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Abstract: We investigate the coupled dynamics of light and cold atoms
in a unidirectional ring cavity, in the regime of low saturation and linear
single-atom response. As the dispersive opto-mechanical coupling between
light and the motional degrees of freedom of the atoms makes the dynamics
nonlinear, we find that localized, nonlinearity-sustained and bistable
structures can be encoded in the atomic density by means of appropriate
control beams.
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Spatial dissipative solitons are stable, self-localized structures which exist in open systems
driven far from thermal equilibrium, and with general features which cut across nonlinear sci-
ences [1]. In the context of optics they can be realized in nonlinear pattern-forming systems,
such as nonlinear cavities [2, 3], where a self-localized structure for the light is encoded in the
internal excitation of the nonlinear medium. In warm atomic gases, the internal state is consti-
tuted by the populations and coherences of the atoms, while the motional degrees of freedom
are irrelevant as optical forces are overwhelmed by thermal effects. In recent years, however,
spatial self-organization due to the coupling of light and the motional degrees of freedom of
cold [4–11] and ultracold [12–14] matter attracted remarkable interest. The spontaneous ap-
pearance of off-axis far field sidebands indicating transverse structuring in a low aspect ratio
regime was reported in [15]. Spontaneous symmetry breaking leading to large-scale patterns in
the plane transverse to the propagation of a single beam has been predicted in [16] for a cavity
configuration, and was observed in a single-mirror setup with Rb atoms [17,18] .
We shall demonstrate in the following that the model discussed in [16] for pattern formation
can also support dissipative solitons. This model is developed assuming strong viscous damp-
ing for the atomic velocities (see also [10, 11]) and can be extended to soft matter systems,
where solitonic self-trapping of beams has already been predicted [19–21] and observed [22].
Recently coupled energy-matter dissipative solitons have also been proposed [23]. The system
analyzed here also shares some formal similarities with the optomechanical cavity system ana-
lyzed in [24], where dissipative structures are found for an empty cavity with a deformable mir-
ror. However, we remark that in [24] the relevant optical forces are given by radiation pressure
on the mirror, while we deal here with dipole forces on the atoms. An important consequence
of this is that the system analyzed here does not support plane-wave bistability.
A fundamental property of dissipative solitons is the fact that they are bistable, and thus can
be switched on and off ‘at will’ by means of appropriate control beams [2]. In the cold-atoms
situation studied here, bistable structures are thus encoded in the spatial density distribution of
the gas. At difference with atomic lithography [25], however, here one is allowed to optically
‘write’ and ‘erase’ a given density structure which remains unaffected after the control beams
have been turned off, sustained just by a homogeneous pump (see Fig. 1).
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Fig. 1. A plane wave of amplitudeAin drives a single-longitudinal-mode cavity charac-
terized by a lengthL , mirror transmittivityT , and lifetimeκ−1. The intracavity fieldf
interacts with a cloud of two-level laser-cooled atoms (optical densityb0, temperatureT ).
Optical molasses are assumed to act on the cloud during such interaction. A self-localized
state for the cloud density and the optical field can be sustained by the homogeneous driving
(right inset, the red-detuned case is shown).

We consider a sample ofN two-level atoms laser-cooled at a temperatureT ∼ 100µK and
placed along the axis of a single-longitudinal-mode ring cavity of lengthL . In this work we
assume low saturation and treat the atoms as linear scatterers, but we allow for density redistri-
butions of the atomic density in the plane transverse to the cavity axisz, so thatN0n(x) denotes
the atomic density at the transverse coordinatex = (x,y), whereN0 is the homogeneous den-
sity. The optical cavity is driven by a plane wave of amplitudeAin and frequencyω0, so that
using the slowly varying envelope, rotating wave, paraxial, and mean field approximations the
intracavity field f is governed by the wave equation (see also [3]):

∂ f
∂ t

=−(1+ iθ ) f +Ain − iγ n f + i∇2 f . (1)

All the quantities appearing in Eq. (1) are adimensional. We specifically rescaled time to the
cavity lifetimeκ−1 =L /(cT ) (c speed of light in vacuum,T mirror transmittivity) and space
to the diffraction length

