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BENCHMARK MODELS OF EXPECTED RETURNS IN U.K. PORTFOLIO 

PERFORMANCE: AN EMPIRICAL INVESTIGATION 

ABSTRACT 

 I use the second Hansen and Jagannathan(1997) distance measure (HJD) to examine 

whether index-based models similar to Cremers, Petajisto and Zitzewitz(2012) are more 

reliable benchmark models of expected returns than the Fama and French(1993) and 

Carhart(1997) models in U.K. stock returns.  I use the second HJD as it is important to take 

account of pricing errors over possible contingent claims when considering benchmark 

models that are used in fund performance applications (Wang and Zhang(2012)).  I find that 

all of the candidate benchmark models are misspecified.  I find that conditional multifactor 

models provide significant lower second HJD compared to the unconditional factor models.  I 

find that there is nothing to be gained in terms of significant lower second HJD in using the 

index-based models compared to the conditional Carhart model.  My results suggest that 

among the models I consider, the most reliable models are the conditional Carhart model and 

the conditional seven-index model of Cremers et al(2012). 
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I Introduction 

 The linear factor models of Fama and French(1993) and Carhart(1997) are used 

extensively in the evaluation of managed fund performance and for examining the 

performance of trading strategies (e.g. Alwathainani(2012)).  Fama and French(2010) provide 

comprehensive evidence on U.S. mutual fund performance using these two models as do 

Cuthbertson, Nitzsche and O’Sullivan(2008) for U.K. unit trusts
12

.  Recent studies by Chan, 

Dimmock and Lakonishok(2009) and Cremers, Petajisto and Zitzewitz(2012) highlight 

problems in using both the Fama and French and Carhart models in fund performance.  

Cremers et al find that different passive indexes have significant performance relative to both 

models which suggests that the models are unable to correctly assign zero performance to 

passive trading strategies with no skill. 

 Cremers et al(2012) propose alternative index-based models to evaluate fund 

performance.  The index-based models are constructed from benchmark indexes provided by 

Standard and Poor’s and Frank Russell and provide alternative ways to capture the size and 

value/growth effects in stock returns.  Cremers et al find that their index-based models 

outperform the Fama and French(1993) and Carhart(1997) models in a number of 

specification tests.   

 I examine, using U.K. stock return data, whether index-based models similar to 

Cremers et al(2012) provide more reliable benchmark models of expected returns compared 

to the Fama and French(1993) and Carhart(1997) models.  My study differs from Cremers et 

al in that I evaluate the models using the second Hansen and Jagannathan(1997) distance 

measure (HJD).  Hansen and Jagannathan show that the second HJD captures the minimum 

                                                           
1
 U.K. unit trusts are equivalent to open-end U.S. mutual funds. 

2
 Cuthbertson, Nitzsche and O’Sullivan(2010) provide an excellent review of open-end U.S. 

and U.K. fund performance evidence. 
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distance between a candidate stochastic discount factor
3
 model and the set of nonnegative 

stochastic discount factors that correctly price a given set of test assets
4
.  The second HJD 

penalizes models that have pricing errors in the test assets and pricing errors in potential 

contingent claims, such as derivative claims in the test assets. 

 Wang and Zhang(2012) argue that it is important to use the second HJD to evaluate 

benchmark models that can be used in fund performance because the payoffs of managed 

funds can approximate contingent claims (see Merton(1981), Dybvig and Ross(1985), and 

Glosten and Jagannathan(1994) among others).  The payoffs of a managed fund can 

approximate contingent claims either by the fund investing directly in derivatives or by 

engaging in dynamic trading strategies (e.g. Merton).  This latter case is important as many 

traditional U.K. open-end and closed-end funds do not invest directly in derivatives.  

Benchmark models that cannot price correctly contingent claims are unreliable for evaluating 

fund performance (see Glosten and Jagannathan, Chen and Knez(1996), and Wang and 

Zhang(2012) among others for more discussion).   

 I consider both unconditional and conditional versions of the two index-based models 

similar to Cremers et al(2012) and the two empirical factor models similar to Fama and 

French(1993) and Carhart(1997).  I also include the capital asset pricing model (CAPM) as 

an additional benchmark model.  I estimate and evaluate the models using the second HJD 

between January 1959 and December 2010 using the approach developed by the recent 

                                                           
3
 See Ferson(2003) and Cochrane(2005) for excellent reviews of the stochastic discount 

factor approach to asset pricing.  Ferson(2012) shows how the stochastic discount factor 

approach can be used to unify a number of important issues in fund performance. 

4
 The set of nonnegative stochastic discount factors that correctly price the set of test assets 

are known as admissible stochastic discount factors.  Models which do not belong to this set 

are known as inadmissible models. 
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studies of Li, Xu and Zhang(2010) and Gospodinov, Kan and Robotti(2010).  I compare the 

performance of the models by testing the equality of the squared second HJD measures 

between models using the pairwise and multiple model comparison tests developed by 

Gospodinov et al(2010,2012a).  

 There are three main findings in my paper.  First, I find that all of the candidate 

benchmark models are misspecified.  None of the models are able to correctly price the N 

payoffs and be arbitrage free at the same time.  Second, I find that the conditional multifactor 

models provide significant lower second HJD relative to the unconditional factor models and 

the conditional CAPM using the excess returns and scaled excess returns of size/dividend 

yield (DY) portfolios and gross Treasury Bill return as the set of payoffs.  Third, I find that 

there is nothing to be gained in using the index-based models compared to the conditional 

Carhart(1997) model as there are no significant differences in the second HJD between the 

conditional Carhart and seven-index models.  The results of the paper would suggest that 

among the factor models I consider, the conditional Carhart model or conditional seven-index 

model are the most reliable models to use in evaluating U.K. fund performance. 

 My study contributes to the large literature which focuses on the admissibility of 

benchmark models in evaluating U.S. and U.K. managed fund performance.  A partial list 

includes Fletcher(1994), Ahn, Cao and Chretien(2009), Chan et al(2009), and Cremers et 

al(2012) among others.  I contribute to this literature by using the second HJD to evaluate the 

benchmark models.  Related papers by Wang and Zhang(2012), Chen and Ludvigson(2009), 

Li et al(2010), and Gospodinov et al(2010, 2012a) in U.S. stock returns and Fletcher(2010) in 

U.K. stock returns use the second HJD to evaluate different asset pricing models.  My study 

differs from these studies, in particular Fletcher, by comparing the index-based models of 

Cremers et al relative to the Fama and French(1993) and Carhart(1997) models. 
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 The paper is organized as follows.  Section II describes the research method used in 

the study.  Section III reports the data.  Section IV presents the empirical results.  The final 

section concludes. 

II Research Method 

Ross(1978), Harrison and Kreps(1979), and Hansen and Richard(1987), among 

others, show that if the law of one price (LOP) holds in financial markets then there exists a 

stochastic discount factor mt such that: 

                   Et-1(mtxt) = qt-1                                                              (1) 

where xt is a (P,1) vector of the payoffs of P primitive assets at time t, and qt-1 is a (P,1) 

vector of the costs of the P primitive assets at time t-1.  Where financial markets satisfy the 

no arbitrage (NA) restriction, mt will be positive in every state of nature (Cochrane(2005)).  

The stochastic discount factor will only be unique if markets are complete
5
.  Equation (1) 

states that conditional on the information available at time t-1, the risk-adjusted payoffs of the 

primitive assets at time t has costs equal to qt-1.  In my study, the payoffs are the gross returns 

of the U.K. Treasury Bill and the excess returns of test portfolios sorted by security 

characteristics.  In this case, the qt-1 vector is given by [1;0P-1], where 0P-1 is a (P-1,1) vector 

of zeros. 

 Taking unconditional expectations of equation (1) results in the unconditional pricing 

equation: 

                                           E(mtxt) = E(qt-1)                                                     (2) 

The difference between the left-hand side and right-hand side of equation (2) are the pricing 

errors of the primitive assets.  Cochrane(1996,2005) shows that the unconditional pricing 

equation in (2) can be used to incorporate the impact of conditioning information without 

                                                           
5
 Markets are complete when investors can buy any contingent claim (see Cochrane(2005)). 
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having to specify a model of conditional moments
6
.  Define Zt-1 as a (L+1,1) vector of a 

constant and L lagged information variables at time t-1.  The approach of Cochrane augments 

the payoffs of the P assets by creating scaled payoffs where each payoff is multiplied by the 

L lagged information variables.  The scaled payoffs of a given asset i using one of the lth 

lagged information variables (xitZlt-1) are equivalent to a dynamic trading strategy that invests 

Zlt-1 each period in asset i with a cost equal to (qit-1Zlt-1).  The number of payoffs (N) created 

by this approach equals P*(L+1). 

Define yt as a candidate stochastic discount factor model.  The most widely used form 

of stochastic discount factor models are linear factor models.  In this study, I consider the 

models based on the CAPM, the empirical factor models of Fama and French(1993) and 

Carhart(1997), and the index-based models of Cremers et al(2012).  The stochastic discount 

factor of a linear factor model can be written as: 

                  yt = γ0 + Σ
K

k=1γ0kfkt                                                 (3) 

where fkt is the value is the value of the kth factor at time t and K is the number of factors in 

the models.  The slope coefficients (γ0k) tell us whether the factors are important in pricing 

the N payoffs given the other factors in the model (Cochrane(2005)).  The specification in 

equation (3) refers to unconditional versions of the models where γ0 and γ0k are constant 

through time.  Conditional versions of the models allow the γ0 and γ0k parameters to vary 

through time.  The standard approach is to model γ0t and γ0kt as a linear function of a small 

number of lagged information variables in the investor’s information set (Hodrick and 

Zhang(2001)). 

One of the challenges in estimating conditional factor models is that the number of 

parameters increase sharply as more lagged information variables are added.  The increase in 

                                                           
6
 Asset pricing models can be evaluated using conditional moments in equation (1) as in 

Nagel and Singleton(2011). 
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the number of parameters raises the possibility that the model performs well due to 

overfitting the data (Hodrick and Zhang(2001)).  To reduce the problem of overfitting, I only 

include one lagged information variable.  I model the constant γ0t and slope coefficients γ0kt 

on the K factors as a linear function of the lagged information variable defined as zt-1 as γ0t = 

γ0+γ1zt-1 and γ0kt = γ0k+γ1kzt-1.  The conditional version of the models can be written as: 

             yt = γ0 + γlzt-1 + Σ
K

k=1γ0kfkt + Σ
K

k=1γ1kfktzt-1                                       (4) 

 Hansen and Jagannathan(1997) develop a framework to evaluate candidate stochastic 

discount factor models for which equation (2) might not be true.  They propose two distance 

measures in their analysis.  The first HJD measures the minimum least squares distance 

between yt and the set of admissible stochastic discount factors (M) that correctly price the 

set of N payoffs.  Hansen and Jagannathan show that the first HJD is equal to the maximum 

pricing error of a portfolio of N payoffs with a unit norm.  Some of the admissible stochastic 

discount factors in set M can take on negative values and so contradict the NA restriction.  

