Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Interacting quantum observables : categorical algebra and diagrammatics

Coecke, Bob and Duncan, Ross (2011) Interacting quantum observables : categorical algebra and diagrammatics. New Journal of Physics, 13 (April). ISSN 1367-2630

[img]
Preview
Text (Coecke-Duncan-NJP-2011-Interacting-quantum-observables-categorical-algebra-and-diagrammatics)
Coecke_Duncan_NJP_2011_Interacting_quantum_observables_categorical_algebra_and_diagrammatics.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (2MB) | Preview

Abstract

This paper has two tightly intertwined aims: (i) to introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatize complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and dagger symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an Abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z- and X-spin observables, which yields a scaled variant of a bialgebra.