√
a= [λ0L /4πT ]1/2, whereλ0 is the radiation wavelength. The light-

cavity detuning is given byθ = (ω0−ωcav)/κ , while γ parametrizes the cloud susceptibility.
Assuming the optical field to be detuned far from the atomic resonanceωat, absorption can be
neglected and the susceptibility is given byγ = b0∆/[2(1+∆2)], with b0 the optical density in
resonance,δ = ω0−ωat the light-atom detuning and∆ = 2δ/Γ the half-linewidth detuning (Γ
is the inverse atomic lifetime). Scaling is such thatI = | f |2 gives the off-resonance saturation
parameter associated to the intracavity intensity.
In warm gases Eq. (1) has to be modified to account for excitation of the electronic transition,
giving at lowest order a Kerr-like nonlinear response. This leads to the paradigmatic Lugiato-
Lefever model of nonlinear optics [3], which is well known to display plane-wave bistability,
pattern formation, and localized structures. However, even in the limit of a linear single-atom
response density redistributions due to optical forces lead to nonlinear effects, so that pattern
formation is made possible [16]. Bubble instabilities driven by diffused light were also pre-
dicted to occur in such ‘linear optical’ regime [26]. We also remark that in correspondence with
the homogeneous state (nh = 1) there is no nonlinearity, so that no plane-wave bistability is
possible from Eq. (1).
The wave equation (1) for the optical field must now be supplemented with a material equation
for the atomic density distribution. The density modulationn is coupled to the field dynamics
through the action of dipole forces, which in the limit of large detuning and low saturation
are given byFdip = −(h̄δ/2)∇| f |2. Assuming optical molasses to damp the atomic velocities
during the interaction with the field, a Fokker-Planck equation can be derived for the density
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modulation [10,11]:
∂n
∂ t

=
h̄δ

2kBT
D∇ ·

[

n∇| f |2
]

+D∇2n , (2)

whereD is a diffusion constant depending on the details of the optical molasses [27]. The
stationary solution of Eq. (2) is the equilibrium distribution

neq(x) =
Ωexp

[

−σ | f (x)|2
]

∫

Ω dx′exp[−σ | f (x′)|2] σ =
h̄δ

2kBT
, (3)

whereΩ is the transverse size of the cloud, so that a stationary solution for the system can be
obtained by inserting (3) into (1), and solving the latter until a stationary state is reached. We re-
mark that we are interested here in determining the stationary state which attracts a given basin
of initial conditions and not in the temporal dynamics of the system. The method described
above has been used in [16] to numerically investigate spontaneous structuring due to optome-
chanical forces. In fact, it can be shown that the homogeneous solutionfh = Ain/[1+ i(θ + γ)],
nh = 1 is unstable to transverse perturbations when the intracavity intensityIh = | fh|2 exceeds
the critical intensityIc = 1/(σγ). Hexagons for the optical intensity emerge spontaneously in
the transverse plane as the result of a symmetry breaking process, with complementary struc-
tures encoded in the atomic density distribution. Recently, opto-mechanical self-structuring was
observed experimentally in cold Rb gases with a single-mirror feedback [18].
Whenever spatial structures emerge as a result of an instability, it is interesting to ask whether
such structures can coexist with a stable homogeneous background. If this happens, in fact,
self-localized solutions (e.g. dissipative solitons) are possible for the system as different regions
of the transverse domain can display different stationary solutions (structured/homogeneous).
Such structures are localized by the nonlinearity and have the fundamental property of being
bistable, i.e. they can be switched on and off by appropriate control beams, a property that
makes them interesting candidates for optical information processing and storage [1]. A pecu-
liar feature of the system analyzed here is that a stationary, self-localized structure would be
encoded in the density distribution of the atoms, whereas the internal excitation of the system
is typically involved in hot-atoms pattern formation. This opens up new opportunities for the
shaping and control of potentially quite complex and reconfigurable atomic density distribu-
tions, which only need homogeneous driving to sustain after they have formed.
We thus envisage a situation where one can ‘write’ and ‘erase’ coupled light-matter structures
in a controllable way by inducing localized structures in atomic density. Suppose in fact that
a region of high density is created in the atomic cloud during the interaction with the pump
beam. This could be achieved for instance by using additional control beams, completely inco-
herent with the pump. The ‘slow’ timescale for this process is essentially dictated by the time
for atomic motion,τext ∼ 10µs (to move by∼ 1µm atT ∼ 100µK). Light from a red-detuned
(and spatially homogeneous) pump beam would then be guided towards high density regions,
effectively creating a bright light spot. The ‘fast’ timescale for this process will be determined
by the cavity lifetime,κ−1 ≪ τext. If localized states are stable for the system (i.e. if bistability
is obtained for the ‘homogeneous’ and ‘patterned’ solutions), such localized spot of light can
sustain itself via nonlinear dipole forces. Analogously, one could create a ‘hole’ in the atomic
cloud (on the timescale ofτext), which in turns would attract blue-detuned light from the spa-
tially homogeneous pump (on the timescale ofκ−1). Such a bright localized spot of light can
then sustain itself by expelling atoms from the high intensity region, again by means of dipole
forces. In both cases, self-localized structures are eventually sustained just by a homogeneous
driving. Additional beams can then be used to erase any given density structure present in the
cloud, thus removing the entire light-matter structure.
To demonstrate that a bistable regime for the homogeneous/patterned solutions is indeed possi-
ble, Fig. 2(a) shows the bifurcation diagram for the instability obtained from one-dimensional
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Fig. 2. (a) Crossing the intensity thresholdIc for self-structuring the homogeneous solution
becomes unstable and a ‘patterned’ solution for the densityn(x) bifurcates subcritically
(blue circles). As the control parameterIh is decreased, the pattern survives below the
critical valueIc and loses stability forIh/Ic < 0.9 (red squares). Parameters are:σ = 25,
γ = 4.5, andθ =−3.7. M denotes the maximum deviation from the background valuenh =
1. The right panel (b) shows a solution obtained atIh/Ic = 0.93, displaying a dissipative
soliton and a three-peaks localized pattern.

