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In order to increase the range of potential mission applications of solar sail technology, this paper introduces the
concepts of shape change and continuously variable optical properties to large gossamer spacecraft. Merging the two
concepts leads to the idea of solar sails as multi-functional platforms that can have potential benefits over conventional
solar sails by delivering additional key mission functions such as power collection, sensing and communications. To
this aim, the paper investigates the static deflection of a thin inelastic circular sail film with a variable surface reflectivity
distribution. The sail film is modelled as a single surface framed by a rigid supporting hoop structure. When changing
the reflectivity coefficient across the sail surface, the forces acting on the sail can be controlled without changing the
incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity function across the sail, the
load distribution due to solar radiation pressure can also be manipulated to control the billowing of the film. By an
appropriate choice of reflectivity across the sail, specific geometries can be generated, such as a parabolic reflector,
thus enabling a multi-functional sail. This novel concept of optical reconfiguration can potentially extend solar sail
mission applications.

I. INTRODUCTION

Using conventional solar sailing technology, the solar
radiation pressure (SRP) force vector direction and mag-
nitude depend strongly on the sail attitude relative to the
Sun, limiting the applicability of solar sails compared to
other low-thrust propulsion systems such as solar-electric
propulsion. Furthermore, the SRP force magnitude fol-
lows an inverse square law with solar distance, making
the sail less efficient at large distances from the Sun.1 In
order to increase the flexibility of modulating the SRP
force and to increase the range of potential solar sail
mission applications, we introduce the concepts of shape

change and variable optical properties for large gossamer
spacecraft.2 Merging these concepts, potential benefits
of such a system over conventional solar sails can be
identified. It is envisaged to use future shape-changing
solar sails as multi-functional platforms that can deliver
additional key mission functionality such as power col-
lection, sensing and communications. For example, the
sail may begin at Earth escape in a flat configuration on a
small-body science mission towards a designated target
object. In close proximity to the target body, the sail re-
configures to a parabolic shape, using its reflective film
as a remote sensing device or as a large communication
antenna, before continuing again in a flat thrust mode.
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To demonstrate these capabilities of solar sails, this
paper investigates the use of variable film reflectivity for
shape deflection control of a circular sail. When chang-
ing the reflectivity coefficient across the sail film, the
SRP forces acting on a segment of the sail can be con-
trolled without changing the incidence angle relative to
the Sun and without using additional attitude control ac-
tuators. The reflectivity can be modified using electro-
chromic coatings, which consist of an electro-active ma-
terial that changes its surface reflectivity according to an
applied electric potential.3 As an alternative, the thin sail
film could also be pre-fabricated with a fixed surface re-
flectivity distribution that allows for a parabolic deflec-
tion, since it will be shown in this paper that the nom-
inal sail deflection due to SRP is not ideal paraboloid.
Either way, by assigning an appropriate reflectivity func-
tion across the sail area, the local SRP load distribution
acting on the thin sail film can be controlled, manipulat-
ing its nominal deflection shape.

In doing so, the solar sail is modelled as a thin inelastic
circular film, attached to a rigid supporting hoop struc-
ture, as shown in Fig. 1. The mass of the hoop is as-
sumed to be much larger than the sail film. The film is
not spanned tightly but suspended in a slack manner to
yield controlled inelastic billowing.

Figure 1: Circular sail film attached to rigid hoop structure,
with electro-chromic coatings and/or pre-fabricated surface re-
flectivity

The governing equations of inelastic deflection of thin
surfaces subject to a distributed SRP loads are presented
in section II, derived from idealising the 2-dimensional
(2-D) sail surface as a ’cobweb’ of radially spanned
threads that are not linked in the circumferential direc-
tion. The threads are suspended from the rigid hoop

Figure 2: Circular sail film modelled as an inelastic ’cobweb’ of
radially spanned threads, suspended by a rigid supporting hoop
structure. The circumferential threads are carrying no tension
and are not considered in the model