Admissible stochastic discount factors in M which are negative in certain states of the world 

can introduce arbitrage opportunities on possible contingent claims such as derivative 

securities.  Such stochastic discount factors are inappropriate to use in evaluating fund 

performance as the payoffs of managed funds can approximate the payoffs of contingent 

claims (e.g. Merton(1981), Glosten and Jagannathan(1994)) and so will generate pricing 

errors on managed funds.  The payoffs of funds can approximate contingent claims either by 

the fund directly trading in derivates or through dynamic trading strategies. 

 To take account of pricing errors over contingent claims in the evaluation of candidate 

stochastic discount factor models, Hansen and Jagannathan(1997) develop the second HJD.  

The second HJD measures the minimum least squares distance between yt and the set of 

nonnegative admissible stochastic discount factors (M
+
) that correctly price the N payoffs.  

The squared second HJD (d
+2

) is given by: 
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                           d
+2

 = min (mM
+
) E[(yt – mt)

2
]                                                    (5) 

The maximum pricing error interpretation of the second HJD is more complicated as the 

maximum pricing error over all possible contingent claims depends upon the choice of m in 

M
+
.  Hansen and Jagannathan show that the second HJD is equal to the minmax pricing error 

bound over all possible contingent claims with unit norm.  Wang and Zhang(2012) argue that 

one should use the second HJD to evaluate the suitability of benchmark models for use in 

fund performance.  The reason is that with the second HJD, models are penalized through not 

only having large pricing errors over the N payoffs but also large pricing errors over 

contingent claims.   

Hansen and Jagannathan(1997) show that the second HJD can be extended to the case 

where the candidate stochastic discount factor model has unknown parameters (γ).  The 

parameters in the stochastic discount factor model can be estimated to minimize the second 

HJD.  Hansen and Jagannathan show that we can estimate the second HJD and the parameters 

in the stochastic discount factor by solving the following conjugate problem:       

                          d
+2

 = minγ maxλ (1/T)
T

t=1Φt(γ,λ)                                                         (6) 

where Φt(γ,λ) = yt(γ)
2 

- mt(γ,λ)
+2 

- 2λ’qt-1.  The xt vector is a (N,1) vector of payoffs at time t 

on the primitive assets, qt-1 is a (N,1) vector of costs on the N payoffs at time t-1, λ is a (N,1) 

vector of Lagrange Multipliers, mt(γ,λ)=yt(γ)-λ’xt, and mt(γ,λ)
+
=max(0,yt(γ)-λ’xt).  The 

Lagrange Multipliers tell us which payoffs make the largest contribution to model 

misspecification.  If a given payoff has a zero Lagrange Multiplier then that payoff makes no 

contribution to model misspecification.  

Hansen and Jagannathan(1997) point out that mt(γ,λ)
+
 is the payoff of an option that is 

the solution to equation (6).  The mt(γ,λ)
+
 term is a NA admissible stochastic discount factor 

that belongs to set M
+
.  The difference between yt and mt(γ,λ)

+
 term is the minimum 

adjustment required to make the candidate model yt to belong to set M
+
.  The stochastic 
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discount factor parameters, Lagrange Multipliers, and second HJD can be solved through 

numerical methods.  For linear factor models, Gospodinov et al(2010) provide a fast iterative 

analytical solution. 

I estimate and compare the performance of the models using the second HJD using 

the results developed by the recent studies of Li et al(2010) and Gospodinov et 

al(2010,2012a). In the Appendix, I provide fuller details of the results of these studies and the 

model comparison tests but here I provide a summary of the tests I use.  Li et al(2010) and 

Gospodinov et al(2010) derive the asymptotic distribution of the stochastic discount factor 

model parameters (γ) and Lagrange Multipliers (λ) under the null of a misspecified model
7
.  

The main challenge in deriving the asymptotic distribution is the fact that Φt(γ,λ) is not 

differentiable everywhere since the second derivative does not exist when yt(γ)-’xt = 0.  I 

use the distribution theory to examine whether the factors play a significant role in pricing the 

N payoffs (γ ≠ 0) and to examine whether the individual values of λ are equal to zero.  

Hansen, Heaton and Luttmer(1995) derive the asymptotic distribution of the second 

HJD under the null of a misspecified model.  Li et al(2010) and Gospodinov et al(2010) 

derive the asymptotic distribution of the second HJD under the null of a correctly specified 

model.  I use the distribution theory of the second HJD to test whether d
+
=0 as a specification 

test of each model.  The test of a zero first HJD was derived by Jagannathan and 

Wang(1996).  Gospodinov et al show that the same approach can be used to test for a zero 

second HJD.  Simulation evidence in Ahn and Gadarowski(2004)) suggest that the test of 

Jagannathan and Wang on the first HJD tends to overreject models when N is large relative to 

T.  As an alternative specification test, I adapt the Lagrange Multiplier (LM) test in Theorem 

1 of Gospodinov et al(2012a).  Gospodinov et al derive the LM test, using the first HJD 

                                                           
7
 Ludvigson(2012) advocates the use of empirical methods in asset pricing that allow for 

potential model misspecification and facilitate model comparison tests. 
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framework, to examine whether λ=0N, where 0N is a (N,1) vector of zeros.  Simulation 

evidence in Gospodinov et al suggests that the LM test has good finite sample properties and 

is not subject to the overrejection problem. 

 Li et al(2010) and Gospodinov et al(2010) develop model comparison tests of the 

equality of the second HJD for two stochastic discount factor models.  The model comparison 

tests of Li et al are refined and extended by Gospodinov et al.  I test the equality of the 

second HJD between two models using the approach in Gospodinov et al.    The test statistic 

is given by: 

                 Diff = d
+2

F – d
+2

G                                                   (7)                                

where d
+2

F and d
+2

G are the squared second HJD for two models F and G.  I use the pairwise 

model comparison tests to examine whether there are significant differences in the second 

HJD for every pair of factor models.  I also adapt and use the multiple model comparison test 

developed by Gospodinov et al(2012a) to examine whether a benchmark model has the 

lowest second HJD across the competing models.  I use the model comparison tests to 

examine if the index-based models of Cremers et al(2012) provide a significant lower second 

HJD than the Fama and French(1993) and Carhart(1997) models.  All of the test statistics are 

corrected for heteroskedasticity and serial correlation using the automatic lag selection, 

without prewhitening, method of Newey and West(1994).   

III Data 

All of the data is collected from the London Share Price Database (LSPD) provided 

by the London Business School unless otherwise specified.  Details of the construction of the 

primitive assets, the factors in the linear factor models, and the lagged information variable 

are provided in the Appendix.     

A) Primitive Assets 
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 My set of primitive assets include the monthly gross returns of the three-month U.K. 

Treasury Bill, monthly excess returns of eighteen portfolios sorted by size and DY, and the 

scaled monthly excess returns of the size/DY portfolios between January 1959 and December 

2010.  I include the Treasury Bill return to tie down the expected value of the stochastic 

discount factor models to be just below 1 (Farnsworth, Ferson, Jackson and Todd(2002), Kan 

and Robotti(2008)).  I do not scale the gross Treasury Bill return.  I use the DY to capture the 

value/growth effect rather than the book-to-market (BM) ratio due to data availability.  

Dimson, Nagel and Quigley(2003) find that the value effect is not as strong with DY but 

there is a high positive correlation between zero-cost portfolios formed using the DY and BM 

ratios
8
.   

The size/DY portfolios are formed each year and are value weighted buy and hold 

excess returns.  All securities are grouped into four portfolios by market value in ascending 

order (Small to Big).  Within each size portfolio, all securities are further grouped into a zero 

DY portfolio and four portfolios by their DY in ascending order (Low to High).  For most of 

the years of my sample period, apart from the Small size quartile, there are an insufficient 

number of companies to form a zero DY portfolio for each size quartile.  As a result, I group 

all the zero DY companies in the size quartiles 2 to Big into a single zero DY portfolio, 

which I refer to as the Big/Zero portfolio.  Table 1 reports summary statistics of the size/DY 

portfolio excess returns.  The table includes the mean (panel A) and standard deviation (panel 

B) of monthly excess returns (%).   

 

Table 1 here 

 

                                                           
8
 Chan, Karceski, and Lakonishok(1998) also find a DY effect in U.K. stock returns. 
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 Table 1 shows that there is a wide spread in the average excess returns across the 

size/DY portfolios.  The average excess returns range between 0.355% (Big/Zero) and 

1.200% (Small/3).  There is a clear size effect in the average excess returns across all DY 

classifications, where the Small portfolio has a higher average excess return than the Big 

portfolio.  There is less of a DY effect in the mean excess returns across the size 

classifications.  The High portfolio provides a higher mean excess return than the Low 

portfolio across all size classifications.   

To limit the size of the N payoffs relative to the number of T observations, I only 

include one lagged information variable in Zt-1.  I create scaled excess returns on the size/DY 

portfolios by multiplying the portfolio excess returns by the lagged information variable.  I 

form the scaled excess returns of the size/DY portfolios by multiplying the size/DY portfolio 

excess returns using the lagged term spread as the information variable.  The costs of the 

scaled excess returns are equal to zero.   

To examine the predictive ability of the lag term spread, I run predictive regressions 

of the size/DY portfolio excess returns on a constant and the lagged term spread in 

unreported tests
9
.  I find that the lagged term spread has significant predictive ability of the 

size/DY portfolio excess returns.  There is a significant positive relation between the lagged 

term spread and future monthly excess returns for all portfolios, except the four DY 

portfolios in the largest size category and the Big/Zero portfolio.  A Wald test rejects the null 

hypothesis of no predictability across all 18 portfolios.  The R
2
s are all 5.6% or under, which 

highlights that the predictability is small in statistical terms.  The regressions provide some 

support to using the lagged term spread to scale the size/DY portfolio excess returns.         

