Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Dynamics of nanoscale droplets on moving surfaces

Ritos, Konstantinos and Dongari, Nishanth and Borg, Matthew K. and Zhang, Yonghao and Reese, Jason M. (2013) Dynamics of nanoscale droplets on moving surfaces. Langmuir, 29 (23). pp. 6936-6943. ISSN 0743-7463

[img]
Preview
Text (Ritos-etal-L2013-Dynamics-of-nanoscale-droplets-on-moving-surfaces)
Ritos_etal_L2013_Dynamics_of_nanoscale_droplets_on_moving_surfaces.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

We use molecular dynamics (MD) simulations to investigate the dynamic wetting of nanoscale water droplets on moving surfaces. The density and hydrogen bonding profiles along the direction normal to the surface are reported, and the width of the water depletion layer is evaluated first for droplets on three different static surfaces: silicon, graphite, and a fictitious superhydrophobic surface. The advancing and receding contact angles, and contact angle hysteresis, are then measured as a function of capillary number on smooth moving silicon and graphite surfaces. Our results for the silicon surface show that molecular displacements at the contact line are influenced greatly by interactions with the solid surface and partly by viscous dissipation effects induced through the movement of the surface. For the graphite surface, however, both the advancing and receding contact angles values are close to the static contact angle value and are independent of the capillary number; i.e., viscous dissipation effects are negligible. This finding is in contrast with the wetting dynamics of macroscale water droplets, which show significant dependence on the capillary number.