structure and intersect at the centre of the circular film,
as can be seen in Fig. 2. This way, the surface can be
approximated as a set of 1-dimensional (1-D) catenary-
type curves that can be investigated semi-analytically
rather than through finite-element analysis. Circumfer-
ential tension in the slack inelastic film is assumed to be
zero, thus having no impact on the validity of the con-
cept. In general, catenary curves are found widely in sus-
pension bridges and cables. They are used in architecture
and engineering, for example in the design of bridges
and arches, because the absorbed forces do not result in
bending moments.4 In section III, the resulting deflection
curves of different inelastic sail films due to a uniform
vertical SRP load are presented. The circular films have
a varying slack diameter, suspended from a rigid hoop
structure of a fixed 200 m diameter. By increasing the
total length of the film, thus by suspending more mate-
rial in between the fixed hoop, the sag of the reflective
film can be controlled. Through this, the focal length of
the deflected surface can be changed, enabling a range of
new applications of solar sails. Since the deflected film
shapes are not ideal paraboloids, as necessary to be used
as an antenna or solar concentrator, section IV discusses
manipulation of the nominal deflection curves through
the use of suitable reflectivity functions across the sur-
face. It is shown that when a particular deflection shape
is selected a priori (e.g. a parabolic shape to form an
antenna), the required reflectivity distribution can be cal-
culated by formulating an inverse problem. Finally, re-
sulting paraboloid-type deflection shapes and deflection
magnitudes are assessed in terms of their focal length and
thus their usefulness for novel mission applications.
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II. EQUATIONS OF INELASTIC
SAIL FILM DEFLECTION

The problem of inelastic deflection of a thin circular
sail film of uniform thickness, subject to uniform vertical
SRP load distribution, is addressed first. Later, in section
IV, the same configuration under non-uniform load due
to distributed reflectivity is analysed. The circular film is
modelled as a 1-dimensional slack inelastic catenary-like
chain, as shown in Fig. 3. Through this simplification,
only radial forces in the circular inelastic film are con-
sidered, while circumferential forces are zero. The sail
film is supported by a rigid circumferential hoop struc-
ture, forming hinged-support type boundary conditions
at the edges. The mass of the hoop is assumed to be
much larger than the sail film. The basic equations of a
classical inelastic catenary curve in uniform gravity are
described first, followed by the extension of the model
introducing a uniform SRP load distribution.

II.I EQUATIONS OF A HANGING CHAIN

The governing equation of the classical inelastic flex-
ible 1-D catenary deflection due to gravity, as shown in
Fig. 3, can be found in the literature.5 It was first de-
rived by Leibniz, Huygens and Bernoulli in 1691.6 The

Figure 3: Force equilibrium over segment ∆s of classical cate-
nary curve in vertical uniform gravitational field

mathematical model idealises the chain by assuming that
it is thin enough to be regarded as a 1-dimensional curve.
Here, inelastic means the chain material is infinitely rigid
to axial forces (i.e. in the tangential direction). Fully
flexible means the infinitesimal chain links are connected
by friction-free hinges and thus cannot absorb bending
moments. Consequently, any tension force exerted on
the chain is parallel to the chain. The differential equa-
tion describing the static inelastic deflection (as a func-
tion of the position x along the curve) is derived from the

equilibrium of forces over a curve segment. Considering
a small chain element of length ∆s, according to Fig. 3,
the forces are the distributed gravity force

∆G = τgA∆s (1)

where τ is the density of the chain material, g is the grav-
itational acceleration and A is the cross-sectional area
of the element, and further, the tension forces T (x) and
T (x+ ∆x), respectively, at points x and (x+ ∆x). The
angle ϕ denotes the local pitch angle of the element be-
tween the x-axis and the tangential direction. The equi-
librium conditions of an element of length ∆s in the x
and y (vertex) direction can be written as

−T (x) cosϕ(x) + T (x + ∆x) cosϕ(x + ∆x) = 0 (2a)

−T (x) sinϕ(x) + T (x + ∆x) sinϕ(x + ∆x) = ∆G (2b)

It can be seen from Eq. 2a that the horizontal tension
component is always constant along x. The resulting
ordinary differential equation (ODE) describing the de-
flected catenary can be obtained using analytical meth-
ods5

y′′ =
τgA

T0
(1 + y′2)1/2 (3)

with the tension at the centre T0. The catenary coefficient
acat = T0/(τgA) determines the geometrical shape of
the catenary curve, as will be described below.

