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We propose a setup in which Andreev-like reflections predicted for 1D transport systems could be
observed time dependently using cold atoms in a 1D optical lattice. Using time-dependent density matrix
renormalization group methods we analyze the wave packet dynamics as a density excitation propagates
across a boundary in the interaction strength. These phenomena exhibit good correspondence with
predictions from Luttinger liquid models and could be observed in current experiments in the context
of the Bose-Hubbard model.

DOI: 10.1103/PhysRevLett.100.110404 PACS numbers: 03.75.Lm, 42.50.�p, 72.10.�d

The rich physics described by Luttinger liquid (LL)
theory [1] is normally associated with interacting one-
dimensional (1D) electron systems such as carbon nano-
tubes or lithographically defined quantum wires. However,
exciting progress in cold atomic gases experiments [2,3]
has seen aspects of this physics realized in a new context
[4,5]. This not only promises observation of effects such as
spin-charge separation [5] in a clean system closely real-
izing the theoretical models, but also provides a new view-
point on transport properties, which can be studied in the
context of coherent wave packet propagation. This con-
nection is strengthened by the use of recently developed
time-dependent density matrix renormalization group
(TDMRG) methods [6], which allow the computation of
dynamics for physically realizable lattice models, and the
identification of parameter ranges in which LL model
predictions can be observed in experiments. Here we in-
vestigate this analogy for systems described by the inho-
mogeneous LL model, in which the electron-electron
interaction varies stepwise from essentially noninteracting
to repulsively interacting [7]. This model is used to de-
scribe the coupling of quantum wires to higher dimen-
sional leads which act as weakly interacting electron
reservoirs, and predicts rich boundary phenomena, includ-
ing Andreev-like reflection, i.e., reflection of hole excita-
tions. We show that analogous Andreev-like reflections can
exist for 1D atomic gases in optical lattices, where the
many-body dynamics are well described by Hubbard mod-
els [8], and that these could be observed time dependently
in current experimental setups.

Andreev-like reflections are predicted by an inhomoge-
neous LL model with Hamiltonian [7] (@ � 1) HLL �R
�dx=2���u�x�g�x�����2 � u�x��@x��2=g�x��, where �

is the standard Bose field operator in bosonization [1],
and � its conjugate momentum density, ���x�; ��x0�� �
i��x� x0�. This model describes low energy excitations
with speed of sound u�x�. The parameter g�x� characterizes
interactions, with 0< g�x�< 1 for repulsive interactions,

g�x� � 1 in the noninteracting case, and g�x�> 1 for at-
tractive interactions. When a propagating density excita-
tion is incident on a boundary at xB with g�x < xB� � gL
and g�x � xB� � gR, the strength of the reflections is
quantified by a reflection coefficient � � �gL �
gR�=�gL � gR� [see Fig. 1(b)]. For � < 0, excitations are
transmitted with a larger amplitude 1� �, which is com-
pensated by the reflection of holelike charge excitations
with amplitude j�j [see Fig. 1(a), bottom]. This is analo-
gous to Andreev reflection when an electron is incident on
a normal metal-superconductor boundary: The electron
forms a Cooper pair in the superconductor, and depending
on whether its energy is higher or lower than the super-
conducting gap, a partial or complete hole is reflected.

FIG. 1 (color online). (a) A propagating excitation exhibits
normal reflections (top) or Andreev reflections (bottom) at an
interaction boundary depending on the relative interaction
strengths on the two sides. (b) Observation via bosons in an
optical lattice in three steps: Preparation of the initial excitation
using a superimposed trap (left); propagation of the excitation
towards the interaction boundary, formed by coupling the atoms
off resonantly to an additional internal state (right); and detec-
tion via measurement of the atom density in a region between the
initial excitation and the interaction boundary.
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Here there is no gap, and so the holes reflected are partial
holes [7]. This phenomenon is manifest in several effects
predicted for transport through quantum wires—such as
oscillations of the nonlinear current voltage characteristics
and the appearance of fractional charge excitations in the
finite frequency current noise [9]. However, imperfections
including contact resistance between quantum wires and
the attached electron reservoirs have so far prevented these
effects from being observed. In this sense, cold atoms in
optical lattices would constitute an ideal physical system in
which Andreev-like reflections can be observed.