B) Factors 

 I use the following factor models in our empirical analysis: 

                                                           
9
 Results are available on request. 
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1. CAPM 

This model is a single-factor model that uses the excess returns of the U.K. stock 

market index (Market) as the proxy for aggregate wealth. 

2. Fama and French(1993) (FF) 

 The FF model is a three-factor model.  The factors are the excess return on the market 

index and two zero-cost portfolios that capture the size (SMB) and value/growth (HML) 

effects in stock returns.  I use the DY to capture the value/growth effect.   

3. Carhart(1997) 

 The Carhart model is a four-factor model.  The factors are the three factors in the FF 

model and a zero-cost portfolio that captures the momentum effect (WML) in stock returns. 

4. Four-index model (4-index) 

 This model is a four-factor model and is motivated by the four-index model in 

Cremers et al(2012).  Cremers et al advocate the use of index-based models to capture the 

size and value/growth effects in stock returns.  The factors include the excess returns on the 

largest 100 stocks (Large), the difference in returns between small stocks and large stocks 

(Small-Large), the difference in returns between high DY stocks and low DY stocks across 

all companies (HML (All)), and WML. 

5. Seven-index model (7-index) 

 This model is a seven-factor model and is motivated by the seven-index model in 

Cremers et al(2012).  The factors include the excess returns on the largest 100 stocks (Large), 

the difference in returns between small stocks and mid-cap stocks (Small-Mid), the difference 

in returns between mid-cap stocks and large stocks (Mid-Large), the difference in returns 

between high DY stocks and low DY stocks across large companies (HML (Large)), the 

difference in returns between high DY stocks and low DY stocks across mid-cap companies 
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(HML (Mid)), the difference in returns between high DY stocks and low DY stocks across 

small companies (HML (Small)) and WML. 

 Table 2 reports summary statistics of the factors included in the linear factor models 

between January 1959 and December 2010.  Table 2 shows that all of the factors have 

positive average excess returns except the Small-Mid factor.  The WML factor has the largest 

mean excess return at 0.632%, which is more than two standard errors from zero.  This 

finding confirms the strong momentum effect in U.K. stock returns.  The average excess 

returns on the Market and Large factors are also more than two standard errors from zero.  

All of the size factors (SMB, Small-Large, Small-Mid, and Mid-Large) have average excess 

returns close to zero and none are more than two standard errors from zero.  The HML and 

HML (All) factors have positive average excess returns and both are more than two standard 

errors from zero.  This result confirms the value effect in U.K. stock returns.  The pattern in 

average excess returns in the HML (Large), HML (Mid), and HML (Small) factors show that 

the value effect is concentrated in the largest and smallest companies.  The HML (Large) and 

HML (Small) factors both have mean excess returns more than two standard errors from zero. 

 

Table 2 here 

 

 In unreported tests, I examine the predictive ability of the lagged term spread for the 

monthly factor excess returns.  I find that the lagged term spread has significant predictive 

ability for a number of factors.  I find a significant positive relation between the lagged term 

spread and future monthly excess returns for the SMB, HML, Small-Large, Mid-Large, and 

HML (Small) factors.  There is a significant negative relation between the lagged term spread 

and future monthly excess returns for the WML factor.  All of the R
2
s are below 3.1% and so 

the degree of predictability is small in statistical terms. 
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IV Empirical Results 

 I begin my empirical analysis by examining whether the set M
+ 

is non-empty for the 

N payoffs using the excess returns of the 18 size/DY portfolios, scaled excess returns of the 

size/DY portfolios, and the gross return of the three-month U.K. Treasury Bill.  Gospodinov 

et al(2010) show that the set M
+
 can be non-empty when there are in-sample arbitrage 

opportunities in the set of N payoffs.  Gospodinov et al show that the issue of whether in-

sample arbitrage opportunities exist can be checked by running a linear programming 

problem with constraints that mt ≥ 0 for t = 1,…,T, and: 

                                                (1/T)Σt=1
T
xtmt = q                                                              (8) 

where q is a (N,1) vector of average costs.  I run this linear program for the overall period and 

find that M
+
 is non-empty.  There exist nonnegative admissible stochastic discount factors in 

my sample period.   

 I estimate the model parameters for each linear factor model to minimize the second 

HJD.  Table 3 reports summary statistics of the fitted stochastic discount factor values for 

each model and the specification test using the second HJD.  The E(y) and σy columns are the 

mean and standard deviation of the fitted stochastic discount factor values.  The Prop(y<0) 

column is the proportion of the fitted stochastic discount factor values below zero (%).  The 

d
+
 column reports the second HJD and the p value of the null hypothesis of a zero second 

HJD is in parentheses.  The p(λ) column is the p value of the LM test of Gospodinov et 

al(2012a), which examines if λ=0N.  The SE(d
+
) column is the standard error of the second 

HJD under the null of a misspecified model from Hansen et al(1995).  The conditional 

versions of the models are in bold in all the tables.   

 

Table 3 here 

 



15 
 

 Table 3 shows that all of the models are rejected as being correctly specified using the 

second HJD.  The p values of the test for a zero second HJD are all 0 and so none of the 

models are able to correctly price the N payoffs and be arbitrage free at the same time.  The 

LM test likewise rejects the null hypothesis that λ=0N.  The second HJD ranges between 

0.392 (conditional 7-index) and 0.496 (unconditional CAPM).  All of the conditional versions 

of each model have a lower second HJD than the corresponding unconditional versions of the 

model.  The three best performing models by the magnitude of the second HJD are the 

conditional versions of the 7-index, Carhart, and 4-index models. 

 All of the factor models have a sensible value for the mean fitted stochastic discount 

factor values at 0.994, which is important for model comparison tests (Kan and 

Robotti(2008)).  This result stems from including the gross Treasury Bill return in the N 

payoffs.  The conditional versions of the models are more volatile than the unconditional 

versions of the models.  All of the models have very few negative fitted stochastic discount 

factor values.  The conditional Carhart model has the highest proportion of negative fitted 

stochastic discount factor values at 2.88%.  The small proportion of negative fitted stochastic 

discount factor values for conditional models is a feature of using the second HJD to estimate 

the model parameters (see Li et al(2010)). 

 The results in Table 3 compare the performance of the models using the point 

estimates of the second HJD.  I next examine whether there are significant differences in the 

squared second HJD between every pair of factor models using the model comparison tests.  I 

also use the multiple model comparison tests to examine, for each model as the benchmark 

model, whether the given benchmark model has the lowest squared second HJD across a set 

of models.  Panel A of Table 4 reports the difference in the squared second HJD for each pair 

of models.  Where the difference is positive (negative), the model in the row has a higher 
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(lower) second HJD than the model in the column.  Panel B of the table reports the LR test 

and p value of the multiple non-nested model comparison tests of Gospodinov et al(2012a).   

 

Table 4 here 

 

 Panel A of Table 4 shows that there are a number of significant differences in the 

second HJD between models.  The unconditional CAPM model is the poorest performing 

model and has a significant higher second HJD than every other model at the 10% level, 

except for the unconditional 4-index model.  The null hypothesis that the unconditional 

CAPM model has the lowest squared second HJD among the competing models is strongly 

rejected in the multiple non-nested model comparison tests in panel B of Table 4 and in the 

nested model comparison tests.  Among the unconditional multifactor models, there are no 

significant differences in the squared second HJD between the models.  However the 

unconditional versions of the model perform poorly relative to the conditional multifactor 

models.  The unconditional FF, Carhart, 4-index, and 7-index models have a significant 

higher second HJD than all the conditional FF, Carhart, 4-index, and 7-index models.  The 

null hypothesis using any of the unconditional models as the benchmark model of having the 

lowest squared second HJD across models is rejected in the multiple non-nested and nested 

model comparison tests.  These results provide strong support to the superior pricing 

performance of the conditional multifactor models relative to the unconditional models when 

using the second HJD to estimate and evaluate models.     

 Among the conditional factor models, the conditional CAPM has a significant higher 

second HJD than the other conditional models.  The null hypothesis that the conditional 

CAPM has the lowest squared second HJD among the competing models is rejected in the 

multiple non-nested and nested model comparison tests.  The conditional FF model has a 
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significant higher second HJD than the conditional Carhart model but among the conditional 

Carhart, 4-index, and 7-index models there are no significant differences in the second HJD.  

The null hypothesis using the conditional 4-index model as the benchmark model having the 

lowest squared second HJD among the models is rejected at the 10% level in the multiple 

non-nested model comparison tests.  The conditional Carhart and 7-index models have the 

best performance in Table 4 when evaluating the models using the second HJD.  For both 

models, the hypothesis using either of these models as the benchmark model that they have 

the lowest squared second HJD across all models cannot be rejected. 

 The results in Tables 3 and 4 show that conditional multifactor models outperform, in 

terms of lower second HJD, the unconditional factor models and the conditional CAPM.  To 

explore the performance of some of the models in more detail, Table 5 reports the model 

parameters (panel A) and Lagrange Multipliers (panel B) for the two best performing models 

(conditional Carhart and 7-index models) and the unconditional FF model as a comparison.  

Panel A of the table reports the stochastic discount factor parameters (γ) and t-statistics in 

parentheses.  The t-statistics in panel A of Table 5 are computed with misspecification-robust 

standard errors.  The Wald test examines whether the coefficients on the lag term spread and 

scaled factor excess returns are jointly equal to zero.  This test examines the importance of 

conditioning information in the conditional factor models.  Panel B of the table reports the 

Lagrange Multipliers (λ) and t-statistics in parentheses of the five payoffs with the highest 

absolute t-statistics, where the t-statistics are computed under the null of a correctly specified 

model.  The Portfolio column in panel B refers to the corresponding payoff. 

 

Table 5 here 
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 Panel A of Table 5 shows that there are a number of significant coefficients in the 

three stochastic discount factor models.  In the unconditional FF model, all three factors have 

significant slope coefficients at the 10% level.  A negative slope coefficient in the 

unconditional model is consistent with a positive factor risk premium.  In the conditional 

Carhart model, there is a significant negative slope coefficient on the Market, HML, and 

WML factors.  There is also a significant negative slope coefficient on the lag term spread 

and the scaled SMB factor and a significant positive slope coefficient on the scaled WML 

factor.  The Wald test rejects the null hypothesis of the slope coefficients on the lag term 

spread and scaled factor excess returns being jointly equal to zero.  These results suggest that 

conditioning information has a significant impact in improving the performance of the 

conditional Carhart model relative to the unconditional Carhart model. 

