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I. Introduction 

Satellite constellations are families of orbits selected to provide useful coverage patterns for 

telecommunications, Earth observation and navigation services. Such constellations are often 

assembled from families of circular orbits, which ensures a uniform spacing between satellites 

in each circular ring. However, there is a large class of elliptical orbits which are of practical 

interest including Molniya-like orbits and so-called Magic orbits [1,2]. Constellations of 

satellites using such elliptical orbits will then exhibit a time varying spacing between satellites 

as the orbital angular velocity experienced by each satellites varies around the elliptical ring.  

While current constellations use relatively modest numbers of satellites, future 

microspacecraft [3] or ‘smart dust’ type devices [4,5] may enable constellations with 

extremely large numbers of nodes. In this Note a continuum approach is used to model the 

dynamics of such constellations. A continuity equation is formed to describe the evolution of 

the number density of nodes as a function of both true anomaly and time. For small 

eccentricities, the continuity equation can be solved analytically to provide closed-form 

solutions which describe the evolution of the constellation for some initial distribution of 

nodes. The closed-form solutions can then be used to investigate pattern formation in elliptical 

rings. Wave-like patterns are found which circulate around the elliptical ring, with peaks in 

density which can in principle be used to provide enhanced coverage. A similar continuum 

approach with a continuity equation has been used in previous studies to develop closed-form 

solutions which model the time evolution of the radial distribution of constellations of 

microspacecraft under the action of air drag [6,7]. 

 

II. Continuity equation for an elliptical ring 

A single elliptical orbit of semi-major a and eccentricity e will now be considered, as shown 

in Fig. 1, with the location of each node define by its true anomaly θ. A large number N of 
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nodes will be assumed to move along the elliptical orbit with local number density ( )tn ,θ  
defined such that ( ) θθ dtn ,  represents the number of nodes dN in the range ( )θθθ d+,  of the 

elliptical orbit at time t. The local angular velocity of each node ( )θωθ =dtd  is then defined 

by the dynamics of the two-body problem. 

 The rate of change of the number of nodes in the constellation can be determined from 

the flux of nodes at the boundaries 0=θ  and πθ 2=  so that 

 

( ) ( ) ( ) ( ) ( )ttnttn
dt

tdN ,2,2 ,0,0 πωπω −=    (1) 

 

which can then be written as 

 

( ) ( ) ( )( )∫ ∂
∂

−=
π

θθωθ
θ

2

0

, dtn
dt

tdN       (2) 

 

The total number of nodes at time t can be determined by integrating the local density around 

the elliptical ring such that  

 

( ) ( )∫=
π

θθ
2

0

, dtntN         (3) 

 

which is assumed to be constant. Therefore, combing Eq. (2) and Eq. (3) a continuity equation 

is formed defined by  

 

( ) ( ) ( )( ) 0,,
=

∂
∂

+
∂

∂ θωθ
θ

θ tn
t

tn        (4) 

 

which represents a conservation law for the total number of nodes [8]. The solution to this 

partial differential equation requires suitable boundary conditions, such as the initial value 

problem posed by the initial distribution of nodes ( )0,θn  to obtain the number density of 

nodes ( )tn ,θ  as a function of both true anomaly and time.  
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The local orbital angular velocity at some true anomaly θ along the elliptical ring can 

be determined from the conservation of angular momentum h such that ( ) ( ) hr =θωθ 2 , where 

the local orbit radius is defined by ( ) ( ) ( )θθ cos11 2 eear +−= . The local angular velocity 

along the elliptical ring is then given by 

 

( ) ( )2cos1 θηθω e+=         (5) 

 

where ( )222 1 eah −=η . The continuity equation can now be solved using the method of 

characteristics [9] to provide a general solution ( )tn ,θ  for an arbitrary initial value problem 

defined by ( )0,θn , although it will later be assumed that the orbit eccentricity e is small. 

 

III. General solution to the continuity equation 

Before solving the time-dependant continuity equation, a steady-state solution can be found 

by requiring ( ) 0, =∂∂ ttn θ , so that the number density is a function of true anomaly only. 

Then, it can be seen from Eq. (4) that ( ) ( )θωθn
 
is a conserved quantity, representing the flux 

of nodes through an arbitrary point on the elliptical ring, with ( )θn  inversely proportional to 

( )θω  as expected. If the number density is selected such that ( ) 10 =n  (at 0=θ ), then from 

Eq. (5) it can be seen that 

 

( ) ( )
( )2

2

cos1
1

θ
θ

e
en

+
+

=         (6) 

 

With this distribution of nodes the pattern formed by the constellation is invariant with time. 

