output-oriented case to future research.
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Figure 7.3: TS Algorithm vs ECM with 5% optimality gap

We observe that the TS algorithm returns a set of good solutions in negligible time for

the input-oriented cases. For the output-oriented case the algorithm finds a set of solu-

tions in negligible time. We have also done some explorations to extend the TS algorithm

for multicriteria problems and observed that the solution times are negligible. However,

further research should focus on generating a diverse set of solutions for multicriteria

cases using algorithms that are computationally effi cient. We hope this interesting and

challenging question stimulates further research.

8 Conclusion

Allocation problems include a wide range of applications where inputs are allocated to

entities so as to maximize the total output. Taking our motivation from various real

life cases where a balanced (input/ output) distribution over categories is considered

important as well as total output maximization we provide a framework to trade balance

off against effi ciency in such problems.
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We define and categorize balance distribution based (im)balance indicators and show

a way to incorporate these measures into the mathematical formulations of different

allocation problems. We propose bi-criteria modelling by introducing balance as another

criterion to the model alongside the total output criterion. We discuss an approach to

obtain a subset of nondominated solutions. The solutions obtained are distributed over

the entire nondominated set in a uniform way and range from the solution that has the

maximum total output to the solution that has maximum balance.

We illustrate the approach by solving a real life project selection problem. Considering

balance explicitly as another criterion and showing a subset of the effi cient solutions to

the DM has many advantages like bringing transparency to decisions and facilitating

communication with the stakeholders. The generated graphs can help to initialize a

structured discussion on balance. Observing how much one has to sacrifice to get closer

to an ideally balanced distribution can provide justification for the decisions made for

the final allocation.

We discuss the performance of the epsilon constraint approach by providing exper-

imental results for larger bi-criteria and 3-criteria project selection problems. We are

able to obtain a subset of (approximate) nondominated solutions that spread uniformly

over the nondominated frontier, hence represent different regions of the frontier. We also

suggest a TS approach for large-size problems and those with output-oriented imbalance

criteria. We provide initial experimental results on the performance of the TS approach.

It is possible to use this modelling approach in other types of allocation problems

where we allocate a homogeneous good to multiple entities. We note that the nature

of the allocation, i.e. whether it is discrete or continuous, has an effect on the type of

models developed. For example, for problems where the input allocation is continuous and

balance is sought in the output space there is no obvious way to transform the decision

model to a tractable mixed integer program when one is using the imbalance indicators

discussed here: in these problems we cannot assume that the denominator is constant

nor do we have binary variables and so cannot linearize using the idea we deployed in the

discrete cases.
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We have taken an initial step to bring in the perfect equality line concept to consider

balance in resource (or output) distributions. There are possible further steps that can

be taken. For example:

• Further research can be done on generalizing the proposed approach to a multi-

criteria case where balance concerns are defined over multiple aspects and on devel-

oping ways to present the problem to the DM in a way that is easily communicated.

Related algorithmic challenges can be addressed using appropriate methods such

as metaheuristics.

• The balance line concept can also be extended by allowing a piecewise linear struc-

ture for the balance line. For example when the total amount available is very

low the DM might tend to desire an equitable allocation, and as the total amount

distributed increases, some other allocations may become more desirable than the

equal allocation. The balance line approach can also be generalized to a balance

cone approach where the extreme points and rays of the cone are generated based

on the information given by the DM. Regarding any allocation within the cone

as perfectly balanced one might assess the balance of alternative allocations and

provide a subset of nondominated points to the DM.

• Axiomatic discussion of the difference imbalance indicators is another research area

that we believe would be interesting. Presumably a key idea in axiomatizing bal-

ance would involve the observation that the points on the balance line are equally

balanced and that as one moves towards the balance line one gets points which are

better in terms of balance.
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A Proofs of Propositions 1 and 2

A.1 Proof of Proposition 1

We first prove the first part of the proposition and show that for n = 2, 3 we have

I1(x) = 2I2(x).

Let n = 3, and let the input/output distribution over which balance is sought be a(x).

a(x) = (a(x)1, a(x)2, a(x)3) and a(x)1+a(x)2+a(x)3 = aT . Suppose the balance distribu-

tion is (α1, α2, α3). Let d(x)1, d(x)2 and d(x)3 be the componentwise absolute deviations

from the rescaled balance distribution. The following holds: d(x)1 + d(x)2 + d(x)3 =

2 ∗ Max{d(x)1, d(x)2, d(x)3}. To see this, without loss of generality (w.l.o.g.) assume

that Max{d(x)1, d(x)2, d(x)3} = d(x)1. Observe that the total negative componen-

twise deviation of a(x) from r(x) should be equal to the total positive component-

wise deviation. Hence we have Max{d(x)1, d(x)2, d(x)3} = d(x)1 = d(x)2 + d(x)3 and

d(x)1 + d(x)2 + d(x)3 = 2 ∗Max{d(x)1, d(x)2, d(x)3}. Hence

I1(x) =
d(x)1 + d(x)2 + d(x)3

aT
=
2Max{d(x)1, d(x)2, d(x)3}

aT
= 2I2(x).