 For the conditional 7-index model, there is a significant negative slope coefficient on 

the HML (Large), HML (Small), and WML factors.  There is a significant negative slope 

coefficient on the lagged term spread and a significant positive slope coefficient on the scaled 

WML factor at the 10% level.  The Wald test rejects the null hypothesis that the slope 

coefficients on the lag term spread and scaled factor excess returns are jointly equal to zero.  

This result confirms the importance of conditioning information in improving the 

performance of the conditional 7-index model relative to the unconditional 7-index model.   

 Panel B of Table 5 shows that the gross Treasury Bill return has the largest absolute t-

statistic across the three models.  Gospodinov et al(2012b) show that with the choice of the 

cost vector in my study, q=(1,0,0,…0)’, that the Lagrange multiplier on the Treasury Bill 

return is not normally distributed and so cannot be used to assess statistical significance
10

.  

This result stems from the fact that under the null of a correctly specified model, the 

asymptotic covariance matrix of λ is singular and some linear combinations of λ are not 

                                                           
10

 I am grateful to the reviewer pointing out this issue. 
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asymptotically normally distributed.  The Lagrange Multipliers of the payoffs with the largest 

absolute t-statistics are nearly all scaled excess returns on the size/DY portfolios.  The scaled 

excess returns of the Big/High, Big/3, and 2/High portfolios are common across the three 

factor models as being among the five largest absolute t-statistics. 

 The results in Tables 3 to 5 show that conditional multifactor models provide superior 

performance relative to the unconditional factor models and conditional CAPM when using 

the second HJD to evaluate the models.  This result is consistent with the superior 

performance of conditional factor models in Hodrick and Zhang(2001) who use the first HJD 

to evaluate models.  The surprising result here is that Kan and Robotti(2009) show that much 

of the superior performance of the conditional factor models in terms of lower first HJD is 

not statistically significant when using tests that allow for potential model misspecification.  I 

do not find this pattern when using the second HJD to compare models as the test statistics 

are robust to potential model misspecification. 

 The results also suggest that the index-based models do not significantly outperform 

the conditional Carhart model in terms of lower second HJD.  This result differs from 

Cremers et al(2012).  The difference could stem from the use a different metric to evaluate 

models and I consider conditional versions of the models in addition to the unconditional 

versions of the models.  The two best performing models are the conditional Carhart and 7-

index models.  The results would suggest that these two models are the most reliable 

benchmark models to use in evaluating fund performance among the set of models I consider.  

A caveat to this interpretation is that the second HJD represents one way to evaluate the 

pricing errors over contingent claims
11

.  Gospodinov et al(2010) show that when markets are 

complete, the second HJD is a lower bound on the maximum pricing error over all contingent 

                                                           
11

 An alternative approach is the minimum discrepancy method of Almeida and 

Garcia(2012). 
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claims.  As a result, they argue that one model could have a higher second HJD than another 

model and yet have a smaller maximum pricing error over all contingent claims.  In this case, 

the model with the lower second HJD would not be a better model to use for pricing 

derivatives or alternatively a more reliable benchmark model to use in evaluating fund 

performance.  However this argument rests on the existence of complete markets. 

  The analysis of the paper so far has used size/DY portfolios as the set of test assets 

to evaluate the different factor models.  In a critique of asset pricing tests, Lewellen, Nagel 

and Shanken(2010) argue that the use of size/book-to-market (BM) portfolios as the test 

assets has limited power to discriminate between alternative models due to the tight 

covariance structure in the size/BM portfolios.  A similar issue could arise in the use of the 

size/DY portfolios.  Lewellen et al advocate expanding the set of test assets to break the tight 

covariance structure in the size/BM portfolios.  I examine how sensitive my results are to 

using a different set of N payoffs to evaluate models.  I use the excess returns of 16 size/beta 

portfolios
12

, scaled excess returns of the size/beta portfolios, and the gross Treasury Bill 

return as the N payoffs.  The size/beta portfolios are available between January 1961 and 

December 2010.  Details on the construction of the size/beta portfolios are included in the 

Appendix.   

I examine whether M
+
 is non-empty in this new set of N payoffs and find that M

+
 is 

non-empty and admissible stochastic discount factors do exist.  I repeat the tests of Tables 3 

and 4 using the new set of N payoffs.  Table 6 reports summary statistics of the fitted 

stochastic discount factor values for each model and the specification tests using the second 

HJD and the LM test.  I do not report the model comparison tests (results are available on 

request) but will discuss in the text. 

                                                           
12

 Kan, Robotti and Shanken(2012) use 25 size/beta portfolios as an alternative set of test 

assets when using the cross-sectional R
2
 to evaluate linear factor models. 
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Table 6 here 

 

Table 6 shows that the use of a different set of N payoffs has only a marginal impact 

on the summary statistics of fitted stochastic discount factor values and the relative 

performance of the models.  There is an increase in the volatility of the fitted stochastic 

discount factor values for the unconditional Carhart, 4-index, and 7-index models and the 

conditional Carhart, 4-index, and 7-index models.  There is only a small proportion of 

negative fitted stochastic discount factor values, with the conditional 7-index model having 

the highest proportion at 3.666%.  The second HJD in Table 6 is lower than that in Table 3 

for each of the models but the relative performance across the models is similar.  The null 

hypothesis of a zero second HJD is rejected for each model as is the null hypothesis that 

λ=0N, which suggests that each model is misspecified.  For each factor model, the conditional 

version of the model provides a lower second HJD than the unconditional version of the 

model.  The three best performing models in terms of the lowest second HJD are the 

conditional 7-index, Carhart, and 4-index models, which is the same as for the size/DY 

portfolios. 

The model comparison tests using the size/beta portfolios provide a similar picture to 

Table 4.  The main difference is that the conditional FF model does not perform as well in the 

size/beta portfolios.  This result is due to the fact that whereas for the other conditional 

multifactor models, there is an increase in volatility of the fitted stochastic discount factor 

values using the size/beta portfolios, there is a decrease in volatility for the conditional FF 

model.  The conditional Carhart, 4-index, and 7-index models provide a significant lower 

second HJD than all the unconditional models and the conditional CAPM and FF models.  In 

the multiple non-nested and nested model comparison tests, for all the unconditional models 
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and the conditional CAPM and FF models the null hypothesis using these models as the 

benchmark that they provide the lowest squared second HJD across the models can be 

rejected.  Among the conditional Carhart, 4-index, and 7-index models there are no 

significant differences in the second HJD and using the multiple model comparison tests, the 

hypothesis cannot be rejected for any of these models that they provide the best performance 

in terms of the smallest squared second HJD. 

The results in Table 6 and the model comparison tests suggest that using an 

alternative set of N payoffs has little impact on my findings.  The superior performance of the 

conditional multifactor models, with the exception of the conditional FF model, is robust in 

the different set of N payoffs and the conditional index-based models are not able to 

significantly outperform the conditional Carhart model.  My analysis so far has used the DY 

when forming the value/growth factors in the Fama and French(1993), Carhart(1997), and the 

index-based models of Cremers et al(2012).  I next examine whether my results are sensitive 

to the use of DY rather than the BM ratio.  I collect the price-to-book ratio from Datastream 

and form the factor models using the BM ratio between July 1981 and December 2010.  I also 

construct 16 size/BM portfolios and use the excess returns of the size/BM portfolios, scaled 

excess returns of the size/BM portfolios, and the gross Treasury Bill return as an alternative 

set of N payoffs.  Details on the construction of the size/BM portfolios and the factor models 

using the BM ratio are included in the Appendix.  I examine whether M
+
 is non-empty using 

the subperiod data and find that admissible stochastic discount factors do exist.   

  I repeat the results of Tables 3 and 4 over the July 1981 and December 2010 

subperiod.  Table 7 reports summary statistics of the fitted stochastic discount factor values 

for each model and the specification tests using the second HJD and the LM test.  I do not 

report the model comparison tests (results are available on request) but will discuss in the 

text. 
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Table 7 here 

 

Table 7 shows that using the BM ratio to form the N payoffs and the value/growth 

factors during the July 1981 and December 2010 subperiod has some impact of the relative 

performance of the linear factor models.  The summary statistics of the fitted stochastic 

discount factor values are in the main similar to Table 3 with very few negative fitted 

stochastic discount factor values.  There is an increase in the volatility of the fitted stochastic 

discount factor values for the unconditional 7-index model.  This increase in volatility leads 

to the unconditional 7-index model having the third lowest second HJD across the models.  

The unconditional and conditional 4-index models have poorer performance in Table 7 

compared to Tables 3 and 6.  The two best performing models continue to be the conditional 

7-index and Carhart models with the lowest second HJD.  All of the models remain 

misspecified as the null hypotheses of a zero second HJD and that λ=0N can be rejected for 

every model.  The standard errors of the second HJD in Table 7 are higher than those in 

Tables 3 and 6, which reflects the use of a smaller T.   

In the model comparison tests using the size/BM portfolios, there are fewer 

significant differences in the second HJD due to the larger sampling variation that arises due 

to the smaller T.  The dominance of the conditional multifactor models is less apparent due to 

the better performance of the unconditional 7-index model and the poorer performance of the 

conditional 4-index model.  The conditional Carhart and 7-index models continue to 

outperform most of the alternative models.  The conditional Carhart model provides a 

significant lower second HJD than the unconditional CAPM, FF, Carhart, 4-index, and 

conditional CAPM models.  The conditional 7-index model provides a significant lower 

second HJD than the unconditional CAPM, FF, Carhart, 4-index, and conditional CAPM, FF, 
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and 4-index models.  In the multiple non-nested and nested model comparison tests, for the 

unconditional CAPM, FF, Carhart, and 4-index models, and the conditional CAPM and 4-

index models the null hypothesis that using these models as the benchmark that they provide 

the lowest squared second HJD across models can be rejected.  For the unconditional 7-index, 

conditional FF, Carhart, and 7-index models, I cannot reject the hypothesis that these models 

perform as least as well as the competing models. 

 The results in Table 7 and model comparison tests suggest using the BM ratio in the 

factor models and N payoffs has some impact on my results.  However, the two best 

performing models continue to be the conditional Carhart and 7-index models and there is 

nothing to be gained in using the index-based models rather than the conditional Carhart 

model.  The main impact is that the unconditional 7-index model performs a lot better and the 

unconditional and conditional 4-index models have poorer performance and the conditional 

multifactor models are less dominant in the subperiod. 

