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This paper considers a finite element approach to modeling electromagnetic waves in a periodic diffraction
grating. In particular, an a priori error estimate associated with the α-quasi-periodic transformation is derived.
This involves the solution of the associated Helmholtz problem being written as a product of eiαx and an unknown
function called the α-quasi-periodic solution. To begin with, the well-posedness of the continuous problem is
examined using a variational formulation. The problem is then discretized, and a rigorous a priori error estimate,
which guarantees the uniqueness of this approximate solution, is derived. In previous studies, the continuity of
the Dirichlet-to-Neumann map has simply been assumed and the dependency of the regularity constant on the
system parameters, such as the wavenumber, has not been shown. To address this deficiency, in this paper an
explicit dependence on the wavenumber and the degree of the polynomial basis in the a priori error estimate is
obtained. Since the finite elementmethod is well known for dealingwith any geometries, comparison of numerical
results obtained using the α-quasi-periodic transformation with a lattice sum technique is then presented. © 2013
Optical Society of America

OCIS codes: (290.0290) Scattering; (050.1950) Diffraction gratings; (050.1960) Diffraction theory;
(050.2770) Gratings; (080.1753) Computation methods; (080.2720) Mathematical methods (general).
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1. INTRODUCTION
Periodic diffraction gratings have been used recently, for
example, in crystalline silicon solar cells [1], gas sensors
[2], and medical x-ray imaging [3,4]. The problem of wave
diffraction is based on solving Maxwell’s equations in the dif-
fraction grating region and on finding the resulting electro-
magnetic field when an incident wave interacts with the
grating [5]. As there are two types of waves to consider [trans-
verse magnetic (TM) and transverse electric (TE)] and there
are two types of gratings (perfectly conducting and transmit-
ting dielectric), there are in fact four cases to investigate.
These cases will be denoted by Case 1A/B (perfectly con-
ducting) and Case 2A/B (transmitting dielectric), where A
(B) denotes the TE (TM) wave [5]. For brevity, the main focus
is on the TM mode for the transmitting dielectric grating
(Case 2B) in this article. There are of course other numerical
methods in the literature to solve the problem of diffraction of
waves [5–7]. This paper is an extension of the work in [8],
which mainly focuses on the finite element approach. In fact,
a finite element method and the periodicity of the grating with
respect to one direction are used to address the problem over
one period. Since the domain is infinite in the other direction,
some transparent boundary conditions are applied to truncate
the domain. The advantage of the finite element method is its
flexibility in dealing with complex geometries. It also naturally
gives rise to a variational formulation that provides a platform
to rigorously derive existence and uniqueness results and
regularity bounds. Hence, the well-posedness of the problem
and an a priori error estimate can be derived.

In Section 2, the geometry, a statement of the Helmholtz
problem to be solved, and the associated function spaces
are presented. There have been a number of theoretical inves-
tigations into the use of the finite element method as a tool for
studying the electromagnetic waves interacting with a diffrac-
tion grating [5,6,8,9]. In these studies the continuity of the
Dirichlet-to-Neumann (DtN) map was simply assumed and
hence the dependency of the regularity constant on the sys-
tem parameters such as the wavenumber was not derived.
These are essential components in the analysis, and so these
results are derived here for the first time in Section 2. The
α-quasi-periodic method is studied in Section 3 with an exami-
nation of the continuous problem, its variational formulation,
and its well-posedness. The problem is then discretized to
approximate its solution and a new a priori error estimate
is derived. This result guarantees the uniqueness of the
approximate solution and shows an explicit dependence on
the wavenumber k, the mesh size h, and the degree of the pol-
ynomial basis p. In order to keep this paper to a manageable
size, the proofs of the majority of the results are relegated to
online reports [10,11].

2. PHYSICAL AND MATHEMATICAL
DESCRIPTION OF THE PROBLEM
The aim of this paper is to solve the Helmholtz equation for a
periodic grating of period d (with respect to x), as shown in
Fig. 1. In order to formulate the scattering problem as a boun-
dary value problem, an appropriate radiation condition (out-
going wave condition) must be included. In this paper,
electromagnetic waves interacting with a periodic diffraction
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grating are considered and hence the usual Sommerfeld
radiation condition is not appropriate [12]; the radiating en-
ergy does not diminish in the direction of periodicity. The
so-called upward propagating radiation condition (UPRC) is
therefore utilized. It has been used previously to establish
the uniqueness of the solution to the continuous problem
associated with scattering from a periodic grating [12]. The
periodicity of the grating is utilized to restrict the problem
to a single vertical strip as shown in Fig. 1. The effects of
the scatterers (the grating) are restricted to a horizontal strip
Ω0 � �0; d� × �−b; b�; we denote by Ω3 ⊂ Ω0 the scatterer (see
Fig. 1), and the wavenumber k is

k�x; y� �

8>>>>>>>><
>>>>>>>>:

k1 ∈ R; for �x; y� ∈ f0 ≤ x ≤ d; y ≥ Bg;
k1 ∈ R; for �x; y� ∈ Ω1;

k0 ∈ C; for �x; y� ∈ Ω0∖Ω3;

k3 ∈ C; for �x; y� ∈ Ω3;

k2 ∈ C; for �x; y� ∈ Ω2;

k2 ∈ C; for �x; y� ∈ f0 ≤ x ≤ d; y ≤ −Bg;

with k2 � w2ϵμ, where ϵ is the electric permittivity, μ is the
magnetic permeability, w is the angular frequency, and
subdomains Ω1 � �0; d� × �b; B� and Ω2 � �0; d� × �−B;−b�. The
incident wave is denoted by UI , which is given by

UI � eiαx−iβ
0
1y, where α � k1 sin θ, β01 � k1 cos θ, and θ is

the angle of incidence of the wave as shown in Fig. 1. By
demanding that R�kj� > 0 and I�kj� ≥ 0, where R�kj�
(I�kj�) denotes the real (imaginary) part of kj , the scattered
and diffracted waves are composed of bounded outgoing
waves. The periodicity of the grating combined with the pres-
ence of the incident wave makes any solution α-quasi-
periodic; that is, there exists a periodic function Uα with
the same period as a solution U such that [7,8,13,14]

U�x; y� � eiαxUα�x; y�: (1)

The α-quasi-periodic method applies transformation (1) to
the Helmholtz problem and solves the resulting scattering
problem for the function Uα. It is more straightforward to im-
plement periodic rather than quasi-periodic constraints using
the finite element method since the quasi-periodic case in-
volves the extra term eiαx. In addition, when there are high
wavenumbers, the eiαx term will oscillate rapidly and increase
the computational error. There is motivation therefore to find
Uα and not to solve the original Helmholtz problem directly.