We study dynamics on the lattice because the physics of
atoms in optical lattices is well understood on a micro-
scopic level [8], and TDMRG methods allow exact com-
putation of the dynamics. We first investigate an extended
Hubbard model with off-site interactions for spin-polarized
fermions (or hard-core bosons), which corresponds in the
continuum limit to a Luttinger liquid [1]. The Hamiltonian
is given by (@ � 1)

 Ĥ � �J
X
hi;ji

ĉyi ĉj �
X
i

Vin̂in̂i�1 �
X
i

"in̂i; (1)

where ĉi annihilates a fermion (or boson) on site i, J is the
tunneling rate between neighboring sites, ni � ĉyi ĉi is the
number operator for particles on site i, Vi is the nearest
neighbor interaction energy, and "i denotes the energy
offset of site i due to external potentials. This
Hamiltonian is valid for J; Vi �n	 ! with �n the mean
density, and ! the band separation. In the limit aVi=vF *

1, where vF is the Fermi velocity and a the lattice spacing,
the connection between LL physics and this model is
approximately given by gi � 1=

�������������������������
1� aVi=vF

p
.

Off-site interactions can be generated with Fermions,
e.g., using polar molecules or by coupling to Rydberg
states, or with hard-core bosons by loading strongly inter-
acting atoms into excited Bloch bands [10]. However, the
natural experimental situation is to have short-range con-
tact interactions between atoms, as described by the Bose-
Hubbard model including only on-site interactions, with
Hamiltonian (@ � 1)

 Ĥ � �J
X
hi;ji

b̂yi b̂j �
X
i

Uin̂i�n̂i � 1� �
X
i

"in̂i: (2)

Analogously to Eq. (1), b̂i annihilates a boson on site i,
ni � b̂yi b̂i, and Ui denotes the on-site interaction energy
shift between two atoms. This Hamiltonian is valid in the
limit where J;Ui �n	 !. Note that in the limit
jUi=Jj; jUi="ij 
 1 and with a mean filling factor �n	 1
we can obtain the off-site interactions of the extended
Hubbard Hamiltonian, Eq. (1), directly from on-site inter-
actions. Restricting to the manifold of states containing
only singly occupied sites, we obtain off-site interactions
in perturbation theory as Vi;eff � �J

2=Ui � J
2=Ui�1.

Below we go beyond this limit in our numerical
calculations.

We begin by studying dynamics in the extended
Hubbard model, Eq. (1), before returning to the Bose-
Hubbard model below. We consider an initial density
excitation formed by a local dip in the external potential
[e.g., from a focused laser beam, see Fig. 1(b)],

 "i � ����t�"0 exp���i� x0�
2=�2�2�� � "RF�i�: (3)

We compute the ground state of the Hamiltonian (1), and
then at t � 0, we switch off the local dip suddenly, leaving
a Gaussian shaped density excitation centered on site x0

with width � and amplitude controlled by "0. The last term
denotes the change in potential at the barrier, with F�x�
varying linearly across the width of the barrier (Mb sites),
F�i� � 0, i < xb; F�i� � �i� xb�=Mb, xb � i � xb �Mb;
F�i� � 1, i > xb �Mb. The interaction Vi also varies as
Vi � VL � �VR � VL�F�i�, and initially we will consider a
sharp barrier, Mb � 1. The parameter "R should be ad-
justed so that the density on each side of the barrier is
approximately the same. Note that this is only possible in
the range jVL � VRj & J, as otherwise large density oscil-
lations are observed near the boundary. The initial ground
state and propagation are computed by quasiexact imagi-
nary and real time evolution, respectively, with
Hamiltonian (1), using TDMRG methods [6], which pro-
vide an adaptive decimation of the Hilbert space. We
performed convergence tests to ensure the accuracy of
our results (see [11] for a general analysis of the accuracy
of these methods), and estimate errors smaller than a few
percent in the presented values.