V Conclusions 

 I use the second HJD to examine whether index-based models similar to Cremers et 

al(2012) are more reliable benchmark models of expected returns than the Fama and 

French(1993) and Carhart(1997) models.  There are three main findings in my study.  First, I 

find that all the benchmark models I consider are misspecified.  None of the models are able 

to correctly price the N payoffs and be arbitrage free at the same time.  None of the models 

are NA admissible stochastic discount factors which is important for fund performance 

applications (Glosten and Jagannathan(1994), Chen and Knez(1996), and Wang and 

Zhang(2012) among others). 

 Second, I find that conditional multifactor models provide significant lower second 

HJD than the conditional CAPM and unconditional factor models when using the excess 

returns and scaled excess returns of the size/DY portfolios and gross Treasury Bill return as 
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the set of N payoffs.  This result supports the superior performance of conditional models in 

Hodrick and Zhang(2001) and Lettau and Ludvigson(2001) in U.S. stock returns and Fletcher 

and Hillier, and Fletcher(2010) in U.K. stock returns.  This result is interesting in that it 

suggests that conditional multifactor models outperform unconditional models using the 

second HJD even when adjusting for potential model misspecification in the test statistics.  

This result differs from Kan and Robotti(2009) who find using the first HJD that there are a 

few significant differences between the factor models considered in Hodrick and 

Zhang(2001) when using test statistics that are robust to potential model misspecification. 

 The superior performance of some of the conditional multifactor models relative to 

the unconditional models is sensitive to the use of alternative payoffs and the use of the BM 

ratio in the July 1981 and December 2010 subperiod.  The conditional FF model does not 

perform so well using the size/beta portfolios.  The conditional 4-index model has poorer 

performance when using the BM ratio to form the value/growth factors and the set of payoffs 

in the July 1981 and December 2010 subperiod.  The unconditional 7-index model performs 

well in the July 1981 and December 2010 subperiod relative to the other models and none of 

the conditional multifactor models are able to significantly outperform the unconditional 7-

index model in terms of a lower second HJD. 

 Third, I find that the two best performing models are the conditional Carhart and 7-

index models among the set of models I consider.  There is no significant difference between 

the second HJD of the two models.  This result suggests that there is nothing to be gained in 

using the index-based models relative to the conditional Carhart model.  This result differs 

from Cremers et al(2012). 

 The results of the paper suggest that conditional versions of the Carhart or 7-index 

models are the most reliable benchmark models to use in evaluating fund performance among 

the models I consider.  There is benefit in using conditional versions of the models rather 
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than unconditional versions of the models albeit with the caveat in Gospodinov et al(2010) 

that the second HJD is a lower bound on the maximum pricing error over all contingent 

claims in complete markets.  Given that neither model is an admissible stochastic discount 

factor in the sample period and N payoffs used, it would be interesting to explore the use of 

alternative lagged information variables in the conditional models.  Given the large number 

of lagged information variables available, one solution would be to use dynamic factor 

analysis as in Ludvigson and Ng(2007) to capture conditioning information as a small 

number of common factors from a large number of lagged information variables. 

 My study has used the second HJD to estimate and compare alternative models, which 

as Wang and Zhang(2012) argue is relevant when considering fund performance applications.  

For other applications, where the focus is on how well the models price the N payoffs, the use 

of the first HJD is more appropriate.  An interesting extension to this study would be to 

examine how well the index-based models perform relative to the Fama and French(1993) 

and Carhart(1997) models using the first HJD or the cross-sectional regression R
2
 in U.K. 

stock returns.  Davis, Fletcher and Marshall(2012) provide empirical evidence on the models 

using the cross-sectional R
2
.  I leave a fuller examination of these issues to future research. 
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Appendix 

A) Evaluating Linear Factor Models using the Second HJD 

 This subsection provides a more detailed overview of the empirical methods used in 

the paper.  I use the same notation as in Gospodinov et al(2010).  I define θ as a (KK+N,1) 

vector of model parameters (γ) and Lagrange Mulitpliers (λ) for a given model, where KK is 

the number of parameters in the stochastic discount factor model, N is the number of payoffs, 

and θ
*
 are the true values of the parameters.  The M matrix is a (KK+N, KK+N) matrix equal 

to lim(T→∞) Var[(1/√T)
T

t=1∂Φt(θ
*
)/∂θ] and H is a (KK+N,KK+N] matrix given by 

lim(T→∞) (1/T)
T

t=1∂
2
E(Φt(θ

*
))/∂θ∂θ’.  Gospodinov et al provide explicit expressions for 

the H and M matrices for the second HJD and Gospodinov et al(2012a) provide explicit 

expressions for the H and M matrices when using the first HJD.  Both studies also provide 

explicit expressions for ∂Φt(θ
*
)/∂γ and ∂Φt(θ

*
)/∂λ.  Li et al(2010) provide corresponding 

expressions but use different notation.  Under the null hypothesis that the model is correctly 

specified, then λ
*
 = 0 and yt(γ

*
) = mt(θ

*
)
+
 and both the H and M matrices simplify.    

Gospodinov et al(2010) and Li et al(2010) derive the empirical test of a zero second 

HJD.  Gospodinov et al show in Proposition 3 of their paper that under the null of a zero 

second HJD, Td
+2

 has a weighted χ
2
(1) distribution.  The (N-KK) weights in the χ

2
(1) 

distribution are the eigenvalues from: 

                                          A = P’U
-1/2

SU
-1/2

P                                                (9)  

where P is (N,KK) orthonormal matrix where the columns are orthogonal to U
-1/2

D, D is a 

(N,KK) matrix that equals E[xt(∂yt(γ)/∂γ’)], U is a (N,N) matrix equal to E[xtxt’], and S is a 

(N,N) matrix equal to Σ
∞

j=-∞ E[(xtyt(γ)-qt-1)(xtyt(γ)-qt-1)’].  All of the eigenvalues in the A 

matrix are positive.  Gospodinov et al point out that the nonzero eigenvalues in the test of a 

zero second HJD proposed by Li et al(2010) are identical to the eigenvalues in A when the 

null of a zero second HJD is imposed.  Gospodinov et al also note that the same approach is 
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used to test for a zero first HJD as in Jagannathan and Wang(1996) (see also Gospodinov et 

al(2012a)).  

 One of the problems of testing for a zero first HJD is that the simulation evidence in 

Ahn and Gadarowski(2004) suggests that the test tends to overreject models when N is large 

to T due to the use of the eigenvalues of the A matrix.  As an alternative test of a zero first 

HJD, Gospodinov et al(2012a) propose the LM test of λ=0N which is given by: 

                          Tλ’U
1/2

P(P’U
-1/2

SU
-1/2

P)
-1

P’U
1/2

λ                                             (10) 

Under the null hypothesis of a zero first HJD, Theorem 1 of Gospodinov et al shows that the 

LM test has an asymptotic χ
2
 distribution with N-KK degrees of freedom.  Simulation 

evidence in Gospodinov et al shows that the LM test has good finite sample properties and is 

not subject to the overrejection problem of the Jagannathan and Wang(1996) test.  I adapt the 

LM test to use as an additional model specification test within the second HJD framework.   

Li et al(2010) and Gospodinov et al(2010) show that the model parameters γ and 

Lagrange Multipliers λ have an asymptotic normal distribution under the null of a 

misspecified model.  Proposition 4 in Gospodinov et al shows that θ has an asymptotic 

normal distribution with covariance matrix given by (1/T)Σθ where Σθ = Σ
∞

j=-∞E(hth’t+j).  The 

ht series is given by H
-1

(∂Φt(θ
*
)/∂θ).  Gospodinov et al point out that the asymptotic 

distribution of γ is normally distributed under the null hypothesis that the model is correctly 

specified but the asymptotic distribution of λ is no longer normally distributed.  I use the 

asymptotic distribution of γ to examine hypotheses tests of the stochastic discount factor 

coefficients.   
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Li et al(2010) and Gospodinov et al(2010) develop pairwise model comparison tests 

of equation (7)
13

.  Define model F as having K1 parameters to estimate and model G as 

having K2 parameters to estimate.  When model F only contains a subset of factors in model 

G, then model F is a nested model of model G.  When models F and G share some factors in 

common, then the two models are overlapping models.  When models F and G share no 

factors in common, the two models are strictly non-nested.  For the case of linear factor 

models, all of the models share the constant in common and so there are no strictly non-

nested models. 

Hansen et al(1995) show that the difference between d
+2

 for two models can be tested 

using a normal test.  The difference between d
+2

F and d
+2

G has an asymptotic normal 

distribution with variance given by σ
2

d, where σ
2
d = Σ

∞
j=-∞E(dtd’t+j) and dt = [Φt

F
(θ

*
F) – 

E(Φt
F
(θ

*
F)] - [Φt

G
(θ

*
G) – E(Φt

G
(θ

*
G)] (see Godpodinov et al(2010)).  Gospodinov et al point 

out that there are cases when we cannot use the normal test as σ
2

d = 0.  The first case is when 

the two models have equal stochastic discount factor values (yt
F
 = yt

G
) and the second case is 

when the two stochastic discount factor values are different from one another but both models 

are correctly specified and so Φt
F
(θ

*
F) = 0 and Φt

G
(θ

*
G) = 0. 

For the nested model case, where I assume model F is a subset of model G, 

Gospodinov et al(2010) point out that σ
2
d = 0 under the null hypothesis that the two models 

have equal second HJD, which occurs only if the two models have equal stochastic discount 

factor values.  As a result, for nested models one only needs to test the null hypothesis of 

equal stochastic discount factor values.  The two models only have equal stochastic discount 

factor values when the slope coefficients on the (K2-K1) extra factors in model G are jointly 

                                                           
13

 Kan and Robotti(2009) and Gospodinov et al(2012a) develop related model comparison 

tests using the first HJD and Kan et al(2012) develop model comparison tests based on the 

cross-sectional regression R
2
. 
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equal to zero (see Kan and Robotti(2009)).  Li et al(2010) propose a weighted χ
2
 test to test 

for equal second HJD for nested models.  Gospodinov et al show that this test can be 

simplified by imposing the null hypothesis that d
+2

F = d
+2

G.  Proposition 6 of their paper show 

that the hypothesis of zero slope coefficients on the (K2-K1) extra factors in model G can be 

tested by the T(d
+2

F – d
+2

G) statistic, which has a weighted χ
2
(1) distribution with (K2-K1) 

weights.  An alternative test is to use a Wald test which has an asymptotic χ
2
 distribution with 

(K2-K1) degrees of freedom.  In my study, I use the Wald test to examine if the two nested 

models have equal second HJD. 

