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ABSTRACT: As wind turbines increase in size and move offshore, operations and maintenance procedures
need to be optimised to increase reliability, safety and maximise cost effectiveness. The practice of installing
condition monitoring systems to allow the real time monitoring of assets as a means to achieve these goals
is becoming more wide-spread. This allows operators to adopt a condition based maintenance approach that
theoretically allows reduced costs over both preventive and corrective maintenance strategies.

There have been several studies into the possible benefits and cost advantages of using a condition based main-
tenance strategy. However, few have examined the implications of system detection rates or false alarms. Many
studies have assumed that condition monitoring systems will detect all the faults they are designed to observe.
This will not be the case. Investigating false alarms or ignoring false positives in a remote offshore environment
will incur costs that may alter the cost benefit of condition monitoring systems.

Probabilistic models are used in the paper to determine the possible benefits of using condition monitoring
systems and the effect that system detection rates and false positives have on the reliability of the system. The

methods used include Markov chains and time-series modelling.

1 INTRODUCTION

There has been growing support for the use of renew-
able energy. Of the different renewable technologies
available, wind turbines have become the dominant
technology in this area. The growth of the number and
size of turbines installed worldwide has been large
in recent years. In the UK, National Grid, the trans-
mission operator, predict 26 GW of wind capacity in
2020 (Smith, Rimmer, Durk, & Wilkinson 2011). If
British Government legislation is effective then off-
shore wind will provide 17 GW of this energy (DECC
2013).

The capital costs involved in the development and
installation of wind farms have also increased. To en-
sure the maximum return on investment, operators are
looking to maximise turbine availability and minimise
Operation and Maintenance (O&M) costs. Condition
Monitoring (CM) systems and Supervisory Control
and Data Acquisition (SCADA) systems allow Con-
dition Based Maintenance plans (CbM) to be used
which offer possible O&M savings over both Fail-
ure based Maintenance (FbM) and Preventive Mainte-

nance (PM) strategies (Garcia Marquez, Tobias, Pinar
Pérez, & Papaelias 2012).

To show if savings can be realised using CbM a
cost benefit study must be completed. Cost benefit
analyses for CbM have been produced for other in-
dustries including nuclear (March 1994), pharmaceu-
ticals (Rajan & Roylance 1996), power transmission
(Jones 2008) and railways (Garcia Marquez, Lewis,
Tobias, & Roberts 2008). These models rely heav-
ily on reliability data and CM system detection rates.
This is used in conjunction with information on com-
ponent replacement costs, loss of revenue, environ-
mental, safety and network performance. A particular
concern to offshore wind turbines are sea states and
weather which limit access for repair and inspection
work.

Turbine reliability data has been collected from
onshore wind farms since the late 1980s. The most
popular databases are shown in Table 1. Offshore
databases are smaller in number, size and duration. In-
formation from the Dutch offshore farm, Egmond aan
Zee (Noordzee Wind CV 2008, Noordzee Wind CV
2009, Noordzee Wind CV 2009), and several of the



UK offshore farms, including Scroby Sands (BERR
2007b) and Kentish Flats (BERR 2007a), have been
used widely in literature (Faulstich, Hahn, & Tavner
2011, Dinwoodie, McMillan, & Quail 2012, Feng,
Qiu, Crabtree, Long, & Tavner 2011).

Andrawus et al. (2006) examine the effect of CbM
on 26 turbines of 600 kW. Asset life cycle analysis
is used in conjunction with component failure rates
to show a total saving in excess of £180,000 over
18 years. Byon and Ding (2010) demonstrated bene-
fits from adopting a season-dependant dynamic CbM
strategy using Markov states and Monte Carlo simula-
tions. The results showed a reduction in O&M costs of
£10,330 per annum. This was a further reduction from
a static CbM strategy of £7,700. Many parameters are
examined in these studies but there is no analysis for
the effects of CM system detection rate or false alarms
in these two studies.

Nilsson and Bertling (2007) model the effects of
changing maintenance strategy on offshore turbines
to include CbM, also using life cycle analysis. Their
simulation model used cost information and reliabil-
ity data obtained from Elsam (now DONG) Energy
for offshore turbines. For an entire wind farm, the
availability would need to increase by 0.43% to make
the CM systems profitable. Also 47% of the correc-
tive maintenance completed would need to have orig-
inally been PM. This figure shows the amount of work
a CM system needs to complete to become an asset to
a farm. It does not take into account the level of ef-
fectiveness a CM system must obtain to add value or
examine the case of false alarms.