simulations withσ = 25, γ = 4.5, andθ = −3.7. Taking theD2 line of 87Rb as a reference
(transition wavelengthλ0 = 780.27nm), these parameters would correspond to a beam blue-
detuned byδ = +10Γ from the resonance of a cloud with optical densityb0 = 180 and tem-
peratureT ≃ 60µK. Eq. (1) is solved withn = neq using a split-step Fourier method until a
final time of 103 cavity lifetimes (using 105 time steps). Periodic boundary conditions are im-
plemented over a domain of 7 critical wavelengthsΛc = 2π/[1− (θ + γ)] [16]. Discretization
is performed on a grid of 256 (256×256) points for one (two) dimensional simulations. The
homogeneous intensityIh = | fh|2 is varied crossing the critical valueIc = 8.8×10−3, and the
resulting density pattern is monitored through the maximum deviation from the background
value,M = max|n(x)− nh|. As the ‘patterned’ branch bifurcates subcritically, a bistable re-
gion 0.9< Ih/Ic < 1 is obtained where both the spatially modulated and the spatially homoge-
neous solutions are stable. Coupled light-matter dissipative solitons are therefore stable in this
domain. The system also allows for the simultaneous and independent coexistence of cavity
solitons and localized patterns, as shown in Fig. 2(b). The small variations in the quantityM
along the upper branch are a known effect of the discretization of the reciprocal domain. We
remark that, although these results are obtained from one-dimensional simulations, no differ-
ences are expected in two dimensions as the stability properties of the system depend only on
the wavenumber|q|. However, the fact that the bifurcation is subcritical already in one dimen-
sion indicates that soliton formation is a robust feature of our system. Hexagons are in fact
always subcritical in nature, and the subcriticality domain is expected to widen moving to two
transverse dimensions.
Fig. 3 shows the results from two-dimensional simulations, for the same parameters as Fig. 2(a)
andIh/Ic = 0.93. Here we start the simulations with a localized light-matter state (with com-
plementary gaussian profiles), and find that these states are attracted towards the structures
displayed in Fig. 3. As discussed earlier, such an initial condition could be prepared by means
of appropriate control beams. Self-localized solutions are obtained in the transverse plane(x,y)
for the atomic density (right panels), with corresponding structures encoded in the optical in-
tensity (left panels). The spatial size∼ Λc

√
a of these structures can be controlled by varying

the cavity detuningθ , the susceptibilityγ and/or the diffraction length
√

a. For a mirror trans-
mittivity T = 0.1 and a cavity lengthL = 1mm we obtain a size∼ 0.5mm, which is well
within the transverse size of modern setups. As can be seen from Fig. 3, light accumulates
in atom-depleted areas in the blue-detuned regime, while it is guided towards atom-rich areas
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Fig. 3. Two-dimensional intensity (left) and density (right) profiles obtained from numerical
simulations for the same parameters as Fig. 2(a) andIh/Ic = 0.93. Two stable, self-localized
structures are formed for the atomic density, sustained by expelling atoms from (attracting
atoms towards) regions of high optical intensity in the blue (red) detuned regime.

in the red-detuned case. However, as in Ref. [16] we find that the blue-detuned regime dis-
plays higher stability, as the expulsion of atoms results in a strong saturation effect. As in the
one-dimensional case we find that these structures can coexist independently on the same ho-
mogeneous background. Moreover, they can be switched on and off independently or, if the
system is prepared with broader initial localized profiles, multi-peaked localized states can be
obtained (see also [28]). This paves the way to the development of addressable techniques in
which a spatial structure is encoded ‘at will’ in the spatial density distribution of a cold gas.

In conclusion, we investigated the formation of dissipative solitons in the coupled dynamics
of light and cold atoms. In the limit of low saturation no nonlinearities arise from the inter-
nal state of the atoms, but nonlinear redistribution effects can lead to spontaneous structuring,
see [16]. We numerically demonstrated the existence and stability of self-localized light-matter
solitons, encoded at will in the transverse atomic density distribution. The model developed
here assumes optical molasses to provide velocity damping, but this was found to be inessential
for the self-structuring process, both theoretically and experimentally. The recent observation
of hexagonal self-structuring in cold Rb [17, 18] is a promising starting point for the experi-
mental study of coupled light-matter dissipative solitons. Future work could include electronic
nonlinearities arising from saturation of the involved optical transitions. Another interesting
line of work is to extend the study presented here to the regime of quantum degeneracy where
matter wave coherence could yield novel features.
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