Note that it is easy to verify that I1(x) = 2I2(x) for n = 2 in the same way.

We now prove the second part of the proposition: For n = 2, I1(x1) ≥ I1(x
2) ⇐⇒

I2(x
1) ≥ I2(x

2) ⇐⇒ I3(x
1) ≥ I3(x

2) ⇐⇒ I4(x
1) ≥ I4(x

2). Note that I1(x1) = 2I2(x1)

(and I1(x2) = 2I2(x2)), hence I1(x1) ≥ I1(x
2) ⇐⇒ I2(x

1) ≥ I2(x
2) for n = 2.

Let a(x1) = (a(x1)1, a(x
1)2) and a(x2) = (a(x2)1, a(x

2)2). Let a(x1)1 + a(x1)2 = a1T

and a(x2)1+a(x2)2 = a2T . Suppose the balance allocation is (α1, α2). Let r(x
1) and r(x2)

be the corresponding (adjusted) balance distributions, i.e., r(x1) = (a1T∗ α1, a1T∗ α2) and

r(x2) = (a2T∗ α1, a2T∗ α2). Note that d(x1)1 = d(x1)2 and d(x2)1 = d(x2)2.

1. We will first show that I1(x1) ≥ I1(x
2) ⇐⇒ I3(x

1) ≥ I3(x
2).

(a) I1(x1) ≥ I1(x
2) =⇒ I3(x

1) ≥ I3(x
2)

Suppose that I1(x1) ≥ I1(x
2) while I3(x1) < I3(x

2).
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If I1(x1) ≥ I1(x
2) then

2d(x1)1
a1T

≥ 2d(x
2)1

a2T
(A.1)

If I3(x1) < I3(x
2) then

d(x1)1
a1T ∗ α1

+
d(x1)1
a1T ∗ α2

<
d(x2)1
a2T ∗ α1

+
d(x2)1
a2T ∗ α2

=⇒

d(x1)1
a1T

(
1

α1
+
1

α2

)
<
d(x2)1
a2T

(
1

α1
+
1

α2

)
=⇒

d(x1)1
a1T

<
d(x2)1
a2T

=⇒ 2d(x1)1
a1T

<
2d(x2)1
a2T

(A.2)

From equations A.1 and A.2 we have a contradiction hence there is no x1 and x2

such that I1(x1) ≥ I1(x
2) while I3(x1) < I3(x

2) for n = 2. It is easy to verify

I3(x
1) ≥ I3(x

2) =⇒ I1(x
1) ≥ I1(x

2) in the same way.

2. We will now show that I1(x1) ≥ I1(x
2) ⇐⇒ I4(x

1) ≥ I4(x
2).

I1(x
1) ≥ I1(x

2) =⇒ I4(x
1) ≥ I4(x

2)

Suppose that I1(x1) ≥ I1(x
2) while I4(x1) < I4(x

2). From previous result if I1(x1) ≥

I1(x
2) equation A.1 holds.

If I4(x1) < I4(x
2) then

Max{ d(x
1)1

a1T ∗ α1
,
d(x1)2
a1T ∗ α2

} < Max{ d(x
2)1

a2T ∗ α1
,
d(x2)2
a2T ∗ α2

}

d(x1)1
Min{a1T ∗ α1, a1T ∗ α2}

<
d(x2)1

Min{a2T ∗ α1, a2T ∗ α2}

Without loss of generality let α1 < α2. Then we have
d(x1)1
a1T ∗α1

< d(x2)1
a2T ∗α1

=⇒ d(x1)1
a1T

<

d(x2)1
a2T

. This is equation A.2, hence the rest follows as in part 1 leading to a contra-

diction. Similarly, it is easy to show that I4(x1) ≥ I4(x
2) =⇒ I1(x

1) ≥ I1(x
2) also

holds.

A.2 Proof of Remark 2

Consider the following counterexamples:
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Example 1 Consider two allocations x1 and x2 which have a(x1) and a(x2) as shown in

the table below and suppose that the balance distribution is r. The pairwise comparisons of

the two alternatives are different under I4(x). We have I1(x1) < I1(x
2); I3(x1) < I3(x

2)

but I4(x1) > I4(x
2).

Allocation I1(x) I3(x) I4(x)

a(x1) =(16,16,13) 0.21 0.67 0.42

a(x2) =(18,20,20) 0.28 0.84 0.38

r =(36,20,24)
In the example case given below the pairwise comparisons of the two alternatives are

different under I1(x). Note that for n = 3 we have I1(x1) ≥ I1(x
2) ⇐⇒ I2(x

1) ≥ I2(x
2)

so I2(x) is also not consistent with I3(x) and I4(x).

