Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The effect of copper on eumelanin photophysics and morphology

Birch, David J S and Sutter, Jens (2013) The effect of copper on eumelanin photophysics and morphology. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XI. Progress in biomedical optics and imaging, 8587 . SPIE, San Francisco, California. ISBN 9780819493569

Full text not available in this repository. Request a copy from the Strathclyde author


Despite being an important pigment in skin, hair, the eye and the brain, melanin remains one of the most enigmatic of pigments. Although the main constituents of melanin are known to be dihydroxyindoles, its photophysics is complex and its detailed structure remains unknown. In this work we have arrested prior to completion the usual synthesis of eumelanin formed via auto-oxidation of 3, 4-dihydroxy-L-phenylalanine (L-DOPA), by the addition of copper ions. Using fluorescence techniques we report how copper modifies the self assembly of eumelanin by reducing the time to the onset of aggregation at pH 10 and yet produces simplified photophysics in terms of a clearly-defined fluorescence spectrum and a fluorescence decay that is described well by a dominant single lifetime of ~ 6ns. This behavior isconsistent with copper inducing an enhanced abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). Metal ion binding to melanin is of particular importance to neurology and has potential applications in optoelectronics.