In Figs. 2(a) and 2(b) we show shaded plots of the atom
density at each site varying with time. The initial density
excitation splits into right- and left-moving excitations,
with the right-moving excitation giving rise to reflected
and transmitted excitations after incidence on the bound-
ary. Figure 2(a), for which VL � 0 and VR � J, shows
normal reflection of the excitation, where two lower den-
sity excitations are produced. In Fig. 2(b), where VR �
�J, an Andreev-like reflection is observed, with a hole
excitation reflected that corresponds to a lower density at
the sites it occupies. Commensurately, a larger amplitude
excitation is transmitted at the interaction boundary.

We can quantify this process by defining the amplitude
of a density excitation to be the total integrated change
from the background density over the sites containing the
excitation. The reflection coefficient R naturally follows as
the ratio of amplitudes of the reflected and incident ex-
citations. In practice, we identify a group of sites between
the original location of the density excitation and the
interaction boundary as the measurement region. As shown
in Fig. 2(c), the density in the measurement region in-
creases and then decreases as the initial right-moving
excitation passes, then we observe either an increase or
decrease in the density resulting from normal or Andreev-
like reflections, respectively. We then compute R as the
ratio of the peak values in each of these time periods. Note
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that this definition can be used operationally in an experi-
ment, where the integrated density over several sites can be
measured, e.g., using fluorescence or phase-contrast imag-
ing with a focused laser [see Fig. 1(b)].

In Fig. 2(d) we plot the reflection coefficient R for�J <
VR < J, choosing VL � 0, "0 � 2J, and � � 3, and see
clearly the crossover from Andreev to normal reflection.
The quantitative values, though not the variation with VR,
are dependent on the size of the initial excitation, as shown
in the inset of Fig. 2(d). In order to compare our results
with the known analytical result from LL theory, we ex-
tracted approximate Luttinger parameters geff for the
ground states of our extended Hubbard model, Eq. (1), at
the background density value for each VR. This was done
by computing density-density correlations and fitting the
standard form for these in a LL [1],

 hn̂0n̂ri � �
geff

2�2r2 � A cos�2� �nr�
�
1

r

�
2geff

; (4)

where A is a constant, and �n is the mean occupation per
lattice site. Using these values we computed approximate
reflection coefficients, which are plotted in Fig. 2(d). They

show very good quantitative agreement with R in our
simulations for VR > 0, and only small deviations for VR <
0, especially for initial density excitations containing ap-
proximately one particle. This agreement is better than
might be expected, and demonstrates both the generality
of LL theory in its applicability to low energy states of 1D
systems and its continued applicability when we introduce
by hand the boundary in the interaction strength. For
comparison we have also computed geff based on the
approximate analytical expression.

We now investigate the time propagation of the excita-
tions when Vi varies linearly overMb sites, which provides
a more realistic treatment of barriers that might be created
in a real experiment. An example shaded plot of the atom
density at each site for an excitation exhibiting Andreev-
like reflection is shown in Fig. 3(a). The extended length
barrier spreads the resulting reflected and transmitted ex-
citations in space [cf. Fig. 2(b)]. However, the total ampli-
tude of the reflected wave packet is actually increased, as is
seen in Fig. 3(b), where we plot the reflection coefficient R
as a function of Mb for different amplitudes of the incident
excitation. This brings the reflection coefficients closer to
the values obtained from the effective LL parameters. The
finite-width barrier also smooths the local density minima
or maxima that appear at the boundary in the ground state
[see Fig. 3(a)].

To provide a simpler experimental implementation, we
consider the dynamics of excitations at an interaction
boundary in the Bose-Hubbard model. In the perturbation
theory limit, it follows from jJ=Uj 	 1 that jVi;effj 	 J,
and thus the amplitude of all reflections will be extremely
small. However, with numerical simulations we can treat
the system beyond the limit in which perturbation theory is
valid. In Fig. 4(a) we show results in which a density
excitation (created as for the extended Hubbard model)

FIG. 3 (color online). Reflections of a density excitation ("0 �
2J, x0 � 45, xb � 90�Mb) from a thick boundary with Vi
varying from VL � 0 to VR � �J linearly over Mb lattice sites.
(a) Shaded density plot showing reflection of an initial density
excitation with � � 3 from a boundary with Mb � 10, showing
the considerably broader reflected wave produced by the thick
boundary. (b) Reflection coefficient as a function of barrier
thickness Mb (measurement sites 55–85), showing an increase
in the amplitude of the negative density reflection as the barrier
is increased, for initial wave packets with � � 3 (solid line) and
� � 2 (dashed line). The amplitude is also slightly larger for the
narrower initial wave packet. "0�t � 0� � 2J.