For the case where the two models are overlapping models σ
2

d = 0 whenever the two 

models have equal stochastic discount factor values or both models are correctly specified.  

Gospodinov et al(2010) recommend a sequential approach to test the equality of the second 

HJD for overlapping models.  In the first step, a test of whether the two models have equal 

stochastic discount factor values is examined.  Define K3 as the number of factors the two 

models F and G share in common.  Kan and Robotti(2009) show that for two linear factor 

models, the stochastic discount factor values will be equal when the slope coefficients on the 

(K1-K3) factors in model F and the (K2-K3) factors in model G are jointly equal to zero.  

Gospodinov et al show that this hypothesis can be tested either by the statistic T(d
+2

F – d
+2

G), 

which has a weighted χ
2
(1) distribution with (K1+K2-2K3) weights in Proposition 7 or by a 

Wald test which has an asymptotic χ
2
 distribution with K1+K2-2K3 degrees of freedom. 

 The second step of the sequential approach is to test whether both models are 

correctly specified (d
+2

F=d
+2

G=0).  Gospodinov et al(2010) show in Proposition 5 that under 

the null that both models are correctly specified then T(d
+2

F – d
+2

G) has a weighted χ
2
(1) 

distribution with 2N-K1-K2 weights.  Gospodinov et al(2012a) in developing model 

comparison tests of the first HJD propose an alternative test based on an extension of the LM 

test in Lemma B2 (b) of their paper.  This test examines if λF = λG = 0N and has asymptotic χ
2
 



31 
 

distribution with 2N-K1-K2 degrees of freedom.  The LM test can be adapted to using the 

second HJD. 

The final step in the sequential approach is to use the normal test.  Gospodinov et 

al(2010) point out that to reject the null hypothesis of the equal second HJD between two 

models, we have to reject the tests in all three steps in the sequential approach at a specified 

significance level.  In my study, I use the Wald test to examine whether the two overlapping 

models have equal stochastic discount factor values, use the LM test to examine if both 

models are correctly specified, and then use the normal test. 

The pairwise model comparison tests only consider two models at a time.  

Gospodinov et al(2012a) develop multiple model comparison tests using the first HJD to 

evaluate models.  The multiple model comparison tests of Gospodinov et al can be adapted to 

use for the second HJD.  Gospodinov et al propose separate tests for multiple non-nested 

model comparison tests and multiple nested model comparison tests.  Gospodinov et al 

develop a multiple non-nested model comparison test using the multivariate inequality tests 

of Wolak(1987,1989)
14

.  Define p+1 as the number of models in the test where model 1 is the 

benchmark model and p is the set of alternative models.  Model 1 has a squared second HJD 

given by d
+2

1 and d
+2

i is the squared second HJD of model i for the alternative i=1,..,p 

models.  The null hypothesis is that the benchmark model performs as well as the alternative 

models in terms of the squared second HJD and can be written as δ ≤ 0p where δ is a (p,1) 

vector with individual elements equal to δi = d
+2

1-d
+2

i, and 0p is a (p,1) vector of zeros.  The 

                                                           
14

 Kan et al(2012) develop related multiple model comparison tests based on the cross-

sectional regression R
2
.  Chen and Ludvigson(2009) propose an alternative multiple model 

comparison test using the Hansen and Jagannathan distance measure following the bootstrap 

approach of White(2000) and Hansen(2005). 
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alternative hypothesis is that some alternative model has a lower second HJD than the 

benchmark model.   

Assuming that δ has an asymptotic multivariate normal distribution models given by 

N(0p,Ωp), Gospodinov et al(2012a) show that a likelihood ratio (LR) test can be used for 

testing the null hypothesis.  The LR test follows a “chi-bar-squared distribution” given by 


p
i=0wp-i(Ωp)Xi where the Xi are independent χ

2
 variables with i degrees of freedom.  The χ

2
0 

is defined as 0 and the weights wi sum to 1.  Gospodinov et al show that the asymptotic p 

values of the LR test can be computed through numerical methods.  The normality 

assumption of δ requires that d
+2

i > 0 and the stochastic discount factor values of each model 

are not equal to each other. 

When comparing a benchmark model to a set of alternative models, Gospodinov et 

al(2012a) remove a number of the alternative models from the set.  Any alternative models 

that are nested by the benchmark model are removed since δi ≤ 0 by construction.  Any 

alternative model that is nested by another alternative model is also removed as the second 

HJD of the larger model will at least be as small as the smaller model.  Any alternative model 

that nests the benchmark is removed since the normality assumption does not hold in this 

case under the null hypothesis that δi=0.  For the remaining alternative models that are left, 

the LR test is computed and the corresponding p value.  In my study, I set each model to be 

the benchmark model and compute the corresponding LR test and p value.   

For nested multiple model comparison tests, Gospodinov et al(2012a) point out that 

when the alternative models to the benchmark are nested with one another, then the smaller 

nested models can be excluded since the squared second HJD of the larger alternative model 

will be at least as small as the smaller models.  In this case, the pairwise model comparison 

tests can be used.  This is the case in all of the nested model comparison tests in my study.  

For example, when using the CAPM as the benchmark model, the FF, and Carhart models, 
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and the conditional CAPM and FF models are all nested within the conditional Carhart model 

and so the pairwise model comparison test between the CAPM and conditional Carhart model 

can be used for the multiple nested model comparison tests. 

Gospodinov et al(2012a) suggest that for each model used as the benchmark, both the 

multiple non-nested model comparison tests and nested model comparison tests should be 

conducted separately.  Gospodinov et al point out that if the two tests use a significance level 

of α/2 and the null hypothesis cannot be rejected in either test, then the size of the joint test 

will be ≤ α by the Bonferroni inequality.  

B) Formation of the Primitive Assets 

1) Size/DY Portfolios 

I form the eighteen size/DY portfolios using the following approach at the start of 

each year between 1959 and 2010.  All stocks on the LSPD are ranked by their market value 

at the start of the year and grouped into four portfolios.  Within each size portfolio, I rank 

stocks on the basis of their DY at the start of the year.  The DY for each stock is calculated as 

the sum of gross dividends in ex-div months during the past year divided by the price at the 

end of the year on LSPD.  From July 1997 onwards, I use the net DY due to the abolition of 

the dividend tax credits by the U.K. government.  The dividends and prices are corrected for 

capital changes using the capital change adjustment factors in LSPD.  For companies with a 

non-zero DY, I form four portfolios where all portfolios contain an equal number of stocks as 

an approximation.  I also form a separate portfolio of companies with a zero DY.  For a 

company to be identified as a zero DY company, I require that companies have continuous 

monthly return observations during the year over which the DY is calculated.  Due to the 

relatively small number of companies that have a zero DY in many of the years of my 

sample, I only form a zero DY portfolio for the smallest quartile of companies and form a 

second portfolio of zero DY companies that includes companies in the other three size 
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quartiles.  I exclude companies with zero market values.  I then calculate the monthly buy and 

hold returns during the next year for each portfolio.  The initial weights in each portfolio are 

value weighted using the market value of the security at the start of the year.   

I make a number of corrections and exclusions to the portfolio returns which I follow 

across forming the portfolios and factors.  Where a security has missing return observations 

during the year, I assign a zero return to the missing values as in Liu and Strong(2008).  A 

security can have missing returns if it dies during the year or faces a temporary suspension.  I 

correct for the delisting bias of Shumway(1997) by following the approach of Dimson et 

al(2003).  A –100% return is assigned to the death event date on LSPD where the LSPD code 

indicates that the death is valueless.  Prior to 1975, LSPD does not contain a complete return 

history of all companies.  As a result, I only use the random 1/3 sample of companies in 

forming the portfolios up to 1975.  The random 1/3 sample includes a random selection of 1/3 

of companies that exist at the start of 1955 and 1/3 of companies that come onto the stock 

exchange during each of the subsequent years.  I exclude investment trusts
15

 and from 1980 

onwards, I also exclude foreign companies and secondary shares using data from the LSPD 

archive file. 

2) Size/Beta Portfolios 

I form the sixteen size/beta portfolios using the following approach at the start of each 

year between 1961 and 2010.  All stocks on the LSPD are ranked by their market value at the 

start of the year and grouped into four portfolios.  Within each size portfolio, I rank stocks on 

the basis of their beta relative to the value weighted market index and group into four 

portfolios.  All portfolios contain an equal number of stocks as an approximation.  The betas 

are estimated from the regression of the excess stock returns on a constant and the excess 

returns of the market index during the prior 60 months.  I require companies to have 

                                                           
15

 Investment trusts are equivalent to closed-end U.S. mutual funds. 
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continuous return data during the 60 prior months to estimate the betas.  I exclude companies 

with zero market values.  I then calculate the monthly buy and hold returns during the next 

year for each portfolio.  The initial weights in each portfolio are value weighted using the 

market value of the security at the start of the year.   

3) Size/BM Portfolios  

 I form the sixteen size/BM portfolios using the following approach at the start of each 

July between 1981 and 2010.  All stocks on the LSPD are ranked by their market value at the 

end of June and grouped into four portfolios.  Within each size portfolio, I rank stocks on the 

basis of their price to book (PB) ratio at the end of the previous year and group into four 

portfolios.  All portfolios contain an equal number of stocks as an approximation.  The PB 

ratio is collected from Datastream.  I exclude companies with zero market values, zero and 

negative PB ratios, and financials.  I then calculate the monthly buy and hold returns during 

the next 12 months for each portfolio.  The initial weights in each portfolio are value 

weighted using the market value of the security at the end of June.  I use the monthly returns 

of the size/BM portfolios between July 1981 and December 2010 in my empirical analysis.  

 The use of 18 size/DY portfolios, 16 size/beta portfolios, and 16 size/BM portfolios is 

a smaller number of portfolios than what is typically used in U.S. stock returns where 25 

size/BM portfolios are frequently used.  I form a smaller number of portfolios since it is only 

from January 1975 that LSPD contains complete return history of all U.K. companies.  In 

addition, Dimson et al(2003) point out that the number of companies in the U.K. on the 

London Stock Exchange has reduced over time since 1955 in contrast to the increased 

number of U.S. companies.  Due to the smaller number of companies available, I form a 

smaller number of portfolios for the size/DY, size/beta, and size/BM portfolios.       