Allocation I1(x) I3(x) I4(x)

a(x1) = (11,12,18) 0.17 0.49 0.24

a(x2) = (20,10,17) 0.16 0.51 0.28

r =(30,25,30)
In the example case given below the pairwise comparisons of the two alternatives are

different under I3(x).

Allocation I1(x) I3(x) I4(x)

a(x1) =(18,20,10) 0.25 0.80 0.42

a(x2) = (12,12,17) 0.26 0.78 0.47

r =(39,27,26)

Example 2 To show that I1(x) = 2 ∗ I2(x) no longer holds when n > 3; consider the

below example where I1(x1) < I1(x
2) but I2(x1) > I2(x

2).

Allocation I1(x) I2(x)

a(x1) =(18,13,10,17) 0.25 0.13

a(x2) =(19,11,20,15) 0.28 0.11

r =(39,33,28,20)
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B Models using other indicators

B.1 Using I2(x):

This model is very similar to Model 1, except for the constraints related to ZI . We use

decision variables Ij to denote componentwise misallocations, i.e., Ij = dj/
∑

i∈I cixi. We

find upper and lower bounds for Ij. We use the same bounds for all Ij and denote them

as IUB and ILB , respectively. The bounds are as follows (dUB is as defined in Model 1):

IUB =
dUB

Mini{ci}

ILB =
dLB∑
i∈I cixi

= 0

ZI is the maximum componentwise deviation, i.e. Ij ≤ ZI for all j ∈ J and we

minimize ZI , hence ZUB
I = IUB. We have nonlinear terms in the equation defining Ijs.

We use the same techniques used in model 1 and obtain the following model.

Model 2

Max {ZT ,−ZI}

Constraint sets 5.2b, 5.2c, 5.2d, 5.2e,5.2f, 5.2g

Ij ≤ ZI ∀j ∈ J

dj =
∑
i∈I

citij ∀j ∈ J

ILBxi ≤ tij ≤ IUBxi ∀i ∈ I, j ∈ J

ILB(1− xi) ≤ Ij − tij ≤ IUB(1− xi) ∀i ∈ I, j ∈ J

xi ∈ {0, 1} ∀i ∈ I

yj ∈ {0, 1} ∀j ∈ J

dj ≥ 0 ∀j, tij ≥ 0 ∀i ∈ I, j ∈ J

Model 2 has mn+m+ 2n+ 2 variables and 2mn+ 6n+ 2 constraints excluding the
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set constraints.

B.2 Using I3(x):

This model uses I3(x) as the balance criterion. Recall that this indicator is the sum

of the componentwise proportional deviations. We use decision variables Ij to denote

the componentwise proportional deviations for the categories in the model. That is,

Ij = dj/αj
∑

i∈I cixi. We use the following upper and lower bounds for Ij in the model,

denoted as IUBj and ILBj , respectively (We set dUB as before):

IUBj = (

∑
j∈J rj

rj
)

dUBj
Mini{ci}

= (

∑
j∈J rj

rj
)

dUB

Mini{ci}
for all j ∈ J

ILBj =
dLB

αj
∑

i∈I cixi
= 0 for all j ∈ J.

Using IUBj and ILBj we can set ZUB
I =

∑
j∈J I

UB
j and ZLB

I = 0.

The resulting model is the following:

Model 3

Max {ZT ,−ZI}

Constraint sets 5.2b, 5.2c, 5.2d, 5.2e,5.2f, 5.2g∑
j∈J

Ij = ZI

dj =
∑
i∈I

ciαjtij ∀j ∈ J

ILBj xi ≤ tij ≤ IUBj xi ∀i ∈ I, j ∈ J

ILBj (1− xi) ≤ Ij − tij ≤ IUBj (1− xi) ∀i ∈ I, j ∈ J

xi ∈ {0, 1} ∀i ∈ I

yj ∈ {0, 1} ∀j ∈ J

dj ≥ 0 ∀j, tij ≥ 0 ∀i ∈ I, j ∈ J

Model 3 has mn+m+ 2n+ 2 variables and 2mn+ 5n+ 3 constraints excluding the
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set constraints.

B.3 Using I4(x):

This model uses I4(x) in the objective function. It is very similar to model 3 with a slight

change in the constraint defining ZI . We change it as follows:

Ij ≤ ZI ∀j ∈ J

Where IUBj , ILBj and dUB are as in model 3 and ZUB
I =Max

j
{
∑
j∈J rj
rj
}dUB =Max

j
{ 1
αj
}dUB.

The resulting model hasmn+m+2n+2 variables and 2mn+6n+2 constraints excluding

the set constraints.
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