Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Towards an online prognostic system for predicting the axial shrinkage of AGR cores

West, Graeme and Wallace, Christopher and McArthur, Stephen (2013) Towards an online prognostic system for predicting the axial shrinkage of AGR cores. In: Annual Conference of the PHM Society 2013, 2013-10-14 - 2013-12-17.

[img]
Preview
PDF (phmc_13_062)
phmc_13_062.pdf
Final Published Version

Download (499kB) | Preview

Abstract

In the UK, there is the desire to extend the operation of the Advanced Gas-cooled Reactor (AGR) power plants beyond their initial design lifetimes of 35 years. As part of the justification of extended operation, an increased understanding of the current and future health of the graphite reactor cores is required. One measure of the health of the AGR power plants is the axial height of the graphite core, which can be determined through measurements undertaken during statutory outages. These measurements are currently used to manually make predictions about the future height of the core, through identifying the relevant data sources, extracting the relevant parameters and generating the predictions is time-consuming and onerous. This paper explores an online prognostic approach to support these manual predictions, which provides benefits in terms of rapid, updated predictions as soon as new data becomes available. Though the approach is described with reference to a case study of the UK’s AGR design of power plant, similar challenges of predicting passive structure health also exist in other designs of power plant with planned license extensions.