A. Transparent Boundary Conditions
(Dirichlet-to-Neumann Maps)
To solve the grating problem numerically for a wide range of
grating geometries, a finite element method is used here. It is
therefore necessary to truncate the domain to render it finite.
To provide suitable boundary conditions for the finite element
solver, an analytical solution (known as the Rayleigh expan-
sion) in the adjacent domains is used. Transparent boundary
conditions that match this analytical solution continuously
and smoothly with the finite element solution inside the trun-
cated region are employed. These transparent boundary con-
ditions are captured by the DtN operators T� to match the
Rayleigh expansion of the electromagnetic field on the boun-
dary of the truncated region with the finite element solution
inside the truncated domain. Denote the interfaces by
Γ� � f�x;y�: 0 ≤ x ≤ d;y� Bg, Γ− � f�x;y�: 0≤ x≤ d;y� −Bg.

Since both periodic and α-quasi-periodic functions are
used, the function spaces on the domain boundaries are

Ls
α#��0; d�� � fg ∈ Ls��0; d��: g�d� � eiαdg�0�g;
Hs

#��0; d�� � fg ∈ Hs��0; d��: g�d� � g�0�g;
Hs

α#��0; d�� � fg ∈ Hs��0; d��: g�d� � eiαdg�0�g;

and the function spaces inside Ω � f�x; y�: 0 ≤ x ≤ d;−B ≤
y ≤ Bg are

Hs
#�Ω� � ff ∈ Hs�Ω�: f �d; y� � f �0; y�; ∀ y ∈ �−B; B�g;

Hs
α#�Ω� � ff ∈ Hs�Ω�∶ f �d; y� � eiαdf �0; y�; ∀ y ∈ �−B;B�g;

with s ∈ R and Ls�Ω�; Hs�Ω�, Ls��0; d��, and Hs��0; d�� are
Sobolev spaces [15]. The following norm is used later to
simplify the algebra.

Definition 1. Let F ⊂ R2 and v ∈ H1�Ϝ� ([15]); then

define [16]

‖v‖2H � jvj2
H1�Ϝ� � ‖k‖2∞‖v‖2L2�Ϝ�:

Note that ‖v‖H is equivalent to ‖v‖H1�Ϝ� since

inf
�
1;

1
‖k‖∞

�
‖v‖H ≤ ‖v‖H1�Ϝ� ≤ sup

�
1;

1
‖k‖∞

�
‖v‖H

using the definition of Sobolev norms [15]. Also note that

‖v‖H ≤ jvjH1�Ϝ� � ‖k‖∞‖v‖L2�Ϝ�. Since Hl
α#�Ϝ� ⊂ Hl�Ϝ� and

Hl
#�Ϝ� ⊂ Hl�Ϝ� for any l ≥ 0, then for any v ∈ H1

α#�Ϝ�
(v ∈ H1

#�Ϝ�), ‖v‖H is well defined.
The following property holds.

Fig. 1. Diagram showing the truncated periodic grating domain.
Define Ω1 to be the region above the scattering region
f�x; y�:0 ≤ x < d; b ≤ y ≤ Bg, and the substrate Ω2 to be
f�x; y�:0 ≤ x < d;−B ≤ y ≤ −bg.
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Theorem 2. Let v ∈ Hl
α#�Ω� and let vα ∈ Hl

#�Ω� such that

v � eiαxvα:

Then,

‖vα‖Hl
#�Ω� ≤ l2l‖v‖Hl

α#�Ω� (2)

for l ≠ 0 and

‖vα‖L2
#�Ω� � ‖v‖L2

α#�Ω�: (3)

Proof [11, p. 61].
The DtN maps are defined below.
Definition 3. Let f ∈ H

1∕2
α# �Γ��; then the DtN maps [8] are

defined by

Tf �x� � T�f �x� �
X
n∈Z

iβnj f
�nα���B�einαx;

where Tf ∈ H
−�1∕2�
α# �Γ��, nα � α� �2πn∕d�, βnj � eizn∕2�jk2j−

n2
αj�1∕2, and

zn � arg�k2j − n2
α�; (4)

for j ∈ f1; 2g and f �nα���B� � 1∕d
R
d
0 f �x;�B�e−inαxdx. The

wavenumbers must satisfy k2j ≠ n2
α, and at these discrete

frequencies these guided modes propagate without loss along

the grating and cause the phenomenon of resonance [7,8].
The following property holds for T�.
Lemma 4. The inner product of a function g and its

normal derivative on the boundary Γ� satisfy

R�Tg; g�Γ� � −d
P
n∈Z

sin�zn∕2�jβnj jjg�nα�j2 ≤ 0

I�Tg; g�Γ� � d
P
n∈Z

cos�zn∕2�jβnj jjg�nα�j2 ≥ 0

9=
;: �5�

Proof [11, p. 25].
From Definition 3, the DtN map can be used so that the

scattering domain can be truncated at Γ� and the problem
studied in this paper can be stated as follows [11, p. 38, Lemma
17]. The homogeneous Helmholtz problem is to find
U�x; y� ∈ C2�Ω�, where

∇ ·
�

1

k2�x; y�∇U�x; y�
�
� U�x; y� � 0; �x; y� ∈ Ω; (6)

with the DtNmap interface conditions at the boundaries of the
truncated region given by

∂nU�x; y�jΓ� � T�U � g�x� x ∈ Γ�; (7)

∂nU�x; y�jΓ−
� T−U x ∈ Γ−; (8)

subject to the α-quasi-periodic condition given by
U�d; y� � eiαdU�0; y�, where y ∈ �−B;B�. Here

T�U�x� �
X
n∈Z

iβn1U
�nα��B�einαx;

T−U�x� �
X
n∈Z

iβn2U
�nα��−B�einαx;

g�x� � −2iβ01e
−iβ01B�iαx;

with k2j ≠ n2
α U �nα���B� � 1∕d

R
d
0 U�x;�B�e−inαxdx.

