Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Towards semantic category verification with arbitrary precision

Roussinov, Dmitri (2011) Towards semantic category verification with arbitrary precision. In: Advances in Information Retrieval Theory. Lecture Notes in Computer Science, Springer, pp. 274-284. ISBN 9783642233173

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many tasks related to or supporting information retrieval, such as query expansion, automated question answering, reasoning, or heterogeneous database integration, involve verification of a semantic category (e.g. “coffee” is a drink, “red” is a color, while “steak” is not a drink and “big” is not a color). We present a novel framework to automatically validate a membership in an arbitrary, not a trained a priori semantic category up to a desired level of accuracy. Our approach does not rely on any manually codified knowledge but instead capitalizes on the diversity of topics and word usage in a large corpus (e.g. World Wide Web). Using TREC factoid questions that expect the answer to belong to a specific semantic category, we show that a very high level of accuracy can be reached by automatically identifying more training seeds and more training patterns when needed. We develop a specific quantitative validation model that takes uncertainty and redundancy in the training data into consideration. We empirically confirm the important aspects of our model through ablation studies.