McMillan and Ault (2007) use Markov Chains to
model the states of 5 MW offshore turbines and the
effects that CbM has on O&M costs. They found
that for an individual turbine cost savings of approx-
imately £75,000 per annum when using CbM. This
was for a CM system that is 100% effective at find-
ing the desired fault modes. A parameter analysis was
completed on CM system effectiveness and found that
it needed to obtain a 60% effectiveness level to be cost
effective on an optimistic model. This work does not
examine the effect of false alarms on maintenance.

The CONMOW project run by the Energy Re-
search Centre of the Netherlands (ECN) investigates
condition monitoring systems for offshore turbines.
As part of the project, a parameter analysis was com-
pleted looking at CM system effectiveness and false
alarms (Wiggelinkhuizen, Verbruggen, Braam, Rade-
makers, Xiang, & Watson 2008). The paper added
various amounts of additional false alarms to an ex-
isting CM alarm database. At a 60% CM fault detec-
tion rate, when the false alarm rate was increased from
10% to 50%, the reduction of repair costs changed
from 13% to 10%. The study examines the addition
of false alarm rates but does not treat them as intrinsic
to the CM system itself.

The previous work shows that the benefit of CbM is
affected by a wide range of parameters. Some of these

Table 1: Popular Onshore Failure Databases

Database Information
LWK A German database concerning wind
farms installed in the
Schleswig-Holstein region between
1993 and 2006.
WMEP A long running German study that has

been the framework for other studies.

1500 turbines were tracked between

1989 and 2006 with an average rating
of 167 kW.

A German database updated quarterly
between 1996 and 2008. 4924 turbines
were tracked at its peak.

WindStats Germany

parameters have been explored more than others and
values such as CM system detection and false alarm
rates have relatively unknown impacts on the cost ef-
fectiveness of CbM. Some basic information is be-
coming available about CM system detection rates for
major subassembly. There is little information about
actual false alarm rate of CM systems.

In this paper, a model is built to examine these pa-
rameters further. Some simple system detection rates
are used as basis in the model. False alarms are gen-
erated independently for each sub assembly using a
false alarm rate for different failure modes. These two
parameters are varied to show the effect on the finan-
cial benefit of CM systems.

2 METHODOLOGY

The nature of failures in wind turbines can be mod-
elled as both stochastic and deterministic processes.
The wind is a stochastic process, leading to turbines
having complex loading and failure patterns (Byon,
Ntaimo, Singh, & Ding 2011). Markov chains have
been used widely, as discussed previously, to repre-
sent such processes accurately.

In existing databases sub assemblies and compo-
nents are often assigned a failure rate to show relia-
bility. Failure rate is shown in Equation 1 where f(t)
is the number of failures over an observed time period
and N (t) is the duration of the time period.

A discrete time Markov chain has a finite number
of states. After each time step, there is the chance of
a change of state known as the transition probabil-
ity. When discussing Markov chains with regards to
reliability, the system begins in an operational state
and has a chance to move to a deteriorated state. The
transitional probability is based on the failure rate
shown in Equation 2. The transitional probabilities
are then grouped together into a state transition ma-
trix. An example matrix is shown in Equation 3 for
a two state Markov chain. The failure process in a
wind turbine can be represented as both a two and
three state Markov chain. Three state chains, used by
McMillan and Ault and Abeygunawardane and Jiru-
titijaroen, have an intermediate state where a compo-



nent is in a state of deterioration where repair is pos-
sible. It is in this deteriorated state that they measure
the effectiveness of CM systems.
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Hidden Markov models (HMM) add a layer of
complexity onto Markov chains. The core Markov
chain is now unobserved and feedback from the sys-
tem is given through an observation layer with its own
statistical probabilities. Eddy (1996) states that they
have been used in many fields including the genera-
tion of protein structural modelling. An example of
a HMM is shown in Figure 1. In this example, when
the system is in State 1, A’ is most likely to be ob-
served. When in State 2, a ’C’ is most likely to be ob-
served. When repeated multiple time, the output from
the observable layer gives information about the hid-
den Markov chain. This is analogous to a CM system
output which will attempt to predict the pending state
of the sub assembly but will not be correct all the time.

It is this approach that Byon and Ding (2010)
adopt in their work. Referred to as partially observed
Markov decision process (POMDP), it is used to rep-
resent both the degradation of components and the
ability of a condition monitoring system to derive a
degraded state.