Note that �1∕k2�x; y��∇U�x; y� ∈ C1�Ω� is from the inter-
face condition that corresponds to the TM case [17]. Hence,
∇:��1∕k2�x; y��∇U�x; y�� is well defined if U�x; y� ∈ C2�Ω�.
The α-quasi-periodic approach [11] is used to solve the scat-
tering problem and so additional DtN maps are required as
detailed below.

Definition 5. Let f ∈ H
1∕2
# �Γ��. Then define the DtN

maps [13]

Tαf �x� � Tα
�f �x� �

X
n∈Z

iβnj f
�n���B�ei2πnd x; (9)

where Tα
�f ∈ H

−�1∕2�
# �Γ�� and

f �n���B� � 1
d

Z
d

0
f �x;�B�e−i2πnx∕ddx:

In order to show the uniqueness of the solution to the
scattering problem, one of the prerequisites is that T is a con-
tinuous operator.

Lemma 6. The operator T : H1∕2
α# �Γ�� → H

−�1∕2�
α# �Γ�� is a

continuous linear form, for any k2j ≠ n2
α, and there exists a

positive constant 2 ≤ C2 ≤
���
5

p
such that

‖Tf ‖2
H

−1
2

α#�Γ��
≤ C2 sup�jk2j j; 1�‖f‖2

H
1
2
α#�Γ��

for j � 1, 2. In addition, the bilinear form T� f ; g�:
�f ; g�↦�Tf ; g�Γ� is continuous on H

1∕2
α# �Γ�� ×H

1∕2
α# �Γ�� and

j�Tf ; g�Γ� j ≤ dC sup�jkjj; 1�‖f ‖
H

1
2
α#�Γ��

‖g‖
H

1
2
α#�Γ��

(10)

for all n ∈ N and j � 1, 2 with

jβnj j2 ≤
�
C2jk2j j; if jk2j j > n2

α;

C2n2
α if jk2j j < n2

α:

Proof [10, p. 23].
To model the scattering problem, the homogeneous

Helmholtz problem is used since the forcing term (incident
wave) is part of the boundary conditions. But when it comes
to the well-posedness of the problem, the inhomogeneous
Helmholtz equation is needed to show the continuous depend-
ence of the problem on the data (for any given forcing term).
Hence, the regularity of the solution U�x; y� is now investi-
gated to enable an a priori error estimate to be derived. In
general, the inhomogeneous Helmholtz problem is to find
�1∕k2�x; y��∇U�x; y� ∈ C1�R2�, such that the following is
satisfied:

∇ ·
�

1

k2�x; y�∇U�x; y�
�
� U�x; y� � f �x; y�; (11)
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subject to the radiation condition limjyj→∞U�x; y� � 0. Utiliz-
ing the periodicity of the grating reduces the problem to one
on the vertical single strip S � �0; d� × R, where f is a general
given α-quasi-periodic with respect to x and a compact sup-
port in Ω; the solution U is also α-quasi-periodic with respect
to x and must satisfy the UPRC [12, p. 30]. In the following
theorem, the regularity of the solution to Eq. (11) is stated.

Theorem 7. For any γ � �γ1; γ2� such that γj ∈ N, for j � 1,
2, and for x ∈ �0; d�, y ∈ �−B;B� ⊂ R there exists a constant

Creg that is independent of the wavenumber k, with

kj ≠ nα, such that the solution U of Eq. (11) satisfies

‖DγU‖L2�Ω� ≤ Creg�1� CsC�k0; k3��‖k‖jγj−1∞ ‖f ‖L2�Ω�;

where Cs is a constant independent of k, C�k0; k3� is a con-

stant that only depends on k0 and k3 [10, p. 219],

jγj �
����������������
γ21 � γ22

q
, and ‖DγU‖L2�Ω� is an L2-Sobolev norm of

order γ [15,18,19].
Proof. Let U be the solution of the inhomogeneous

equation (11); using the integral representation [17,20] of U
leads to

U�x; y� �
Z
S

Gj�x − x0; y − y0�f �x0; y0�dx0dy0 (12)

for j ∈ f0; 1; 2; 3g with

Gj�x; y� �
1
2d

X
n∈Z

cnj
e
inαx�iβn

j
jyj

iβnj
� 1

2d

X
n∈Z

dnj
e
inαx−iβ

n
j
jyj

iβnj
; (13)

where cnj and dnj represent the coefficients of the Green’s
functions Gj�x; y�.

By introducing the notation

Imn�y; y0� �
Z
R

�
cnj

e
iβn

j
jy−y0j

βnj
� dnj

e
−iβn

j
jy−y0j

βnj

�
f �mα��y0�dy0;

we note by using the continuity of Imn with respect to y0 along
with the outgoing wave boundary condition that

Imn�y; y0� � 0 if y0 ≠ y; (14)

and

Imn�y; y� �
1
βnj

�cnj � dnj �f �mα��y� if y0 � y: (15)

We have

U�x; y� � 1
d

Z
�0;d�×R

X
n∈Z

einα�x−x0�
�
cnj

e
iβn

j
jy−y0j

2iβnj
� dnj

e
iβn

j
jy−y0j

2iβnj

�

×
X
m∈Z

eimαx0 f �mα��y0�dx0dy0:

Now
P

n∈Z�cnj eiβ
n
j
jy−y0j � dnj e

iβn
j
jy−y0j�∕�2iβnj � and f are con-

tinuous with compact support and the integral is well defined
so we can use Fubini’s theorem [21, p. 110] to interchange the
order of summation and integration to get

U�x; y� � 1
d

X
n∈Z

Z
�0;d�×R

einα�x−x0�
�
cnj

e
iβn

j
jy−y0j

2iβnj
� dnj

e
iβn

j
jy−y0j

2iβnj

�

×
X
m∈Z

eimαx0 f �mα��y0�dx0dy0 (16)

� 1
d

X
m;n∈Z

Z
�0;d�

einα�x−x0�

2i
eimαx0Imn�y; y0�dx0: (17)

Since 1∕d
R
d
0 e−inαx0�imαx0dx0 � 1 if m � n and the integral

is 0 otherwise, then

U�x; y� �
X
n∈Z

einα�x�

2i
Inn�y; y0�:

Using Eq. (15),

U�x; y� �
X
n∈Z

einα�x�

2i

�
1
βnj

�cnj � dnj �f �nα��y�
�

and so

‖U‖L2�S� ≤ sup
n∈Z;j

fjcnj j; jdnj jg
jβnj j

‖
X

n∈Ze
inαxf �nα��y�‖

L2�S�
:

