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Abstract
Recent molecular dynamics simulation results have increased conceptual understanding of the grazing and the ploughing friction at

elevated temperatures, particularly near the substrate’s melting point. In this commentary we address a major constraint concerning

its experimental verification.

586

Introduction
It was postulated some time ago that a component sliding under

lightly loaded conditions should experience very low friction

and nearly zero wear [1]. Recent research, however, has shown

a steep rise in the grazing friction during wearless sliding,

primarily attributed to the adhesion between the interacting

surfaces [2]. A major assumption in the atomistic simulation

associated with this finding was the consideration of the

diamond tip as a wearless rigid body for ease of computation.

Accordingly, it has been suggested [2] that the steep rise in

grazing friction and the gradual drop in ploughing friction at

high temperatures may affect all materials and should be

pursued experimentally [3].

However, diamond is known to exhibit poor thermo-chemo-

mechanical stability particularly against low carbon ferrous

alloys [4] and at elevated temperatures [5]. It is surprising,

but true, that diamond, the hardest material available (until

the commercial realization of beta carbon nitride β-(C3N4)

[6]), wears out rapidly when it is rubbed against low carbon

ferrous alloys and pure iron [7]. A hypothesis was proposed by

Paul et al. [8] ascribing the rapid chemical wear of diamond tips

to the presence of unpaired d-shell electrons in the substrate.

Utilizing this proposition, a research group from Bremen

University, Germany, has reversed the roles of the convention-

ally used cutting tool and the workpiece material and has
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succeeded in machining a diamond substrate using a steel rod as

a tip [9].

This raises a key question concerning the stability of diamond

tips during nanoscratch tests at elevated temperatures and more

categorically against low carbon ferrous alloys. The wear of the

diamond tip will change the contact area which will alter the

frictional force as the latter depends linearly on the number of

atoms that chemically interact across the surface [10]. Then, the

question arises as to what other options are available for a tool

tip for nanotribological applications at elevated temperatures, if

not diamond. We attempt to answer this question below.

Discussion
Principally, ultra-hard materials – materials whose hardness is

attributable to covalent bonding – can be represented using the

“composition cycle” shown in Figure 1. This cycle involves the

four elements carbon (C), boron (B), silicon (Si) and nitrogen

(N). The combination of any two chemical species from this

composition cycle produces a compound exhibiting ultra-high

hardness, e.g., CBN, SiC, Si3N4, B4C and the recently recog-

nized C3N4.

Figure 1: Composition cycle of ultra-hard materials (C–N–B–Si) [11].

Under ambient conditions – while nitrogen reside in a gaseous

form as individual chemical species – boron, silicon and

diamond are known to prefer a solid state. Due to its abundance

and its capability to form better oxides, silicon dominated the

electronic consumer market [12] while the ubiquitous use of

diamond originates from its unique features such as high

thermal conductivity, high wear resistance and its ability to

form extremely sharp cutting edges [13]. Moreover, both

diamond and silicon are known to be hard and brittle [14,15] in

their sp3-bonded state. Two commercially available materials

from this composition cycle, diamond (C) and cubic boron

nitride (CBN), possess ultra-high hardness (attributed both to

sp3-bonding and relatively short bond lengths) and, for this

reason, they are frequently used to manufacture cutting tips.

While diamond resides in a cubic lattice structure, CBN pos-

sesses a zinc-blende structure having boron atoms at the crystal

site (0,0,0) and nitrogen atoms in the respective centers of the

boron tetrahedra. Although, a chemical bond between the

carbon atoms in diamond is stronger than the corresponding

isoelectronic bond between nitrogen and boron atoms, we

propose that cubic boron nitride “CBN” could be an alternative

appropriate choice for high-temperature nanotribology applica-

tions because of its superior thermal and chemical stability

compared to that of diamond. Even though diamond and CBN

have similar lattice structures, their surface chemistry is

different. In a CBN lattice, boron atoms have only three valence

electrons on the surface while nitrogen atoms have five.

However, two of these five electrons of nitrogen can form a

stable pair, leaving three valence electrons to bond with boron.

On the contrary, a diamond lattice has four valence electrons;

therefore, only a maximum of three electrons on the surface can

have stable bonding between them. Consequently, this leads to

the possibility that the remaining one or two electrons of each

surface atom in diamond react readily with other materials like

iron, nickel and even silicon [16] in a tribological environment.

This seems to be a plausible reason why CBN was found as an

efficient cutting tip to machine ferrous alloys [17] and silicon

[18] in comparison to a diamond tip. Hence, in contrast to

diamond, CBN has fewer dangling bonds on the surface which

makes it more inert.

Conclusion
It is proposed that the results for the ploughing friction and

grazing friction in a high temperature environment must be

retested using a CBN probe to reconfirm the state-of-the-art

knowledge. Moreover, the influence of the rake angle of the tip

must necessarily be accounted for when generalizing the results

of grazing friction, as it is an integral part in governing atomic

scale friction [19,20].
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