
This version is available at https://strathprints.strath.ac.uk/45797/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Measurement of 40 power system harmonics in real-time on an economical ARM® Cortex™-M3 platform

A. J. Roscoe, T. Sklaschus, G. Oldroyd, S. M. Blair and G. M. Burt

Within future homes and electrical power networks, emphasis is being placed on intelligent, distributed measurement devices. In particular, the recognition of individual or aggregated loads through harmonic signature has been proposed as a useful way to enhance the value of home energy monitoring/control. Clearly, the cost of implementing such measurement devices is a major barrier to acceptance. In a recent project, a challenge was set to implement real-time software on an ARM® Cortex™ LPC1768 microcontroller platform (chip cost c. £4). The software must be capable of measuring single-phase AC frequency, real and reactive power flows, and a full breakdown of the voltage and current (and power) behaviour via harmonic analysis from DC to the 40th, in real time with a new output every 20ms. In addition, the algorithm must be capable of adapting the measurement when frequency is not nominal (50 Hz) so that spectral leakage is minimised. We find in this paper that the LPC1768 processor is capable of supporting such an algorithm when it is coded appropriately. This knowledge de-risks the proposed use of such cheap microcontrollers for these relatively complex tasks.

Introduction: Implementation of Non-Invasive Load Monitoring (NILM) techniques within domestic and low-voltage power networks requires low-cost sensors and computational platforms. Many methods and algorithms have been proposed to enable detection and identification of loads. These tend to involve measurement of the dynamic real and reactive power flows during turn-on and turn-off transients [1], or harmonic signature analysis, or a combination of several such techniques [2-4]. All these techniques require dynamic measurement of the current and voltage (and hence power) waveforms in real-time, including Fourier analysis or wavelet type techniques. These are traditionally regarded as tasks of significant computational intensity, particularly when additional complications such as off-nominal frequency operation (and its effect on measurement accuracy) are considered. For example, “recommended” implementations of phasor measurement units at transmission-level voltages still do not expect the measurement techniques to include algorithms which adapt to off-nominal frequency to minimise errors [5]. At the same time, commercial power quality meters generally contain customised hardware which can adapt the sample rate to match the system frequency, but provide very slow update rates. Both these above examples have costs in the region of high hundreds or several thousand pounds.

In contrast, for NILM techniques, a sensor and processor with a cost in the low tens of pounds is probably required. To see if this can be achieved, the authors took measurement code for a resampled Fast Fourier Transform (FFT), augmented it to provide frequency measurement and power measurement functions, and implemented it on an ARM® Cortex™ LPC1768 microcontroller. Practically the mbed [6] development kit was used, which integrates the CPU in an easy-to-use package with interfaces etc., for around £30-40. The same CPU is also available in an LPCXpresso kit which is slightly cheaper. The wholesale cost of the CPU in bulk is less than £4.

Algorithm method: The algorithm used is based on that proposed in [7], which was compared to discrete Fourier analysis methods in [8]. An overview is shown in Fig. 1. The most important feature to note is that this algorithm includes 2 stages. The first stage executes at the ADC (Analog-to-Digital Converter) sample rate, which is 10 kHz and above the Nyquist frequency for the 40th harmonic of 50 Hz. At the nominal 50 Hz frequency, therefore, there are 200 samples per cycle. Voltage and current samples at this rate are re-sampled using 3rd-order interpolation, in such a manner that the re-sampled dataset places exactly 256 samples across one fundamental cycle period. Note that this period changes as the (measured) system frequency is determined.

The re-sampled datasets consist of 256 32-bit values each (1kB for voltage and 1kB for current), which are held in rolling memory buffers and the re-sampling algorithms use pointer arithmetic so that the new samples overwrite the oldest samples, and no “memory copy” or “memory shift” operations are required. The pointer to the most recent sample must be carefully tracked. This is important because after the FFT, the time-shift theorem needs to be applied in order to account for the phases of the harmonic components.

The FFT operation is triggered once every 20ms, i.e. only once for every 200 samples sampled at the ADCs. The FFT and post-analysis code is generated using auto-generated C code from MATLAB Simulink code. In particular, the standard Simulink FFT is used, which recognises that only real values (not complex) are input and allows the “half length” algorithm to be used. This algorithm requires an additional memory space of 256 32-bit values in which to place the calculated real and imaginary output components, a total of 2kB for voltage and 2kB for current. The FFT operation is computationally intensive, and is executed at a low interrupt priority, which allows the re-sampling algorithm to be executed at 10 kHz on a higher-priority interrupt.

In this implementation, a new FFT operation is triggered exactly every 20ms, since the main requirement was a regular measurement of frequency, harmonic content, active, and reactive powers. However, an interesting point is that since the single-cycle FFT measurement has a rectangular window function, a more accurate cumulative energy monitor could be created by triggering a new FFT at a rate given by the period of the actual system frequency which varies in time. This would avoid double-counting or mis-counting of energy due to off-nominal frequency.

The main algorithm augmentations compared to the description in [8] is that a closed-loop frequency measurement was added to the voltage measurement. This is done by extracting the rate-of-change of phase of the fundamental voltage from the FFT, and averaging over 5 FFT measurements (100ms) using a simple equally-weighted 5-tap FIR filter. The averaging reduces ripple due to interharmonics and noise, and reduces the risk of the frequency measurement loop oscillating. Additional functions which are executed at the 20ms rate are the calculations of magnitude and phase of each harmonic, RMS values, THD (Total Harmonic Distortion), power factors/angles, and the total...
active power flow which is calculated by summing all the power flows on each individual harmonic. This last part allows calibration of sensors with known responses across the frequency range, giving a more accurate result than a simple averaged product of the instantaneous voltages and currents.

Computational viability on the ARM Cortex M3: The CPU itself has a maximum clock speed of 96 MHz. The mbed platform includes 32kB data memory (RAM) and 512kB Flash memory, although the CPU itself can support up to 64kB RAM [6]. Power consumption is of the order of 7-149 µW/MHz [9]. The key question is whether the described algorithm can be executed on the microcontroller within the 20ms allowed for the analysis of each single cycle. Initial benchmarking results suggested that the ARM CPU was slower than the more expensive Infineon TC1796 processor [8] by a factor of between 3 (multiplication, division) and 10 (trigonometric functions). However, by adopting all the optimisations described in this paper and [8], it is found possible to execute the resampling algorithm (for both voltage and current channels) in about 54µs, within the maximum allowed time of 100µs to support 10 kHz sampling.

The time required to execute the 2 channels of FFT is much longer. Firstly, the FFT requires more mathematics as is well known. Also, the 2 FFTs access the full 6kB of memory, which itself takes time. The 2 FFTs take 8720µs in total. This is within the 20,000µs (20ms) limit. Crucially, the total of 200x54µs+8720µs=19520µs is marginally within the total allowed limit of 20ms allowed to make the entire operation viable with the sampling and resampling at 10 kHz.

Conclusion: We find that it is possible (by a tight margin) to sample a single-phase AC waveform (both voltage and current) at 10 kHz and perform a thorough analysis of its properties on a cycle-by-cycle basis, on a modern but cheap microcontroller such as the ARM® Cortex™-M3, with a low power consumption. The analysis includes Fourier analysis to the 40th harmonic, with minimal spectral leakage due to the resampling process. Knowledge of this possibility allows the creation of economical but highly accurate and capable distributed sensors within the domestic environment.

A. J. Roscoe, T. Sklaschus, G. Oldroyd, S. Blair and G. Burt
(University of Strathclyde, Glasgow, UK)
E-mail: Andrew.J.Roscoe@strath.ac.uk

References