Since supp f ⊂ Ω, then

‖U‖L2�Ω� ≤ sup
j∈f0;1;2;3g;n∈Z

fjcnj j; jdnj jg
jβnj j

‖f �x; y�‖L2�Ω�: (18)

Taking the weak derivative of U with respect to x, in
Eq. (16), γ1 times gives

∂γ1x U � 1
d

X
m;n∈Z

Z
d

0
�inα�γ1einα�x−x0�eimα�x0�;

×
Z
R

 
cnj e

iβn
j
jy−y0j � dnj e

−iβn
j
jy−y0j

2iβnj

!
f �mα��y0�dy0dx0;

and so

‖∂γ1x U‖L2�S� ≤
1
d
sup
n∈Z

‖nα‖
γ1
∞‖

X
m;n∈Z

Z
d

0
einα�x−x0�eimα�x0�;

×
Z
R

 
cnj e

iβn
j
jy−y0j � dnj e

−iβn
j
jy−y0j

2iβnj

!

× f �mα��y0�dy0dx0‖
L2�S�

:

Since supp f ⊂ Ω,

‖∂γ1x U‖L2�Ω� ≤ sup
n∈Z

‖nα‖
γ1
∞‖U‖L2�Ω�: (19)

We can do exactly the same with the weak derivative of U
with respect to y, but we need to take into account thatP

n∈Z��cnj eiβ
n
j
jy−y0j � dnj e

−iβn
j
jy−y0j�∕2iβnj �f �mα��y0� is no longer
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continuous for γ2 > 1 on each interface separating each
medium Sj of constant wavenumber kj . Therefore

∂γ2y U�1
d

X
m;n∈Z

Z
d

0
einα�x−x0�eimα�x0�

×
Z
R

�iβnj �γ2cnj eiβ
n
j
jy−y0j��−iβnj �γ2dnj e−iβ

n
j
jy−y0j

2iβnj
f �mα��y0�dy0dx0

�
Xγ2
p�2

"X
n∈Z

�
cnj e

iβn
j
jy−y0j�dnj e

−iβn
j
jy−y0j�

2iβnj
f �nα��y0�

#
Sj∩Sl

× f �nα��y0�; (20)

such that �Pn∈Z��cnj eiβ
n
j
jy−y0j � dnj e

−iβn
j
jy−y0j�∕2iβnj �f �nα��y0��Sj∩Sl

denotes the jump at the interface separating Sj and Sl with j,
l ∈ 0, 1, 2, 3,. Hence,

�����
"X
n∈Z

 
cnj e

iβn
j
jy−y0j � dnj e

−iβn
j
jy−y0j

2iβnj

!
f �nα��y0�

#
Sj∩Sl

�����
≤ sup

n∈Z;l∈f0;1;2;3g
�jβnj jp−2jcnj eiβ

n
j
jy−y0jj�

X
n∈Z

jf �nα��y0�j

� sup
n∈Z;l∈f0;1;2;3g

�jβnj jp−2jdnj e−iβ
n
j
jy−y0jj�

X
n∈Z

jf �nα��y0�j:

First, we note that when j ∈ f1; 2g, Sj∩S0 is given by
y � �b; therefore y − y0 � 0 on the interface and so

je�iβn
j
jy−y0jj � 1; (21)

We also note that, for y ≠ y0,

jeiβnj jy−y0jj ≤ 1; (22)

because I�βnj � > 0 and

je−iβnj jy−y0jj ≤ e
sin�zn∕2�‖kj‖ sup

�
2πN0
d

;jαj
	
∕kref sup

fy0 ;yg∈∂Ω3
jy−y0j

; (23)

because I�β̄nj � � sin�zn∕2�jk2j − n2
αj1∕2. From the radiation

condition, there exists ~N0 such that for jnj > ~N0, dnj equals

zero. Therefore, jk2j − n2
αj ≤ jk2j jj1 − �n2

α∕k2j �j ≤ 4jk2j jN2
0∕k

2
ref

such that jkjj > kref for j ∈ f0; 1; 2; 3g and N0 �
supf�2π ~N0∕d�2; jαj2g. Combining Eqs. (21), (22), and (23),
we have

�����
"X
n∈Z

 
cnj e

iβn
j
jy−y0j �dnj e

−iβn
j
jy−y0j

2iβnj

!
f �nα��y0�

#
Sj∩Sl

�����
≤ sup

n∈Z;j∈f0;1;2;3g
jβnj jp−2�jcnj j; jdnj j�

×sup
�
e
sin�zn∕2�jkj j N0

kref
sup

fy0 ;yg∈S0∩S3
jy−y0j

;1
�X

n∈Z
jf �nα��y0�j

≤ sup
n∈Z;j∈f0;1;2;3g

Cs0

�
e
sin�zn∕2�jkj j N0

kref
sup

fy0 ;yg∈S0∩S3
jy−y0j

;1
�
jβnj jp−2‖f ‖L2�S�:

with Cs0 � supn∈Z;j∈f0;1;2;3g�jcnj j; jdnj j�. Hence, from Eqs. (16)

and (20),

‖∂γ2y U‖L2�S� ≤ sup
n∈Z

‖βnj ‖γ2∞‖U‖L2�S�

� sup
n∈Z;j∈f0;1;2;3g

Cs0

�
e
sin zn∕2jkj j N0

kref
sup

fy0 ;yg∈S0∩S3
jy−y0j

; 1
�

×
�Xγ2

p�2

jβnj jp−2
�
‖f ‖L2�S�

≤ sup
n∈Z

‖βnj ‖γ2∞‖U‖L2�S�

� sup
n∈Z;j∈f0;1;2;3g

Cs0

�
e
sin zn∕2jkj j N0

kref
sup

fy0 ;yg∈S0∩S3
jy−y0j

; 1
�

× �γ2 − 1�jβnj jγ2−2‖f ‖L2�S�: (24)

We note that nα satisfies nα � �2πn∕d� � k sin θ � k sin θn
[10, p. 56] and βnj satisfies βnj � eizn∕2

������������������
jk2 − n2

αj
p

�
jkjeizn∕2 cos θn, [10, p. 57]; therefore using Eq. (18), inequality
(19) becomes