This is an exact solution of the continuity equation valid for all values of eccentricity e<1. 

Such an initial distribution can be used in the design of an elliptical constellation which 

requires a time invariant pattern. It can be seen from Eq. (7) that the number density at 

apocenter is enhanced such that ( ) ( ) ( ) ( )( )2110 eenn −+=π . The steady-state density function 

is shown in Fig.2 as a function of eccentricity. For small eccentricities, ( ) en 41+≈π  so that 

the apocenter density is enhanced by a factor of order 4e relative to the pericenter density. As 

expected, the nodes cluster at apocenter corresponding to the minimum of the orbital angular 

velocity around the elliptical ring.  
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 In order to now solve the full time-dependant continuity equation for the number 

density ( )tn ,θ  with arbitrary initial data ( )0,θn , Eq. (4) can be written as 

 

( ) ( ) ( ) ( ) ( )
θ
θωθ

θ
θθωθ

d
dtntn

t
tn ,,,

−=
∂

∂
+

∂
∂

     (7) 

 

Then, using the method of characteristics [9], the partial differential equation defined by Eq. 

(7) can be written as two ordinary differential equations such that 

 

( )θωθ
=

dt
d          (8a) 

 

( )
( )

( ) ( )tn
d

d
d

tdn ,1, θ
θ
θω

θωθ
θ

−=       (8b) 

 

where the partial differential equation is transformed into an ordinary differential equation 

along the characteristic curves. In order to proceed with the analysis and obtain an explicit 

closed-form solution, it is necessary to assume a small eccentricity for the ring, although an 

implicit solution valid for high eccentricity is outlined in Appendix A. From Eq. (5) it can 

then be seen that 

 

( ) ( )( )2cos21 eOe ++≈ θηθω        (9) 

 

and so 

 

( ) θη
θ
θω sin2e

d
d

−=         (10) 

 

The characteristics of the problem can now be obtained from Eq. (8a) and Eq. (9) as 

 

Cdt
e
d

+=
+ ∫∫ η

θ
θ
cos21

       (11) 
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for some arbitrary constant of integration C. This relation then integrates directly to 

 

( )( ) ( )tCte
e

,2tan41tan
41

2 21

2
θηθ =−−

−
−     (12) 

 

which is a essentially an approximate form of Kepler’s equation, relating true anomaly and 

time in an explicit fashion. From Eq. (8b) and Eqs. (9) and (10), the number density ( )tn ,θ  
can then be obtained from 

 

( ) ( )tn
e

e
d

tdn ,
cos21

sin2, θ
θ

θ
θ
θ

+
=        (13) 

 

which again integrates directly to yield 

 

( )( ) ( ) ( )( )tCelntnln ,cos21, θθθ Ψ++−=      (14) 

 

where ( )( )tC ,θΨ  is some arbitrary function of the characteristic equation, to be determined 

from the initial distribution of nodes ( )0,θn . The general solution for the number density 

( )tn ,θ  is finally obtained as 

 

( ) ( )( )
θ

θθ
cos21

,,
e

tCtn
+

Φ
=         (15) 

 

where ( )( ) ( )( )( )tCtC ,exp, θθ Ψ=Φ . In order to proceed, initial data ( )0,θn  must be provided 

to determine the functional form of ( )( )tC ,θΦ , as will be seen in Section IV. 

  Lastly, if a ring of uniform number density is required such that ( ) ntn =,θ , and so 

( ) 0, =∂∂ ttn θ  and ( ) 0, =∂∂ θθ tn , then from Eq. (7) it can be seen that 

 

( ) 0=−
θ
θω

d
dn          (16) 

 

so that the orbital angular velocity must be constant with ( ) ωθω = . Then, from Eq. (5) it can 
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be seen that a varying orbital angular momentum is required such that 

 

( )2cos1 θ
ωη

e+
=         (17) 

 

which would require the use of continuous low thrust propulsion. Fixed spacing between 

nodes is therefore possible on an elliptical ring, but with the added complexity of active 

control. 