C) Formation of Factors in the Linear Factor Models 

1) Factors in the Carhart model 
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I construct the market index for the CAPM, FF, and Carhart models using a similar 

approach to Dimson and Marsh(2001).  At the start of each year between 1959 and 2010, I 

construct a value weighted portfolio of all stocks on LSPD by their market value at the start 

of the year.  I calculate buy and hold monthly returns during the next year.  I exclude 

companies with a zero market value.   

I form the SMB and HML factors in the FF and Carhart models using the following 

approach.  At the start of each year between 1959 and 2010, I rank all stocks on LSPD 

separately by their market value at the start of the year and by their DY at the start of the 

year.  I next form two size groups (Small and Big) using the 70
th

 percentile as the break point 

and three DY groups (Low, Medium, and High) using break points of the 40
th

 and 60
th

 

percentiles.  I then construct six portfolios of securities at the intersection of the size and DY 

groups (SL, SM, SH, BL, BM, BH).  I calculate the monthly buy and hold return for the six 

portfolios during the next year.  The initial weights are set equal to the market value weights 

at the start of the year.  I exclude companies with a zero market value and a zero DY.  The 

SMB factor is the difference in the average return of the three small firm portfolios (SL, SM, 

SH) and the average return of the three large firm portfolios (BL, BM, BH).  The HML factor 

is the difference in the average return of the two high DY portfolios (SH and BH) and the 

average return of the two low DY portfolios (SL and BL). 

I form the WML factor in the Carhart model using the following approach.  At the 

start of each month between January 1959 and December 2010, all stocks on LSPD are 

ranked on the basis of their average return during months –12 to –2.  The top 1/3 (by average 

return) of companies is grouped into the Winners portfolio and bottom 1/3 of companies are 

grouped into the Losers portfolio.  I calculate the average return on the Winners and Losers 

portfolios during the next month.  I exclude companies with less than 12 past return 
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observations.  The WML factor is the difference between the returns of the Winners and 

Losers portfolios. 

2) Factors in the 4-index and 7-index models 

 I form the index-based models using a similar approach to Cremers et al(2012).  I 

form the factors from two DY index portfolios, three size index portfolios, and six size/DY 

index portfolios.  I form the index portfolios as follows.  At the start of each year between 

1959 and 2010, I rank all stocks on LSPD by their market value at the start of the year.  I 

exclude stocks with the smallest 1%
16

 by market value when forming the index portfolios as 

the Russell indexes used by Cremers et al do not include the very smallest stocks.   

 I form the two DY index portfolios across all stocks.  I rank all companies by their 

DY at the start of the year and group the top 1/3 (by DY) into a High/All portfolio and the 

bottom 1/3 into a Low/All portfolio.  I exclude companies with a zero DY.  I form three size 

index portfolios across all stocks.  The first index (Large) is the portfolio of the largest 100 

stocks by market value.  The second index (Mid) includes the companies which are ranked 

101 to the largest 90% of companies by market value, which captures the mid-cap stocks.  

The third index (Small) includes smallest 9% of stocks by market value.  Dimson and 

Marsh(2001) refer to these companies as low-cap stocks. 

 I form six size/DY index portfolios.  For each size index, I rank all stocks in the index 

by their DY at the start of the year.  I exclude companies with a zero DY.  I group the top 1/3 

of companies (by DY) into a High portfolio and the bottom 1/3 of companies into a Low 

portfolio.  The six size/DY portfolios are Large/High, Large/Low, Mid/High, Mid/Low, 

Small/High, Small/Low.   

For each index portfolio, I construct a value weighted portfolio and calculate monthly 

buy and hold monthly returns during the year.  The initial weights are set to the market value 
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 Dimson and Marsh(2001) refer to these stocks as micro-cap stocks. 
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weights at the start of the year.  I form the 4-index and 7-index models from the index 

portfolios.  The 4-index model includes the excess returns on the Large size index, the 

difference in returns between the Small and Large size index portfolios (Small-Large), the 

difference in returns between the High/All and Low/All DY index portfolios (HML (All)), 

and WML.  The 7-index model includes the excess returns on the Large size index, the 

difference in returns between the Small and Mid size index portfolios (Small-Mid), the 

difference in returns between the Mid and Large size index portfolios (Mid-Large), the 

difference in returns between the Large/High and Large/Low size/DY index portfolios (HML 

(Large)), the difference in returns between the Mid/High and Mid/Low size/DY index 

portfolios (HML (Mid)), the difference in returns between the Small/High and Small/Low 

size/DY index portfolios (HML (Small)), and WML. 

For the July 1981 and December 2010 subperiod, I also form the value/growth factors 

in the FF, Carhart, and the index-based models using the BM ratio.  I follow a similar 

approach as above except the portfolios are formed at the start of July each year as in the 

size/BM portfolios.  I exclude companies with negative and zero PB ratios and financials. 

D) Information Variable 

 I use the lagged term spread as the information variable.  The lagged term spread is 

the difference in the annualized yield of long term government bonds and the three-month 

Treasury Bill.  I collect the long term bond yield from the U.K. country tables provided by 

the International Financial Statistics of the International Monetary Fund. 
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Table 1 Summary Statistics of Primitive Assets 

Panel A Average Excess Returns 

 Zero Low 2 3 High 

Small 0.905 0.876 1.153 1.200 0.964 

2  0.634 0.852 0.923 1.013 

3  0.640 0.653 0.796 0.836 

Big 0.355 0.383 0.475 0.688 0.735 

Panel B Standard Deviations 

 Zero Low 2 3 High 

Small 6.007 5.125 4.729 4.877 6.233 

2  4.861 4.532 4.874 5.523 

3  5.282 4.933 5.301 5.906 

Big 8.357 5.884 5.473 5.672 5.938 

 
The table includes summary statistics of the monthly excess returns of 18 size/dividend yield (DY) portfolios 

between January 1959 and December 2010.  The summary statistics include the mean (Panel A) and standard 

deviation (Panel B) of monthly excess returns (%).  The portfolios of stocks are sorted by size in the rows 

(Small to Big) and DY in the column (Zero to High).   
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Table 2 Summary Statistics of Factors 

 

Factors Mean Standard 

Deviation 

Minimum Maximum 

Market 0.539 5.187 -26.005 46.856 

SMB 0.185 3.113 -13.493 11.969 

HML 0.276 2.382 -7.981 23.377 

WML 0.632 3.099 -28.403 12.282 

Large 0.501 5.289 -25.714 49.311 

Small-Large 0.106 3.146 -11.443 12.114 

HML (All) 0.338 3.774 -15.703 39.562 

Small-Mid -0.023 2.021 -13.190 8.176 

Mid-Large 0.129 2.503 -9.573 10.628 

HML (Large) 0.290 3.662 -12.121 16.385 

HML (Mid) 0.230 4.016 -11.742 49.661 

HML (Small) 0.349 2.806 -13.665 28.185 

 
The table includes summary statistics of the monthly excess returns of factors used in the candidate stochastic 

discount factor models between January 1959 and December 2010.  The summary statistics include the mean, 

standard deviation, minimum, and maximum values (%).  Market is the excess returns on the value weighted 

market index.  SMB, HML, and WML are zero-cost portfolios of the size, value/growth, and momentum effects 

in U.K. stock returns.  Large is the excess returns on a value weighted portfolio of the largest 100 companies.  

Small-Large, Small-Mid and Mid-Large are zero-cost portfolios of the difference in returns between small 

companies and large companies, small companies and mid-cap companies, and between mid-cap companies and 

large companies.  HML (All), HML (Large), HML (Mid), and HML (Small) are zero-cost portfolios of the 

value/growth effect in all companies, large companies, mid-cap companies, and small companies.   
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Table 3 Summary Statistics of Fitted Stochastic Discount Factor Models and Model 

Specification Tests 

 

 E(y) σy Prop(y<0) d
+
 p(λ) SE(d

+
) 

CAPM 0.994 0.104 0.000 0.496 

(0.000) 

0.000 0.047 

FF 0.994 0.182 0.320 0.475 

(0.000) 

0.000 0.045 

Carhart 0.994 0.239 0.160 0.468 

(0.000) 

0.000 0.045 

4-index 0.994 0.183 0.160 0.479 

(0.000) 

0.000 0.045 

7-index 0.994 0.311 0.160 0.458 

(0.000) 

0.000 0.048 

CAPM 0.994 0.292 0.160 0.472 

(0.000) 

0.000 0.050 

FF 0.994 0.324 1.762 0.424 

(0.000) 

0.000 0.046 

Carhart 0.994 0.445 2.884 0.402 

(0.000) 

0.000 0.046 

4-index 0.994 0.394 1.282 0.418 

(0.000) 

0.000 0.046 

7-index 0.994 0.494 2.564 0.392 

(0.000) 

0.000 0.049 

 
The table reports the second Hansen and Jagannathan (1997) distance measure (HJD) and summary statistics of 

the fitted values of the candidate stochastic discount factors of linear factor models between January 1959 and 

December 2010.  The conditional versions of the models are in bold.  The N payoffs are the excess returns on 18 

size/dividend yield (DY) portfolios, scaled excess returns of the size/DY portfolios, and the gross return on a 

three-month Treasury Bill.  The model parameters in the linear factor models are estimated to minimize the 

second HJD.  The summary statistics are the mean (E(y)) and standard deviation (σy) of the fitted stochastic 

discount factor values.  The Prop(y<0) column is the proportion (%) of the fitted values of the stochastic 

discount factor that are negative.  The d
+
 column is the second HJD and the p value that tests the null hypothesis 

of a zero second HJD is in parentheses below.  The p(λ) column is the p value of the LM test, which examines if 

λ=0N.  The SE(d
+
) column is the standard error of the second HJD under the null of a misspecified model.  The 

test statistics are corrected for the effects of heteroskedasticity and serial correlation using the automatic lag 

selection (without prewhitening) method of  Newey and West(1994). 