0.1
0.2

A=06 A=0.1

B=02 B=0.1

C=02 C=08

Figure 1: A simple HMM for a two state Markov chain

3 MODELLING

Throughout the remainder of this paper, CM system
detection rate will refer to the ability of a CM system
to detect a particular failure mode and flag this as an
alarm. Likewise, CM system reliability will refer to
the CM system’s likelihood of showing alarms which
are not present in the sub component or conversely,
not alarming a state that requires action. Failure rates
for both SCADA and CM sensors can be found for

Table 2: CM System Detection Rates

Sub Assembly Detection Rate
Gearbox 50%
Generator 80%
Drive Train (incl. Main 40%
Bearing, High Speed and
Low Speed Shaft)

onshore turbines (Wilkinson & Hendriks 2007). How-
ever, the term CM system reliability is used to refer to
errors within the system and that cannot be immedi-
ately cleared as a system fault.

The model consists of wind turbine sub assemblies
each represented by a two state Markov chains. These
sub assemblies have been divided into the taxonomy
suggested by Faulstich et al. (Faulstich, Durstewitz,
Hahn, Knorr, & Rohrig 2008). This forms the hidden
part of a HMM. An observable state transition matrix
is used to represent the CM system output. This al-
lows for the CM system detection rates for individual
sub assemblies to be input. Further, it gives the possi-
bilities of inserting false alarms, as an alarm can now
be observed while the sub assembly is still in an op-
erational state. It is assumed in the model that a false
alarm allows causes 24 hours of lost production while
the system is checked and the false alarm cleared. Fig-
ure 2 displays an example HMM used for each sub
assembly.

Each sub assembly contains information on fail-
ure rates for major and minor faults, average down-
time per fault, cost for component replacement, CM
system detection rate and CM system reliability. The
failure rates are based on NoordzeeWind reports (No-
ordzee Wind CV 2010), with the failure rates modi-
fied as suggested by Dinwoodie et al. (2012). These
divide fault events into two categories. Major faults
are those which exceed 24 hours of downtime. Minor
faults are those that are cleared in less than that time.
The CM system detection rates are based on those
suggested by Weiss (2012) for the gearbox, generator
and drive train. These numbers are shown in Table 2.
No information could be found on likely CM system
reliability and this was set initially to 99.99% reliable.

The component cost information was based on the
work of Poore and Walford (Poore & Walford 2008).
This gave 2004 onshore costs based on turbine size.
The cost was adjusted to account for inflation to 2012
- set at 2.2% (CIA 2012). The additional cost of
marinisation for offshore use was found using a factor
of 1.27 (Dinwoodie, McMillan, & Quail 2012). Com-
ponent costs were reduced for faults captured by CM
system. It is assumed that CMS will allow the major
component cost of the replacement to be saved. For
example, a bearing failure in a generator may cause
damage to the rotor and other components, leading
to the replacement of the entire sub assembly. If the
CM system detects the bearing fault early, then only
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Figure 2: Example sub assembly hidden Markov chain used in the model

the bearings themselves may need to be replaced. Re-
placing the rotor and bearings in the generator of a
1500 kW onshore turbine in 2004 was $52,850 while
replacing the bearings alone cost $3,300 (Poore and
Walford 2008).

Other assumptions for the model include a cost of
$55 per MWh (Morton 2013) and a capacity factor
of 33.3% based on the 2009 Egmond aan Zee value
(Noordzee Wind CV 2010).

The model generates both hidden and observed
states for the given number of Markov years for each
sub assembly. It then counts and compares the ob-
served and hidden states and notes any differences.
Component costs and downtime hours for the year are
then calculated and averaged out across the Markov
years. A base line case is also computed where no
CM system is used. As these failure rates are based
on turbines that operate under regular inspection and
maintenance, the base case is for a wind farm with
a PM strategy. The cost formulae are given below in
Equations 4, 5, 6 and 7. In the equations, C' refers to
component repair costs, s refers to a turbine with
a CM system, g, refers to a turbine without a CM
system, f refers to a failure not caught by the CM
system, ¢y represents a failure observed correctly,
tq refers to a false alarm caused by the CM system
and k refers to the number of failure modes for each
component - in this model major and minor failures.
When a failure is correctly identified by the CM sys-
tem the downtime associated with the fault is reduced
to 20%, a figure based on examples given by Morton
(Morton 2013).

k
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This is done for each turbine in the farm and for

each operational year. The annual downtime is mul-
tiplied by the cost of produced energy. This figure is
added to the component cost to give an annual oper-
ational cost. Both baseline and CM system case costs
are then levelised to represent net present value (NPV)
and produce a wind farm availability figure. A dis-
count rate of 4% is used.