‖∂γ1x U‖L2�S� ≤ sup
n∈Z

‖nα‖
γ1
∞ sup
j∈f0;1;2;3g;n∈Z

fjcnj j; jdnj jg
jβnj j

‖f �x; y�‖L2�Ω�

≤ sup
j∈f0;1;2;3g;n∈Z

‖k‖γ1−1∞
j sin θnj
j cos θnj

γ1

× fjcnj j; jdnj jg‖f �x; y�‖L2�Ω�:

In a similar fashion to Eq. (18), inequality (24) becomes

‖∂γ2y U‖L2�S� ≤ sup
j∈f0;1;2;3g;n∈Z

fjcnj j; jdnj jg�‖k‖∞jeizn∕2 cos θnj�γ2−1‖

× f �x;y�‖L2�Ω� �C�k0; k3�Cs sup
n∈Z;j

jβnj jγ2−2‖f ‖L2�S�

≤ sup
n∈Z

‖k‖γ2−1∞ �jcos θnj�γ2−1‖f ‖L2�S�

�C�k0; k3�Cs sup
n∈Z;j

�‖k‖∞jeizn∕2 cos θnj�γ2−1‖f ‖L2�S�

with Cs � Cs0�γ2 − 1� and C�k0; k3� � supn∈Z;j∈f0;3g
�esin zn∕2jkj j�N0∕kref �supfy0 ;yg∈S0∩S3 jy−y0j; 1�. Denoting

Creg � sup
n∈Z

�j sin θnjγ1
j cos θnj

; j cos θnjγ2−1


;

which is well defined because βnj ≠ 0, therefore cos θn ≠ 0.

Hence,

‖∂γ2y U‖L2�S� ≤ �Creg‖k‖
γ2−1
∞ � Creg‖k‖

γ2−1
∞ C�k0; k3�Cs�‖f ‖L2�S�

≤ Creg�1� CsC�k0; k3��‖k‖γ2−1∞ ‖f ‖L2�S�:

Since supp f ⊂ Ω,

‖∂γ2y U‖L2�Ω� ≤ Creg�1� CsC�k0; k3��‖k‖γ2−1∞ ‖f ‖L2�Ω�: (25)

Combining Eqs. (18), (19), and (25), we finish the proof.
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3. WELL-POSEDNESS OF THE PERIODIC
PROBLEM
Although it is easier to study the scattering problem analyti-
cally using U , since it lends itself more readily to a variational
formulation, it will transpire that it is more efficient to imple-
ment periodic rather than quasi-periodic boundary conditions
within the finite element method. This is essentially due to the
quasi-periodic boundary condition containing the extra term
eiαx, which is oscillatory and can lead to computational errors.
From Eq. (1), the Helmholtz problem (6) is transformed, and
the following lemma holds.

Lemma 8. Let Uα�x; y� ∈ C2�Ω� satisfy Eq. (1); then

Uα�x; y� is the solution of the following problem:

∇α ·
�

1
k2�x; y�∇αUα�x; y�

�
� Uα�x; y� � 0; �x; y� ∈ Ω

(26)

with the DtN map at the boundaries of the truncated region

given by

�
Tα� −

∂
∂n

�
Uα � 2iβ01e

−iβ01B; on Γ�;�
Tα
− −

∂
∂n

�
Uα � 0; on Γ−:

The periodic condition

Uα�d; y� � Uα�0; y�; y ∈ �−B;B�;

holds, where U�x; y� is the solution of the original Helmholtz

problem given by Eq. (6), where Tα
� is given by Eq. (9)

and ∇α � ∇� i�α; 0�.
Proof. Since U � eiαxUα and U satisfies Eq. (6), we have

∇U � ∇�eiαxUα� � ∇�eiαx�Uα � eiαx∇Uα

�
�
iαeiαx

0

�
Uα � eiαx∇Uα:

Denoting ∇α � ∇� i�α; 0� and with some straightforward
algebraic manipulation, it can be shown that Uα satisfies the
above equations [10, p. 222–223].

To show the well-posedness of the variational formulation,
one needs to show that the solution to the problem exists, that
it is unique, and that it depends continuously on the data [22].
Since the variational form associated with U is easier to study
analytically, the α-quasi-periodic problem is shown to be well-
posed, before deriving the well-posedness of the periodic
problem. It is therefore necessary to show the equivalence
of these two variational formulations.

Let v ∈ H1
α#�Ω�; then Eq. (6) gives

Z
Ω
∇:

�
1
k2

∇U

�
v̄�

Z
Ω
Uv̄ � 0:

Integrating by parts, using Eqs. (7) and (8) and denoting

a�U; v� �
�
1
k2

∇U;∇v

�
Ω
− �U; v�Ω −

�
1
k2

T�U; v

�
Γ�

; (27)

and

�f ; v�Γ� � −

Z
Γ�

2iβ01
k21

ei�αx−β
0
1B�v̄; (28)

it can be shown that solving Eq. (6) is equivalent to the
variational problem of finding U ∈ H1

α#�Ω� for all v ∈
H1

α#�Ω� such that

a�U; v� � �f ; v�Γ� : (29)

To establish an upper bound on the error arising when the
scattering problem is solved numerically, the equivalence of
the variational form for the periodic and α-quasi-periodic
problems is required. For the periodic function Uα, let

a�Uα; vα� �
�
1
k2

∇Uα;∇vα

�
Ω
−

��
1 − α2

k2

�
Uα; vα

�
Ω

− iα

�
1
k2

∂xUα; vα

�
Ω
� iα

�
1
k2

Uα; ∂xvα
�
Ω

−

�
1

k2
Tα
�Uα; vα

�
Γ�

;

�f α; vα�Γ� � −

Z
Γ�

2iβ01
k21

e−iβ
0
1Bv̄α:

From Eq. (26), it can be shown that the corresponding
variational problem is to find Uα ∈ H1

#�Ω� for all vα ∈ H1
#�Ω�

such that

a�Uα; vα� � �f α; vα�Γ� : (30)

Note that to ease the notation, we have noted a in the
bilinear form associated to functions in both H1

#�Ω� and
H1

α#�Ω�.
Lemma 9. Finding Uα ∈ H1

#�Ω� for all vα ∈ H1
#�Ω� such

that a�Uα; vα� � �f α; vα�Γ� as given in Eq. (30) is equivalent

to finding U ∈ H1
α#�Ω� for all v ∈ H1

α#�Ω� such that a�U; v� �
� f ; v�Γ� using Eq. (29).

