Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Identifying preferred solutions to multi-objective binary optimisation problems, with an application to the multi-objective knapsack problem

Argyris, Nikolaos and Figueira, José Rui and Morton, Alec (2011) Identifying preferred solutions to multi-objective binary optimisation problems, with an application to the multi-objective knapsack problem. Journal of Global Optimization, 49 (2). pp. 213-235.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we present a new framework for identifying preferred solutions to multi-objective binary optimisation problems. We develop the necessary theory which leads to new formulations that integrate the decision space with the space of criterion weights. The advantage of this is that it allows for incorporating preferences directly within a unique binary optimisation problem which identifies efficient solutions and associated weights simultaneously. We discuss how preferences can be incorporated within the formulations and also describe how to accommodate the selection of weights when the identification of a unique solution is required. Our results can be used for designing interactive procedures for the solution of multi-objective binary optimisation problems. We describe one such procedure for the multi-objective multi-dimensional binary knapsack formulation of the portfolio selection problem.