The solution of the deflection curve of the catenary can
be obtained analytically as

ycat(x) = acat cosh
( x

acat

)
+ ccat (4)

with coefficients acat = T0/(τgA) and ccat, both in units
of [m]. The two coefficients together define the deflection
y0,cat at the centre, where cosh(0) = 1. Assuming the
two suspension points are on the x-axis, with the distance
of the two suspension points being the span h = 2R, the
coefficient ccat can now be calculated using ycat(R) = 0,
such that

ccat = −acat cosh
( R

acat

)
(5)

and hence the central deflection is

y0,cat = acat cosh(0) + ccat (6a)

= acat

(
1− cosh

( R

acat

))
The resulting catenary curve when setting acat = 1 and
R = 1 is shown in Fig. 4, together with a parabolic
reference curve of the same sag y0. As can be seen in
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Figure 4: Comparison of catenary curve ycat(x) = cosh(x)
and parabolic curve yp(x) = (cosh(1)− 1)x2 + 1 of same sag
and span

Fig. 4, the two curves are slightly different, with the cate-
nary curve being more extended towards the edge, thus
showing a higher deflection than the parabola. As a note
of history, it was only in 1669 when Jungius disproved
Galileo’s claim that the curve of a chain hanging under
gravity would be a parabola.5

According to Eq. 4, the coefficient acat completely
defines the shape of the catenary curve. How acat can
be calculated will be shown in the following. Fig. 5
shows the catenary shape for decreasing values of acat =

T0/2p0, thus decreasing ratios of tension to load.

Figure 5: Comparison of catenary curves for decreasing values
of acat = T0/2p0 (ratio of tension to load)

It becomes clear that with smaller central tension T0,
the sagging increases. In other words, the higher the sag
of the ’hanging’ chain, the smaller the central tension
between the two catenary arms connected at the centre.

Further, even without knowing the central tension force
T0 directly, acat can be calculated when introducing the
additional constraint for the total curve length. Without
derivation, the total arc length Scat of the catenary curve
can be calculated as

Scat = 2 acat sinh
( h

2acat

)
(7)

This transcendental equation in acat can only be solved
numerically. Inserting the acat obtained for a specific
nominal catenary length Scat and span h into Eq. 4 re-
sults in the corresponding deflection curve. Thus, know-
ing the value of T0 is not necessary to find the coefficient
acat, because it is only a function of h and Scat. More-
over, changing the load magnitude p0 does not affect the
shape of the catenary curve. This result is plausible, since
increasing the load on a deflected inelastic chain cannot
deflect the chain further (unless it breaks). Instead, it in-
creases the in-curve tension T0 accordingly, to keep the
coefficient acat, and thus the ratio of tension to load, con-
stant.

II.II EXTENDED EQUATIONS USING SOLAR

RADIATION PRESSURE

The previously described deflection model of an in-
elastic catenary is now extended by introducing a uni-
form vertical SRP load, as shown in Fig. 6. The SRP

Figure 6: Force equilibrium over segment ∆s of catenary curve
under uniform vertical SRP load

force acting on the sail film is calculated using a sim-
plified SRP model.1 It assumes that the sail surface is a
perfectly (specular) reflecting mirror, neglecting all other
forms of optical interactions between the solar photons
and the sail surface such as diffuse reflection, absorption
and thermal re-emission. Therefore, the SRP exerted on
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a surface of reflectivity ρ is

P = p0(1 + ρ)
(RS,0

RS

)2

cos2 ϕ (8)

at a radial distance RS from the Sun, with the pitch an-
gle ϕ between the Sun-sail line and the sail plane normal
and (again) p0 = 4.563×10−6 N/m2 the solar radiation
pressure at RS,0 = 1 AU. In the following, the unde-
flected sail surface is assumed to be always perpendicu-
lar to the Sun, thus ϕ = 0, at a solar distance of 1 AU.
At first, a constant reflectivity ρ = 1 is chosen, which
reduces the SRP load on the sail film to P = 2p0.

The differential equation system describing the static
deflection is derived from the equilibrium of forces along
the sail film curve (see Fig. 6). Considering again the
force equilibrium of a small chain element of length ∆s,
the forces acting on a section of the chain are now the
distributed SRP force (per unit length)

∆P = 2p0∆s (9)

and the tension forces T (x) and T (x+∆x), respectively,
at points x and (x+ ∆x). The equilibrium conditions of
an element of length ∆s in x and y direction are written
as

−T (x) cosϕ(x) + T (x+ ∆x) cosϕ(x+ ∆x) (10a)

= −2p0 sinϕ(x)∆s

−T (x) sinϕ(x) + T (x+ ∆x) sinϕ(x+ ∆x) (10b)

= 2p0 cosϕ(x)∆s

It can be seen that, in contrast to the deflection of a hang-
ing chain in a gravitational field, SRP causes a horizontal
force component in x-direction, depending on the local
pitch angle with the surface normal. Dividing both equa-
tions by ∆x and taking the limit ∆s → 0, while intro-
ducing the arc length equation