Proof. Use Eq. (1); f � eiαxf α and v � eiαxvα in Eq. (30) to
get Eq. (29).

Lemma 10. Let jkj > kref > 0 such that kref < jkjj. For all

v ∈ H1
#�Ω�, the solution Uα ∈ H1

#�Ω� that satisfies equation

(30) exists and is unique at all but a discrete set of frequen-

cies, for each fixed horizontal wavenumber kj � nα [7]

Proof. To start with, the sesquilinear form a in Eq. (27)
is shown to be continuous. From the Cauchy–Schwarz
inequality [15],

����
�
1
k2

∇U;∇v

�
Ω

���� ≤ 1
k2ref

Z
Ω
j∇U:∇v̄jdxdy;

≤
1
k2ref

‖∇U‖L2
α#�Ω�‖∇v‖L2

α#�Ω� (31)

and similarly it can be shown that

j�U; v�Ωj ≤ ‖U‖L2
α#�Ω�‖v‖L2

α#�Ω�: (32)
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Since

����
Z
Γ�

T�Uv̄dx

����2 ≤ C2d2�jk2j j‖U‖2
L2
α#�Ω�

� ‖U‖2
H1

α#�Ω�
�‖v‖2

H1
α#�Ω�

;

(33)

using the trace theorem [15,18,23,24], it follows that

����
Z
Γ�

1
k2
T�Uv̄dx

����≤Cd 1
k2ref

�jk2j j‖U‖2
L2
α#�Ω�

�‖U‖2
H1

α#�Ω�
�1∕2‖v‖H1

α#�Ω�:

(34)

Hence, Eq. (27) leads to

ja�U; v�j ≤ 1
k2ref

jUjH1
α#�Ω�jvjH1

α#�Ω� � ‖U‖L2
α#�Ω�‖v‖L2

α#�Ω�

� Cd
1
k2ref

�jk2j j‖U‖2
L2
α#�Ω�

� ‖U‖2
H1

α#�Ω�
�‖v‖2

H1
α#�Ω�

;

and so

ja�U; v�j ≤ C0 sup
�
1;

1
k2ref

;
jk2j
k2ref

�
‖U‖H1

α#�Ω�‖v‖H1
α#�Ω�:

Hence, a�U;U� is continuous [15,18,25]. From Eq. (27),

ja�U;U�j �
Z
Ω
jUj2 �

����
Z
Ω

1
k2

j∇Uj2 −
Z
Γ�

1
k2

TUŪ

����
≥
����j
Z
Ω

1

k2
j∇Uj2j − j

Z
Γ�

1

k2
TUŪj

����
≥ j‖k‖−2∞ − Cd sup�jkjj; 1�∕k2ref j‖U‖2

H1
α#�Ω�

using Eq. (10) and the equivalence of the norm in Hl
α#�Ω� for

l ≥ 0. Hence,

ja�U;U� � ‖U‖2
L2
α#�Ω�

j ≥ M1‖U‖2
H1

α#�Ω�
:

a�U;U� is then H1
α#�Ω� coercive and the existence of a solu-

tion can be shown from its uniqueness [26, p. 51]. Suppose that
there are two solutions U1 and U2 and let w � U1 − U2.
Taking the imaginary part and using Eqs. (5) and (27), it
can be shown that w � 0, and so U1 � U2. From Lemma 9
and since U1 � eiαxUα1 and U2 � eiαxUα2, then Uα1 � Uα2,
which finishes the proof.

In order for a variational formulation to depend continu-
ously on the data, it is necessary to show that the variational
formulation satisfies a regularity estimate. To this end an
explicit dependency on the wavenumber k is derived in a regu-
larity bound in the following theorem.

Theorem 11. Let f α ∈ Hl
#�Ω� be a general forcing function

and let Uα ∈ Hl
#�Ω� be the solution of the inhomogeneous

Helmholtz equation

∇α:

�
1
k2

∇αUα

�
� Uα � f α; in Ω;

�
Tα� −

∂
∂n

�
Uα � 0; on Γ�;�

Tα
− −

∂
∂n

�
Uα � 0; on Γ−: (35)

Then there exists a constant Cstab that is dependent on the

wavenumbers k0 and k3 such that

‖Uα‖H ≤ Cstab‖f α‖L2
#�Ω�;

where Cstab � Creg�1� CsC�k0; k3�� and CsC�k0; k3� is

defined in Theorem 7.

Proof. Let Uα ∈ Hl
#�Ω� be the solution of Eq. (35); then

from Definition 1 and Eq. (3),

‖Uα‖2H � jUαj2H1
#�Ω�

� ‖k‖2∞‖Uα‖2L2
α#�Ω�

:

From Eqs. (2) and (3),

‖Uα‖2H ≤ 22‖U‖2
H1

α#�Ω�
� ‖k‖2∞‖U‖2

L2
α#�Ω�

:

Since U � eiαxUα, the proof is finished by using the regularity
estimate of U as given in Theorem 7.

Hence, the problem given by Eq. (30) is well-posed since its
solution exists, is unique (Lemma 10), and satisfies a regular-
ity result (Theorem 11).

4. A PRIORI ERROR ESTIMATE FOR THE
EXACT SOLUTION
To derive an a priori error estimate for the periodic solution
Uα, the following three key results are needed:

• an estimate of the error arising from the discretization of
the problem

• an estimate of the error arising from the truncation of the
DtN operator

• an estimate of the total error

A. A Priori Error Estimate for the Discretized Problem
Let X ⊂ Hl

α#�Ω� be a finite element subspace of order p with
l ≥ 1, and let ζh be any regular partition of Ω [15,18,25,27].
Denote by h the maximum mesh size after partitioning Ω
using ζh. The following standard assumption on the subspace

X]15 ] is used:

infψ∈X

�
‖v − ψ‖L2

α#�Ω� �
h

p
‖∇v − ∇ψ‖L2

α#�Ω�

�
�
h

p

�1
2

‖v − ψ‖L2
α#�Γ���

h

p
‖v − ψ‖

H
1
2
α#�Γ��



≤ C

�
h

p

�
l

‖v‖Hl
α#�Ω�:

(36)

Similarly, let Xα be a finite element subspace of order p of
Hl

#�Ω�. The discretized problem corresponding to Eq. (29) is
to find Uh ∈ X such that

a�Uh;ϕ� � �f ;ϕ�Γ� (37)
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with a�Uh;ϕ� and �f ;ϕ�Γ� given by Eqs. (27) and (28) for all
ϕ ∈ X , where T� is given by Definition 3.