 

IV. Closed-form solution for an initially uniform ring 

As an example initial value problem, initial data ( ) 10, =θn  will be defined so that there is an 

initially uniform distribution of nodes around the elliptical ring at t=0. From Eq. (3) the total 

number N of nodes is then 2π. Since the local orbital angular velocity varies around the 

elliptical ring, the initially uniform distribution of nodes will evolve with time to form a 

periodic pattern, with density enhancements at apocenter where the nodes naturally cluster 

together. Using the initial data ( ) 10, =θn , from Eq. (15) it can be seen that 

 

( ) ( )( ) 1
cos21

0,0, =
+

Φ
=

θ
θθ

e
Cn        (18) 

 

The corresponding characteristic curves are then obtained from Eq. (12) as 

 

( ) ( )( )2tan41tan
41

20, 21

2
θθ e

e
C −

−
= −      (19) 

 

In order to determine the functional form of the arbitrary function of the characteristic 

( )( )tC ,θΦ , a new variable ( )0,θCz =  can be defined as  
 
 

 

( )( )2tan41tan
41

2 21

2
θe

e
z −

−
= −       (20) 

 

which can then be inverted to obtain θ as a function of z such that 
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






















 −

−
= − ze

e 2
41tan

41
1tan2

2

2

1θ      (21) 

 

Therefore, from Eq. (18) the arbitrary function ( )( )tC ,θΦ  can be obtained as 

 

( ) 




































 −

−
+=Φ − ze

e
ez

2
41tan

41
1tan2cos21

2

2

1

    (22) 

 

This function is unique to the initial data ( ) 10, =θn  and is selected to satisfy the boundary 

conditions of the initial value problem. Now, substituting for ( )tCz ,θ=  from Eq. (12), the 

closed-form solution for the number density ( )tn ,θ  with initial data ( ) 10, =θn  is obtained as 

 

( )
( )( )

θ

ηθ

θ
cos21

2
412tan41tantan

41
1tan2cos21

,

2
21

2

1

e

tee
e

e

tn
+






































 −
−−

−
+

=

−−

 (23) 

 

which again clearly satisfies the boundary condition ( ) 10, =θn . This solutions now represents 

the evolution of the initially uniform distribution of nodes as a function of both true anomaly 

and time.  

Being a function of both variables, Eq. (23) therefore represents a surface ( )tn ,θ , as 

shown in Fig. 3, where canonical units are used with 1== aµ  and the time variable re-scaled 

such that a complete orbital period occurs across the range 10 ≤≤ t . It can be seen from Fig. 3 

that the initially uniform distribution of nodes is compressed close to apocenter, 

corresponding to the minimum of orbital angular velocity around the elliptical ring, and are 

rarefied at pericenter corresponding to the maximum of orbital angular velocity. The pattern 

formed by the nodes is therefore wave-like and circulates around the elliptical ring. The 

propagation of the wave-like pattern can be seen in Fig. 4 for a series of time steps. The wave 

forms at pericenter and circulates to apocenter where the number density is maximum, and 

then to pericenter repeating every orbit period. Clearly this is not a mechanical density wave, 

since there is no physical interaction between the nodes, but is does represent a periodic wave-

like pattern propagating around the elliptical ring. For a constellation, such a time-varying 
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pattern, as opposed to the time invariant pattern defined by Eq. (6), could be used to provide 

enhanced coverage by phasing the peaks in number density to occur at target locations on the 

constellation ground track. 

The solution provided by Eq. (23) can also be expanded in eccentricity, since the 

closed form solution assumes small eccentricity, to obtain a simplified solution of the form 

 

( ) ( )( )( )( )( ) ( )21 2tantan2coscos21, eOtetn +−−−= − θηθθ     (24) 

 

which again represents a wave-like pattern propagating around the elliptical ring. Considering 

the time variation of the density observed at the pericenter and apocenter of the ring it can be 

seen that 

 

( ) ( )( ) ( )2cos121,0 eOtetn +−−= η       (25a) 

 

( ) ( )( ) ( )2cos121, eOtetn +−+= ηπ       (25b)
 

 

so that the density at pericenter therefore falls by en 2−≈∆ , whilst the density at apocenter is 

enhanced by en 2+≈∆  as expected. The observed variation in number density at pericenter 

( )tn ,0  and apocenter ( )tn ,π  is shown in Fig. 5 along with the approximation defined by Eq. 

(25). 

Finally, in order to assess the accuracy of the closed-form solution presented in Eq. 