∆s =
√

∆x2 + ∆y2 (11)

for an arbitrary continuous curve segment in the x-y
plane gives

d

dx

(
T cosϕ

)
= −2p0 sinϕ

√
1 +

(dy

dx

)2

(12a)

d

dx

(
T sinϕ

)
= 2p0 cosϕ

√
1 +

(dy

dx

)2

(12b)

Using elementary trigonometric relations, the sinϕ and

cosϕ expressions can be written as

sinϕ =
dy

dx

(
1 +

(dy

dx

)2)−1/2

(13a)

cosϕ =
(

1 +
(dy

dx

)2)−1/2

(13b)

Inserting into Eq. 12 and rewriting results in

dT

dx

(
1 +

(dy

dx

)2)− 1
2

= −2p0
dy

dx
(14a)

(dT

dx

dy

dx
+ T

d2y

dx2

)(
1 +

(dy

dx

)2)− 1
2

= 2p0 (14b)

which can be reformulated as two coupled ODEs in terms
of the vertical deflection y(x) along x and the in-curve
tension T (x) as

T ′ = −2p0y
′(1 + y′2)1/2 (15a)

y′′ =
2p0

T
(1 + y′2)1/2 − T ′

T
y′ (15b)

Inserting Eq. 15a in 15b returns the static ODE system of
flexible, inelastic deflection of a slack catenary-like sail
film due to vertical SRP load distribution

T ′ = −2p0y
′(1 + y′2)1/2 (16a)

y′′ =
2p0

T
(1 + y′2)3/2 (16b)

It is useful to reformulate the system further in order to
eliminate T (x). When substituting z = y′ and dividing
such as

dT

dz
=

dT/dx

dz/dx
= −zT (1 + z2)−1 (17)

and separating variables, Eq. 17 can be integrated to ob-
tain an expression for T (x)

T (x) =
D√

1 + z2
=

T0√
1 + y′2

(18)

with D an integration constant. For any symmetric load
distribution across the circular sail, the slope of deflec-
tion is always zero at the centre, thus y′(0) = 0. In-
serting this condition into Eq. 18, it can be seen that the
integration constant D represents the tension force T0 at
the centre. Inserting the expression into Eq. 16b, the
system simplifies into a single equation
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y′′ =
2p0

T0
(1 + y′2)2 (19)

This 2nd order ODE has no explicit solution, however, an
implicit solution can be found as

y′

1 + y′2
+ arctan(y′) =

2p0

T0
x+ C1 (20)

with C1 = 0 when using again the condition y′(0) = 0.
The simplified ODE (Eq. 19) can be solved as a bound-
ary value problem (BVP) on the interval I = [a, b], with
a = 0 at the centre of the circular sail film and b = R

at the edge. While for the classical catenary under uni-
form gravitational load the central tension T0 does not
need to be known to obtain the deflection curve, for solv-
ing Eq. 19, the actual value for T0 must be specified.
Due to this, the 2nd order BVP needs a third boundary
condition (BC) to be solved numerically, e.g. using the
MATLABTM bvp4c routine that employs a three-stage
Lobatto IIIa collocation method.7 Assuming hinged sup-
port at the edge, the BCs are

y(R) = 0, y′(0) = 0, T (0) = T0 (21)

In order to find T0, a twofold approach is applied in the
following. First, an initial guess T0,init is generated from
Eq. 16b, assuming T (x) to be constant along x. The cor-
responding deflection curve is denoted by yinit and y′init.
Second, through iteration of the BVP using increments
T0,i+1 = T0,i + ∆T0, the correct T0 is approximated us-
ing the additional constraint that the final deflection curve
must satisfy a defined slack catenary length in terms of
its total arc length

S =

∫ R

0

√
1 + y′2 dx

!
= Snom (22)

When fixing the deflection curve to a predefined value
Snom, each intermediate iteration returns the current
y′i(x), using T0,i, and calculates the total curve length
Si,BVP. The iteration finishes after a predefined thresh-
old for the catenary length |Snom−Si,BVP| ≤ λ is satis-
fied, e.g. λ = 1mm.Note that the initial guess, assuming
T (x) = T0,init = const, can be generated from Eq. 16b
through analytic integration, using the above BCs. This
returns

y′ = x
[
a2

SRP − x2
]− 1

2 (23a)

and so

y = −
[
a2

SRP − x2
] 1

2 +
[
a2

SRP −R2
] 1

2 (23b)

with aSRP = T0,init/2p0. Inserting Eq. 23a into the arc
length equation (Eq. 22) gives

S(x) = aSRP · tan−1

[
x(

a2
SRP − x2

)1/2

]
(24)

and thus the deflected curve length as function of x and
aSRP. When a value for S(R) = Snom at the endpoint
R of the curve is assigned, this transcendental function
can be solved numerically for aSRP. Inserting into the
relation

T0,init = a
SRP

p0 (25)

completes the initial guess for solving the first iteration
of the BVP.