Lemma 12. Let U ∈ H1
α#�Ω�; then for all v ∈ H1

α#�Ω�,

ja�U; v�j ≤ Cc‖U‖H‖v‖H

such that Cc � �Cd� 1�∕k2ref depends only on the period

of the diffraction grating d and a lower bound on the wave-

number kref .
Proof. From the triangle inequality, putting Eqs. (31), (32),

and (33) in Eq. (27) and using Definition 1,

ja�U; v�j ≤ 1
k2ref

jUjH1
α#�Ω�jvjH1

α#�Ω� � ‖U‖L2
α#�Ω�‖v‖L2

α#�Ω�

� Cd

k2ref
‖U‖H‖v‖H:

Since �‖k2‖∞∕k2ref� ≥ 1,

ja�U; v�j ≤ 1

k2ref
�jUjH1

α#�Ω�jvjH1
α#�Ω� � ‖k2‖∞‖U‖L2

α#�Ω�‖v‖L2
α#�Ω�

� Cd‖U‖H‖v‖H�:

Noting that

jUjH1
α#�Ω�jvjH1

α#�Ω� � ‖k‖2∞‖U‖L2
α#�Ω�‖v‖L2

α#�Ω� ≤ ‖U‖H‖v‖H
(38)

using Definition 1, we have

ja�U; v�j ≤ Cc‖U‖H‖v‖H;

where Cc � �1∕k2ref��Cd� 1�.
Lemma 13. For U ∈ H1

α#�Ω�,

1
‖R�k2�‖∞

jUj2
H1

α#�Ω�
− ‖U‖2

L2
α#�Ω�

≤ ja�U;U�j�
����
�
1
k2

T�U;U

�
Γ�

����
such that a�u; v� is given by Eq. (27).

Proof. From Eq. (27),

�
1
k2

∇U;∇U

�
Ω
− �U;U�Ω � a�U;U� �

�
1
k2

T�U;U

�
Γ�

:

Since jR�c�j ≤ jcj for any c ∈ C,

����R
�
1

k2
∇U;∇U

�
Ω
− �U;U�Ωj ≤ ja�U;U� �

�
1

k2
T�U;U

�
Γ�

����:

By noting that jb − cj ≥ jbj − jcj and with the triangle in-
equality, it can be shown that

����R
�
1
k2

∇U;∇U

�
Ω

���� − �U;U�Ω ≤ ja�U;U�j�
����
�
1
k2

T�U;U

�
Γ�

����:

The proof is finished by noting that

����R
�
1

k2
∇U;∇U

�
Ω

���� ≥ 1

‖R�k2�‖∞
jUj2

H1
α#�Ω�

:

The following lemma is needed to express the norm of the
error in L2

α# in terms of the norm of the error in H.
Lemma 14. LetU ∈ H1

α#�Ω� be the solution of Eq. (29), and

let Uh be the corresponding discretized solution of Eq. (37).

By denoting eh � U − Uh, there exists a constant C1 �
CCstab�h∕p��‖k‖∞∕k2ref��Cd� 1�, where Cstab � �1� CsC�k0;
k3��Creg is as defined in Theorem 7, such that

‖eh‖L2
α#�Ω� ≤ C1‖eh‖H:

Proof. Let w to be the dual solution of

∇:

�
1
k2

∇w

�
�w � ϕ �x; y� ∈ Ω;

�T�
� − ∂nw� � 0 on Γ�; (39)

for all ϕ, w ∈ H1
α#�Ω�, where T�

� are the dual operators of T�
[28, p. 476]. Using the duality argument [18, p. 137],

‖eh‖L2
α#�Ω� � supϕ∈C∞�Ω�

ja�eh;w − ψ�j
‖ϕ‖L2

α#�Ω�
(40)

such that ψ ∈ X , and so from Eq. (27),

ja�eh; w − ψ�j �
����
�
1

k2
∇eh;∇�w − ψ�

�
Ω
− �eh; w − ψ�Ω

−

�
1

k2
T�eh;w − ψ

�
Γ�

����
≤

1

k2ref
�jehjH1

α#�Ω�jw − ψ jH1
α#�Ω�

� ‖k‖2∞‖eh‖L2
α#�Ω�‖w − ψ‖L2

α#�Ω�

� Cd‖eh‖H‖w − ψ‖H1
α#�Ω��

using Eq. (33) with Cauchy’s inequality [18, p. 50]. Hence,
Eq. (38) gives

ja�eh; w − ψ�j ≤ �Cd� 1� 1
k2ref

‖eh‖H‖w − ψ‖H1
α#�Ω�:

From the standard approximation estimate in a finite
element space given by Eq. (36), �h∕p�‖w − ψ‖H1

α#�Ω� ≤
C�h∕p�2‖w‖H2

α#�Ω�, and so

ja�eh;w − ψ�j ≤ C�Cd� 1� 1

k2ref

h

p
‖eh‖H‖w‖H2

α#�Ω�: (41)

From Theorem 7 the regularity estimate is derived as
follows from Eq. (39):
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‖w‖H2
α#�Ω�

‖ϕ‖L2
α#�Ω�

≤ �1� CsC�k0; k3��Creg‖k‖∞ � Cstab‖k‖∞:

Hence, from Eqs. (40) and (41),

‖eh‖L2
α#�Ω� ≤ CCstab

h‖k‖∞
pk2ref

�Cd� 1�‖eh‖H � C1‖eh‖H:

The previous three lemmas are used to derive the following a

priori error estimate for the periodic solution Uα.
Theorem 15. Let the wavenumber jkj ≥ kref > 0, let the

maximum mesh size h ∈ �0; h0�, and let the order of the poly-

nomial basis p ∈ �p0;∞� such that k�h0∕p0� < 1, and C4 �
1–2‖k‖∞C1 > 0 with C1 as given in Lemma 14. Let Uα be

the continuous solution of Eq. (35); then the corresponding

discretized solution, Uαh ∈ Xα, exists and is unique. If

eαh � Uα − Uαh , then

‖eαh‖H ≤ 4
ck

C4
�2Cd� 1�‖Uα − ψα‖H;

and

‖eαh‖L2
#�Ω�

≤ 2
ck

C4
C1�2Cd� 1�‖Uα − ψα‖H;

for all test functions ψα ∈ Xα, where C ∈ R, ck �
‖R�k2�‖∞∕k2ref , and d is the period of the grating.