FIG. 2 (color online). Numerical simulation results for propa-
gation of an initial density excitation ("0 � 2J, � � 3, x0 � 45)
across an interaction boundary from VL � 0 to varying VR at
xb � 90 (Mb � 1), with open boundary conditions. (a) Shaded
density plot for VR � J, showing a normal (positive density)
reflection at the boundary. (b) Shaded density plot for VR � �J,
showing an Andreev (negative density, or hole) reflection at the
boundary. (c) Difference from the initial value of the integrated
density over sites 60–75, showing an initial peak due to propa-
gation of the initial density excitation, and a secondary maxi-
mum (VR � J, dashed line) or minimum (VR � �J, solid line)
due to the reflected excitation. (d) Reflection coefficients as a
function of VR, showing the comparison between simulation
values (solid line) and estimated parameters from LL theory
using numerically computed Luttinger parameters [from Eq. (4),
dashed line] and the analytical form g � 1=

�������������������������
1� aVi=vF

p
(dot-

ted line). The inset shows the dependence on the depth �0 with
� � 2 (solid lines) and � � 4 (dashed lines) for VR � �0:5J
(upper curves) and VR � �J (lower curves), computed from
measurement sites 50–70.
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propagates across an interaction boundary at xb with
Ui<xb � 10J and Ui�xb � J, and see clearly a reflected
hole excitation. Reflection coefficients as a function of
VL;eff � 1=Ui>xb are plotted in Fig. 4(b), and compared
with results for the extended Hubbard model with Vi>xb �
Vi;eff . Effects that go beyond the validity of perturbation
theory actually yield a slight increase in the amplitude of
Andreev-like reflections and bring these results close to
those predicted using the estimated Luttinger parameters
that were plotted in Fig. 2(d). In addition, we can use
values of U J, where jVeff=Jj> 1 without adverse
boundary effects that prevent us from obtaining a smooth
background density near the interaction boundary. Thus, it
is possible to observe even larger amplitude Andreev-like
reflections in the Bose-Hubbard model than in the extended
Hubbard model.

The values of U=J used in the simulations are readily
generated in homogenous systems [8], and a varying Ui
could be engineered simply in several ways. For example,
lasers focused on one side of the system could couple the
atoms off resonantly from their internal state j�i to an
additional internal state j	i. Using a Feshbach resonance
[12], the interaction U�� between two atoms in the state �
can be made much larger than that for atoms either in
different states, U�	, or both in the state j	i, U		. Thus,
the admixture of the state 	 will reduce the on-site inter-
action strength in the region where the internal state of the
atoms is j i � a1j�i � a2j	i, where a1 and a2 are com-
plex coefficients. Such a laser coupling could be focused so
that the coupling varies on a length scale of & 5 
m, or
approximately 10 lattice sites. Similarly, the initial density
excitation could be prepared using a laser focused over
10 lattice sites.

We have shown how wave packet dynamics of Andreev-
like reflections in Hubbard models closely matches the

behavior expected from LL physics, and how these reflec-
tions could be observed time dependently with cold atoms
in optical lattices. This could be extended to multispecies
models and to other geometries such as Y junctions [13].
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FIG. 4 (color online). Realization of Andreev reflections
within the Bose-Hubbard model. (a) Shaded density plot show-
ing an Andreev-like reflection from a boundary at Xb � 90, with
UL � 10J and UR � J. (b) Reflection coefficients for different
UR as a function of VR;eff for the Bose-Hubbard model (solid
line). These are compared with results from the extended
Hubbard model (dashed line) and estimated parameters from
LL theory (dotted line) computed as in Fig. 2. Parameters used:
"0 � 2J, � � 3, x0 � 45, Xb � 90, Mb � 1, UL � 10J, mea-
surement sites 55–85.
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