3.1 Convergence

All models must produce results that are independent
from the number of Markov years used in the simula-
tion. Convergence refers to the point where the model
produces the same result regardless of the number of
years used. This is important for the accuracy of the
model and to minimise the simulation run time. In
Figure 3 the wind farm operational costs for the first
year are plotted against the number of Markov years.
Several techniques were employed to assess the con-
vergence of the model based on Gelman and Shirley
(2003). All simulations quoted in this paper use 2000
Markov years.
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Figure 3: Convergence values of the simulation



4 RESULTS

4.1 Basic validation against Scroby Sands

In 2007, Scroby Sand wind farm spent approximately
£1,634,000 on O&M costs (BERR 2007b). This num-
ber doesn’t include the cost of lost production but
does include labour costs. Scroby Sands is a UK off-
shore wind farm first commissioned in 2004 with 30
turbines of 2000 kW. This cost was adjusted for in-
flation to 2012 prices and converted into U.S. dollars
based on the average foreign exchange rate for 2007 -
$2.0012 (USD) to £1 (GBP) (X-Rates 2012).

This equates to a value of approximately
$3,747,000. The model produced a component
replacement cost (excluding the cost of lost produc-
tion and labour) of approximately $4,378,000. This is
a 17 % difference in costs.

A more direct comparison can be made for the
farm availability. The average technical availability of
Scroby Sands for 2007 was 83.83%. Technical avail-
ability is the time that the farm is available to gen-
erate ‘expressed as a percentage of the theoretical
maximum’ (BERR 2007b), i.e. the 8760 hours in a
year. The model produces a technical availability of
82.27%. This a 1.84% relative difference.

There are many other factors not included in the
model such as turbine age or annual weather sever-
ity. So while this number may initially appear large
the model is producing numbers that are in the cor-
rect order of magnitude. Additionally, the O&M cost
is not broken down any further so the percentage of
installation costs is unknown for Scroby Sands.

4.2 Variation of CM System Detection Rate

The remaining simulations in this paper use 30 tur-
bines of 3000 kW for an operational life of 20 years.
The CM system reliability rate is set at 99.99%. The
known CM system detection rates as in Table 2 are ap-
plied throughout. The other sub assemblies have their
detection rates varied from 90% to 50% in 10% incre-
ments. The results are shown in Figure 4. The figure
shows that in each case, using a CbM strategy brings
O&M cost savings over a PM strategy. The total op-
erational costs over the lifetime of the wind farm for
a PM strategy is approximately $132,100,000. At a
90% CM detection rate this reduces to $99,800,000
representing a saving of over 24%. At the lower CM
system detection rate of 50% this reduces to 20.4%

The availability of the wind farm in the base case is
82%. This increases to over 90% with a CM detection
rate of 50%.

4.3 Variation of CM System Reliability

The CM system detection rate was set to 50% for the
unknown detection rates. The system reliability was
then simulated as 99.99%, 99.9%, 99%, and 80%.
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Figure 4: Lifetime savings compared to a PM strategy with dif-
ferent CM system detection rates

The life time wind farm availabilities are shown in
Figure 5 against CM system reliability. In the figure
the system reliability has been converted into an an-
nual failure rate using Equation 2. A 99.99% reliable
CM system gives an annual failure rate of 0.0001 and
at 80% reliable this increases to 0.2231.

The availability drops from 90.0% to 88.9% as the
reliability drops from 99.99% to 80%.
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89.8%

89.6%
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89.2%

Wind Farm Availability

89.0%

88.8%
0.0001 0.001 0.01 0.1 1

Failure Rate

Figure 5: Wind farm lifetime availability plotted against *failure
rate’

Looking at the normalised lifetime costs associated
for those reliabilities, for a decrease in system reliabil-
ity from 99.99% to 90%, approximately an additional
$282,000 is seen in lost production. When comparing
the non levelised costs this figure is $322,223 which
is the equivalent to 98.6 additional downtime hours
per turbine per year.

5 CONCLUSIONS

A simulation model has been developed for use in the
estimation of component costs - for both a PM and
CbM strategy - using hidden Markov models. It shows
that a CbM strategy has the ability to reduce opera-
tional lifetime costs by 20% over the PM equivalent
when using some known detection rates.



With regards to the CM system reliability, a de-
crease in the reliability causes an increase in false
alarms. These false alarms have an impact on the
overall availability of the wind farm. The model has
simulated this effect as reduction from 90.0% to
88.9% availability.

To improve the accuracy of the model, the cost
model should be updated to include the installa-
tion and transport costs of the components. The se-
curing of vessels and appropriate access windows
also have an impact on availability and cost savings
when analysing CbM (Dinwoodie & McMillan 2012).
Adding the well documented effects of ageing on fail-
ure rates and annual weather variations effects on
availability and capacity factor will go further to in-
crease the accuracy of the model.
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