  



42 
 

Table 4 Model Comparison Tests 

 

Panel A 

Pairwise 

FF Carhart 4-index 7-index CAPM FF Carhart 4-index 7-index 

CAPM 0.021
1
  0.027

1
  0.017  0.037

2
  0.024

1
  0.067

1
  0.085

1
  0.072

1
  0.093

1
  

FF  0.006  -0.003 0.016  0.004 0.046
1
  0.064

1
  0.051

1
  0.072

1
  

Carhart   -0.010 0.009  -0.003 0.039
1
  0.058

1
  0.045

1
  0.066

1
  

4-index    0.020  0.008  0.050
1
  0.068

1
  0.055

1
  0.076

1
  

7-index     -0.012  0.030  0.048
1
  0.035  0.056

1
  

CAPM      0.043
1
  0.061

1
  0.047

1
  0.069

1
  

FF       0.018
1
  0.005 0.026  

Carhart        -0.013 0.008 

4-index         0.021  

Panel B 

Multiple models 

LR p-value 

CAPM 12.801 0.000 

FF 11.727 0.001 

Carhart 9.769 0.002 

4-index 14.755 0.000 

7-index 4.938 0.018 

CAPM 7.379 0.005 

FF 2.556 0.094 

Carhart 0.343 0.424 

4-index 3.861 0.054 

7-index 0.000 0.605 

 
1
 Significant at 5% 

2
 Significant at 10% 

 
The table reports the model comparison tests of Gospodinov et al(2010).  The tests examine whether the squared 

second Hansen and Jagannathan(1997) distance measures (HJD) between two models are equal to each other 

between January 1959 and December 2010.  The conditional versions of the models are in bold.  The N payoffs 

are the excess returns on 18 size/dividend yield (DY) portfolios, scaled excess returns of the size/DY portfolios, 

and the gross return on a three-month Treasury Bill.  The model parameters in the linear factor models are 

estimated to minimize the second HJD.  Panel A of the table reports the difference in the squared second HJD 

between every pair of models in the pairwise modle comparison tests.  Where the difference is positive 

(negative), the model in the row has a higher (lower) second HJD than the model in the column.  Panel B reports 

the multiple non-nested model comparison tests using each of the factor models as the benchmark model.  The 

panel reports the Likelihood Ratio (LR) test and corresponding p value of the null hypothesis that the 

benchmark model performs as well as other models in terms of the lowest second HJD.  The test statistics are 

corrected for the effects of heteroskedasticity and serial correlation using the automatic lag selection (without 

prewhitening) method of  Newey and West(1994).       
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Table 5 Model Parameters and Lagrange Multipliers for a Subset of Models 

Panel A Model Parameters 

FF Constant Market SMB HML     

γ0 (γ0k) 1.027 

(53.67)
1 

-2.693 

(-2.27)
1 

-3.641 

(-1.92)
2 

-4.307 

(-1.88)
2 

    

Carhart Constant Market SMB HML WML    

γ0 (γ0k) 1.305 

(16.63)
1 

-3.002 

(-1.83)
2 

-0.277 

(-0.11) 

-12.409 

(-3.27)
1 

-13.287 

(-3.25)
1 

   

γ1 (γ1k) -15.054 

(-2.47)
1 

-41.965 

(-0.71) 

-295.212 

(-3.15)
1 

176.612 

(1.39) 

244.277 

(2.43)
1 

   

Wald 0.000        

7-index Constant Large Small-

Mid 

Mid-

Large 

HML 

(Large) 

HML 

(Mid) 

HML 

(Small) 

WML 

γ0 (γ0k) 1.303 

(14.66)
1 

-3.636 

(-1.46) 

-2.629 

(-0.25) 

1.774 

(0.28) 

-6.631 

(-2.84)
1 

6.992 

(1.18) 

-11.755 

(-2.05)
1 

-12.793 

(-2.78)
1 

γ1 (γ1k) -15.294 

(-2.21)
1 

-1.831 

(-0.02) 

-235.796 

(-0.86) 

-332.880 

(-1.47) 

157.159 

(1.63) 

-154.077 

(-0.79) 

137.89

4 

(0.65) 

214.870 

(1.81)
2 

Wald 0.000        

Panel B Lagrange Multipliers 

FF 

Portfolio 

FF 

λ 
Carhart 

Portfolio 
Carhart 
λ 

7-index 

Portfolio 
7-index 

λ 

Big/Low-

scaled 

-264.070 

(-3.38)
1 

3/3-scaled -543.967 

(-2.70)
1 

2/Low-

unscaled 

-8.160 

(-3.06)
1 

Big/3-scaled 409.037 

(3.42)
1 

2/High-

scaled 

502.970 

(2.93)
1 

2/High-

scaled 

449.287 

(3.08)
1 

2/High-

scaled 

555.313 

(3.55)
1 

Big/3-

scaled 

451.528 

(4.32)
1 

Big/3-scaled 475.616 

(4.98)
1 

Big/High-

scaled 

-427.781 

(-3.91)
1 

Big/High-

scaled 

-365.396 

(-4.68)
1 

Big/High-

scaled 

-283.099 

(-5.25)
1 

T.Bill -0.226 

(-6.43)
 

T. Bill -0.162 

(-8.32)
 

T. Bill -0.153 

(-8.27)
 

 
1
 Significant at 5% 

2
 Significant at 10% 

 
The table reports the model parameters (panel A) and the Lagrange Multipliers (panel B) for the unconditional 

FF model and the conditional Carhart and 7-index models between January 1959 and December 2010.  The 

conditional versions of the models are in bold.  The factors in the model are described in Table 2.  The N 

payoffs are the excess returns on 18 size/dividend yield (DY) portfolios, scaled excess returns of the size/DY 

portfolios, and the gross return on a three-month Treasury Bill.  The model parameters in the linear factor 

models are estimated to minimize the second HJD.  Panel A of the table reports the coefficients in the stochastic 

discount factor (γ) and misspecification-robust t-statistics in parentheses.  The γ0 (γ0k) row refers to the constant 

and slope coefficients on the factor excess returns.  The γ1 (γ1k) row refers to the slope coefficients on the lagged 

term spread and the scaled factor excess returns.  The Wald test examines the null hypothesis that the slope 

coefficients on the lagged information variable and scaled factor excess returns are jointly equal to zero.  Panel 

B of the table reports the Lagrange Multipliers (λ) and t-statistics in parentheses of the five payoffs with the 

highest absolute t-statistics of λ.  The Lagrange Multiplier of the gross Treasury Bill return is not normally 

distributed and so cannot be used to assess statistical significance.  The Portfolio column in panel B refers to the 

corresponding payoff.  The test statistics are corrected for the effects of heteroskedasticity and serial correlation 

using the automatic lag selection (without prewhitening) method of  Newey and West(1994).       
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Table 6 Summary Statistics of Fitted Stochastic Discount Factor Models and Model 

Specification Tests: Size/Beta Portfolios 

 

 E(y) σy Prop(y<0) d
+
 p(λ) SE(d

+
) 

CAPM 0.994 0.099 0.000 0.440 

(0.000) 

0.001 0.058 

FF 0.994 0.175 0.000 0.422 

(0.000) 

0.000 0.058 

Carhart 0.994 0.411 1.833 0.385 

(0.001) 

0.000 0.056 

4-index 0.994 0.404 1.167 0.389 

(0.001) 

0.000 0.055 

7-index 0.994 0.454 2.000 0.377 

(0.001) 

0.000 0.050 

CAPM 0.994 0.263 0.166 0.421 

(0.001) 

0.000 0.068 

FF 0.994 0.296 1.166 0.369 

(0.000) 

0.001 0.058 

Carhart 0.994 0.520 3.000 0.311 

(0.018) 

0.001 0.061 

4-index 0.994 0.551 2.500 0.314 

(0.021) 

0.001 0.063 

7-index 0.994 0.561 3.666 0.292 

(0.011) 

0.016 0.061 

 
The table reports the second Hansen and Jagannathan (1997) distance measure (HJD) and summary statistics of 

the fitted values of the candidate stochastic discount factors of linear factor models between January 1961 and 

December 2010.  The conditional versions of the models are in bold.  The N payoffs are the excess returns on 16 

size/beta portfolios, scaled excess returns of the size/beta portfolios, and the gross return on a three-month 

Treasury Bill.  The model parameters in the linear factor models are estimated to minimize the second HJD.  

The summary statistics are the mean (E(y)) and standard deviation (σy) of the fitted stochastic discount factor 

values.  The Prop(y<0) column is the proportion (%) of the fitted values of the stochastic discount factor that are 

negative.  The d
+
 column is the second HJD and the p value that tests the null hypothesis of a zero second HJD 

is in parentheses below.  The p(λ) column is the p value of the LM test, which examines if λ=0N.  The SE(d
+
) 

column is the standard error of the second HJD under the null of a misspecified model.  The test statistics are 

corrected for the effects of heteroskedasticity and serial correlation using the automatic lag selection (without 

prewhitening) method of  Newey and West(1994). 
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Table 7 Summary Statistics of Fitted Stochastic Discount Factor Models and Model 

Specification Tests: Subperiod Results 

 

 E(y) σy Prop(y<0) d
+
 p(λ) SE(d

+
) 

CAPM 0.994 0.100 0.000 0.516 

(0.000) 

0.011 0.088 

FF 0.994 0.242 0.000 0.470 

(0.003) 

0.000 0.077 

Carhart 0.994 0.297 0.000 0.463 

(0.002) 

0.002 0.078 

4-index 0.994 0.135 0.000 0.508 

(0.000) 

0.004 0.086 

7-index 0.994 0.425 2.825 0.415 

(0.010) 

0.000 0.072 

CAPM 0.994 0.143 0.000 0.509 

(0.000) 

0.001 0.088 

FF 0.994 0.313 0.847 0.429 

(0.004) 

0.003 0.072 

Carhart 0.994 0.434 1.695 0.413 

(0.005) 

0.002 0.074 

4-index 0.994 0.276 1.129 0.464 

(0.000) 

0.000 0.088 

7-index 0.994 0.492 3.107 0.369 

(0.006) 

0.000 0.072 

 
The table reports the second Hansen and Jagannathan (1997) distance measure (HJD) and summary statistics of 

the fitted values of the candidate stochastic discount factors of linear factor models between July 1981 and 

December 2010.  The conditional versions of the models are in bold.  The N payoffs are the excess returns on 16 

size/book-to-market (BM) portfolios, scaled excess returns of the size/BM portfolios, and the gross return on a 

three-month Treasury Bill.  The model parameters in the linear factor models are estimated to minimize the 

second HJD.  The summary statistics are the mean (E(y)) and standard deviation (σy) of the fitted stochastic 

discount factor values.  The Prop(y<0) column is the proportion (%) of the fitted values of the stochastic 

discount factor that are negative.  The d
+
 column is the second HJD and the p value that tests the null hypothesis 

of a zero second HJD is in parentheses below.  The p(λ) column is the p value of the LM test, which examines if 

λ=0N.  The SE(d
+
) column is the standard error of the second HJD under the null of a misspecified model.  The 

test statistics are corrected for the effects of heteroskedasticity and serial correlation using the automatic lag 

selection (without prewhitening) method of  Newey and West(1994). 
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