III. RESULTS

The resulting inelastic sail film deflection due to uni-
form vertical SRP load distribution is shown in Fig. 7
for a rigid hoop of h = 2R = 200 m diameter (span) and
slack length of the sail film of Snom = 105 m radius. The
result was obtained by solving the BVP with a threshold
λ = 1mm. A rough linear estimate of the central deflec-
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Figure 7: Comparison of catenary curve with SRP S = 105 m
and classic catenary in gravitational field

tion y0 to be expected results from Pythagoras equation,
y0,Pyth =

√
S2

nom −R2 = 32 m. Assuming that the
deflected film surface is an approximated paraboloid, the
corresponding focal length (see also section IV) can be
obtained from

f =
1

4ap
=

R2

2|y0|
(26)
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with ap the quadratic coefficient of the equivalent 2nd

order (parabolic) polynomial. For the example above, the
focal length would be 78 m. By positioning a detached
platform at this distance from the sail surface, it could be
used as an antenna or solar concentrator.

As can be seen from Fig. 7, the solution consider-
ing SRP is more displaced towards the edge and shows
a smaller central deflection. This is due to the hori-
zontal component of the distributed load as a function
of the local pitch angle. The final value for the ten-
sion at the centre is T0,init = 0.00183 N/m, while the
initial guess was T0,final = 0.00178 N/m, according
to Eq. 25. The tension along the x axis is shown in
Fig. 8. Throughout the following analysis, a supporting
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Figure 8: Resulting in-curve tension along catenary with SRP,
as obtained from iterative solution of the BVP, and constant
initial guess from analytic solution

rigid hoop structure of 200 m diameter will be used in
all figures. The inelastic deflection curves with increas-
ing nominal slack film length, are shown in Fig. 9 for
Snom = [101, 102, 103, 104, 105, 106] m.

IV. SAIL SHAPE CONTROL USING VARIABLE

REFLECTIVITY DISTRIBUTION

In the following, the sail deflection shape is now con-
trolled by varying the reflectivity across the sail surface
to achieve parabolic shapes useful for using a reflective
sail surface as an antenna, telescope or power collector.

In order to compare the resulting sail deflection curves
with the ideal parabolic defection shape, the reference
parabola needs to be defined first. Its curve must be of
equal total arc length, since it results from the same sail
film suspended by a rigid hoop of the same span. Assum-
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Figure 9: Inelastic sail film deflection due to uniform vertical
SRP load for different nominal sail film lengths Snom

ing a general parabolic deflection curve

yp = apx
2 + bpx+ cp (27a)

y′p = 2apx+ bp (27b)

y′′p = 2ap (27c)

and considering a symmetric load distribution, thus
y′(0) = 0, the coefficient bp is zero. The constant co-
efficient cp represents the deflection value at the centre,
thus

cp = y0 (28)

Inserting Eq. 27b into the arc length Eq. 22 yields

Sp =

∫ R

0

√
1 + (2apx)2 dx = (29a)

1

2
x
√

1 + 4a2
px

2 +
1

4ap
arsinh(2apx) + Cp

which enables calculation of the coefficient ap. From the
condition Sp(x = 0) = 0 it follows that Cp = 0. The
resulting constraint equation

1

2
x
√

1 + 4a2
px

2 +
1

4ap
arsinh(2apx)

!
= Sp,nom (30)

can be solved numerically for the coefficient ap. The BC
at the edge, y(R) = 0, finally returns the coefficient

cp = −apR
2 (31)
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From this, the reference parabola is completely defined.
It is compared to the shape of the catenary with SRP,
as obtained from the BVP, and the classical catenary in
Fig. 10. The figure shows all three curves with the same
slack length of S = 105 m. Clearly, the classical cate-
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Figure 10: Comparison of inelastic sail film deflection:
catenary curve with SRP, obtained from solving the BVP
(blue curve), classical catenary (dashed curve) and reference
parabola (red curve) with same slack length S = 105 m

nary curve is very similar to the reference parabola, as
noted in subsection II.I.