(23), a comparison can be made with a numerical solution of the continuity equation defined 

by Eq. (4) for initial number density ( ) 10, =θn . The partial differential equation can be solved 

numerically using the method of lines, while enforcing the periodic boundary condition

( ) ( )tntn ,2,0 π= , in addition to the initial data ( ) 10, =θn . The analytic solution ( )tnA ,θ  can be 

compared with the numerical solution ( )tnN ,θ  through a relative error function 

( ) ( ) ( )tntnt NA ,,1, θθθε −= , as shown in Fig. 6. It can be seen that for the orbit eccentricity 

e=0.1 considered above, the relative error is modest with ( ) 01.0, ≈tθε . 

 

V. Conclusions 

A simple model of the evolution of a constellation of satellites (nodes) on an elliptical ring has 
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been presented using a continuum approach and deriving a continuity equation for the number 

density of nodes on the ring. For small eccentricities, the continuity equation can be solved 

explicitly in closed-form for some initial distribution of nodes. The resulting solution 

represents the evolution of an initial distribution of nodes as a function of both time and true 

anomaly and exhibits a wave-like pattern which propagates around the elliptical ring. The 

nodes are compressed in number density close to apocenter, corresponding to the minimum of 

orbital angular velocity around the elliptical ring, and rarefied at pericenter corresponding to 

the maximum of orbital angular velocity.  

 

Appendix A: Implicit solution valid for high eccentricity 

The closed-form solution presented in Eq. (23) provides an explicit solution for the number 

density of nodes ( )tn ,θ  as a function of both polar angle and time. Such an explicit solution is 

possible since the small eccentricity approximation used allows Eq. (20) to be inverted, 

essentially allowing an explicit mapping between polar angle and time. However, it is possible 

to generate an implicit solution for the number density of nodes valid for high eccentricity. 

Without the small eccentricity approximation Eq. (10) yields  

 

( ) ( )θθη
θ
θω cos1sin2 ee

d
d

+−=       (A1) 

 

which can be integrated to obtain an implicit relationship between polar angle and time as 

 

( ) ( ) ( )( ) ( )tCt
ee

e
e
e

e
,

cos11
sin2tan

1
1tan2

1
1

2
1

232
θη

θ
θθ =−

+−
−









+
−

−
−  (A2) 

 

The number density ( )tn ,θ
 
can then be found from Eq. (8b) by integrating 

 

( ) ( )tn
e

e
d

tdn ,
cos1

sin2, θ
θ

θ
θ
θ

+
=        (A3) 

 

to obtain 
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( ) ( )( )
( )2cos1

,,
θ

θθ
e

tCtn
+

Φ
=         (A4) 

 

which again is valid for high eccentricity. For some initial value problem, for example with 

( ) 10, =θn , the arbitrary function ( )( )tC ,θΦ
 

can again be obtained from the initial data. 

However, since Eq. (A2) is an implicit relationship, evaluation of this function requires 

numerical iteration, akin to solving Kepler’s equation at each point in the evaluation of the 

solution. To this end it can be shown that Eq. (A2) can be written as a function of eccentric 

anomaly E such that 

 

( )
( )3 22

sin ,
1

E e E t C t
e

η θ−
− =

−
       (A5) 

 

This implicit relation can again be solved using standard numerical methods to obtain the 

number density of nodes ( )tn ,θ  as a function of both polar angle and time. 
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Figure Captions 

 

Figure 1. Ring of nodes of number density ( )tn ,θ  on an elliptical orbit. 

 

Figure 2. Steady-state number density ( )θn  for eccentricity e= 0.1, 0.2, 0.3, 0.4, 0.5. 

 

Figure 3. Density ( )tn ,θ  for an initially uniform distribution of nodes ( ) 10, =θn  on an 

elliptical orbit of eccentricity e=0.1 for πθ 20 ≤  and 10 ≤≤ t . 

 

Figure 4. Density waves obtained on an elliptical orbit of eccentricity e=0.1 from an initially 

uniform distribution of nodes ( ) 10, =θn  for time steps t= 0, 0.25, 0.5, 0.75, 1. 

 

Figure 5. Observed number density for an initially uniform distribution of nodes ( ) 10, =θn  on 

an elliptical orbit of eccentricity e=0.1 as a function of time t at perigee ( )tn ,0  and apogee 

( )tn ,π  (_____ analytic solution, - - - - - approximation). 

 

Figure 6. Comparison of analytical and numerical solutions to the continuity illustrating the 

error surface ( ) ( ) ( )tntnt NA ,,1, θθθε −=  for eccentricity e=0.1. 
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Figure 1 
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Figure 2 
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Figure 3 
 
 
 

 
 
  



16 

Figure 4 
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Figure 5 
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Figure 6 
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