The previously defined parabolic reference deflection
curve is now to be created by controlling the reflectiv-
ity distribution across the sail surface. For this purpose,
an inverse problem is formulated from the equations of
section II, which is defined as calculating the necessary
reflectivity function ρ(x) to obtain a given sail deflection
shape. In doing so, we are replacing the constant reflec-
tivity ρ in in the SRP force equation, Eq. 8, by a generic
reflectivity function ρ(x) that varies across the sail sur-
face. Through this, the single ODE of inelastic sail film
deflection including SRP (Eq. 19) modifies to

y′′ =
p0(1 + ρ(x))

T0,p
(1 + y′2)2 (32)

Inserting the reference parabola, Eq. 27b and 27c, into
the previous equation and solving for the unknown re-
flectivity function ρ(x), results as

ρ(x) =
2ap T0,p

p0

(
1 + (2apx)2

)2 − 1 (33)

In order to find an expression for the unknown central
tension that matches the parabolic deflection curve T0,p,
the additional physical constraint ρ(R) = 0 is introduced

to Eq. 33. Solving for the central tension gives

T0,p =
p0

(
1 + (2apR)2

)2
2ap

(34)

When solving the BVP of Eq. 32 with the previously
found T0,p, the resulting sail deflection curve matches
the reference parabola, as can be seen in Fig. 11. The
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Figure 11: Comparison of catenary curve with SRP, obtained
from solving the BVP (blue curve), reference parabola (red
curve) and inverse problem solution (dotted curve), creating
parabolic sail film deflection (slack length S = 105 m)

required reflectivity distribution across the sail film in the
x direction, according to Eq. 21, is shown in Fig. 12.
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Figure 12: Required reflectivity distribution across sail sur-
face in radial x direction, creating parabolic sail film deflection
(slack length S = 105 m)
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A large, highly reflective parabolic surface has many
potential applications, such as communication, sensing
and power collection. In order to evaluate the usefulness
of the shapes that can be generated, the achievable focal
lengths will now be identified. A paraboloid concentrates
incoming electro-magnetic radiation into a single focal
point, depending on the geometrical precision of the sur-
face generated. As already noted above, the focal length
can be calculated according to

f =
1

4ap
=

R2

2|y0|
(26)

when considering the quadratic coefficient ap =

−cp/R2 = −y0/R
2. Thus, the focal length is a function

of surface radius R and its central deflection y0. The lat-
ter depends on the specified slack film length, as seen in
Fig. 9. According to this, the focal lengths are calculated
for a set of rigid hoop radii Ri = [1, 5, 10, 25, 50, 100],
each suspending a sail film of varying slack length
Si,nom = [101, 102, 103, 104, 105, 106] percent Ri. The
resulting focal lengths for all deflected sail films are
shown in Fig. 13.
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Figure 13: Focal length of deflected parabolic sail surface (of
a circular solar sail disk) as a function of sail radius and slack
length

V. CONCLUSIONS

A variable reflectivity distribution across the surface
of a thin inelastic circular sail film, supported by a
rigid hoop structure, has been used to investigate po-
tentially novel mission applications for solar sails. The
surface reflectivity can be manipulated when distributing
electro-chromic coatings across the sail film or by pre-
fabricating a fixed reflectivity distribution into the sur-
face that allows for a parabolic deflection. This way,
the sail could be used as an antenna, telescope or solar

concentrator. The sail film has been modelled as a ’cob-
web’ of radially spanned threads that are not linked in
the circumferential direction. The threads are suspended
from the rigid hoop structure and intersect at the centre
of the circular film. The governing equations of inelastic
catenary-type deflection of the surface have been derived.
The nominal sail film deflection due to a uniform vertical
solar radiation pressure load distribution has been calcu-
lated numerically by solving an iterative boundary value
problem in Matlab. Using different rigid hoop diame-
ters and slack film lengths, it was shown that the nomi-
nal sail deflection is not an ideal paraboloid. Therefore,
the deflected sail surface does not concentrate incoming
light into a single focal point. However, an analytical ex-
pression for the reflectivity function across the surface,
necessary to create a true parabolic deflection shape, has
been derived. Although limited to sail film attitudes nor-
mal to the Sun, this can be used for pre-fabricating a fixed
reflectivity distribution into the film surface. This allows
for parabolic film deflection at any solar distance, since
the obtained deflection shape is independent of the load
magnitude. The focal lengths of the resulting parabolic
reflectors were calculated for the chosen rigid hoop di-
ameters and slack film lengths. They are typically in
the range of a few hundred meters. By positioning a de-
tached platform, formation-flying in the sail film focus,
the proposed parabolic sail reflector potentially enables
novel mission applications for solar sails.
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