Proof. Let eh � U − Uh and ψ � eiαxψα. From Lemma 13
and by using Galerkin orthogonality [18, p. 58],

1

‖R�k2�‖∞
�jehj2H1

α#�Ω�
− ‖R�k2�‖∞‖eh‖2L2

α#�Ω�
�

≤ ja�eh; U − ψ�j�
����
�
1

k2
T�eh; eh

�
Γ�

����:
Since ‖k‖2∞ ≥ ‖R�k2�‖∞, Lemma 12 and Eq. (34) lead to

1
‖R�k2�‖∞

�jehj2H1
α#�Ω�

− ‖k‖2∞‖eh‖2L2
α#�Ω�

�

≤ Cc‖eh‖H‖U − ψ‖H � Cd

k2ref
‖eh‖H‖U − ψ‖H

using Céa’s theorem [18, p. 64]. Let Cc � �Cd� 1�∕k2ref as
given in Lemma 12, and so

1

‖R�k2�‖∞
�jehj2H1

α#�Ω�
− ‖k‖2∞‖eh‖2L2

α#�Ω�
�

≤
2Cd� 1

k2ref
‖eh‖H‖U − ψ‖H:

By letting ck � ‖R�k2�‖∞∕k2ref , and noting that
‖k‖∞‖eh‖L2

α#�Ω� ≤ ‖eh‖H, we have

jehj2H1
α#�Ω�

− ‖k‖∞‖eh‖L2
α#�Ω�‖eh‖H

≤ ck�2Cd� 1�‖eh‖H‖U − ψ‖H:

Using Lemma 14 and Definition 1,

‖eh‖H − 2‖k‖∞C1‖eh‖H ≤ ck�2Cd� 1�‖U − ψ‖H: (42)

Suppose that 2‖k‖∞C1 < 1 and so C4 � 1 − 2‖k‖∞C1 > 0:

‖eh‖H ≤
ck

C4
�2Cd� 1�‖U − ψ‖H: (43)

From Theorem 2 and Definition 1, ‖eαh‖H ≤ 2‖eh‖H, and
‖U − ψ‖H ≤ 2‖Uα − ψα‖H, and then equation (43) is used to
get

‖eαh‖H ≤ 4
ck

C4
�2Cd� 1�‖Uα − ψα‖H:

For the second result, Lemma 14 and Eq. (43) are used to get

‖eh‖L2
α#�Ω� ≤

ck

C4
C1�2Cd� 1�‖U − ψ‖H:

From Theorem 2 and from Definition 1,

‖eαh‖L2
#�Ω�

≤ 2
ck

C4
C1�2Cd� 1�‖Uα − ψα‖H:

By assuming that there exists two solutions and letting h∕p
tend to zero, it can be shown that Uαh is unique.

B. A Priori Error Estimate of the Continuous Problem
Arising from Truncating the DtN Operator
For computational purposes, the infinite sum inside the DtN
map that is used as transparent boundary conditions must be
truncated. Let M ∈ N and M < ∞; then from Definition 9, Tα

�
is approximated by TαM

� , which is given by

TαM
� Uαh�x� �

XM
n�−M

iβnj U
�n�
αh ��B�ei2πnd x:

Let UM
α be the approximated solution of the continuous prob-

lem where TαM
� is used instead of Tα

� in Eq. (35). Then, the
error estimate by truncating Tα

� is given in the following
theorem.

Theorem 16. Let M ∈ N such that M > M0 � jkj � jαj and
2πjnj∕d > M . Let ‖k‖∞ ≥ kref and denote by

eMα � Uα − UM
α :

If 2‖k‖∞C1 < 1, such that C1 is as given in Lemma 14, and C

is as defined in Lemma 6, then UM
α exists and is unique. In

addition, if C4 � 1 − 2‖k‖∞C1 > 0, then

‖eMα ‖H ≤ 4ck
d

C4

�
C‖Uα − ψα‖H

�e
−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
α#�Γ1;��

�
;

‖eMα ‖L2
#�Ω� ≤ 2ckd

C1

C4

�
C‖Uα − ψα‖H

�e
−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
α#�Γ1;��

�
;
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for all test functions ψα ∈ Xα with ck � �‖R�k2�‖∞∕k2ref�,
cmin � inf jnj>�Md∕2π� sin�zn∕2�, zn given by Eq. (4), and

Γ1;� � f�x;�b� ∈ Ωg.
Proof. Let U ∈ H1

α#�Ω� satisfy Eq. (29) for all v ∈ H1
α#�Ω�.

Approximate the continuous problem by findingUM ∈ H1
α#�Ω�

such that

aM�UM; v� � �f ; v�Γ� (44)

with

aM�UM; v� �
�
1

k2
∇UM;∇v

�
Ω
− �UM; v�Ω −

�
1

k2
TM
�U

M; v

�
Γ�

;

�f ; v�Γ� �
�
−
2iβ01
k21

ei�αx−β
0
1B�; v

�
Γ�

;

and TM
�v �P

M
n�−M iβnj v

�nα���B�einαx, for all v ∈ Ω. From

Eqs. (29) and (44), note that

a�U; v� − aM �UM; v� � 0: (45)

By letting eM � U − UM and noting that
T� � TM

� � �T� − TM
��, Eq. (45) leads to

�
1

k2
∇eM;∇v

�
Ω
− �eM; v�Ω −

�
1

k2
TM
�e

M; v

�
Γ�

�
�
1
k2

�T� − TM
��U; v

�
Γ�

and so

aM�eM ; v� �
�
1

k2
�T� − TM

��U; v

�
Γ�

: (46)

Let M such that M > jkj � jαj so that n2
α > k2 for

jnj ≥ �Md∕2π�; then it can be shown that [10, p. 256]

j��T�−TM
��U;v�Γ� j≤de

−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖U‖

H
1
2
α#�Γ1;��

‖v‖
H

1
2
α#�Γ��

with cmin � inf jnj>�Md∕2π� sin�zn∕2�. Since truncating T� does
not affect the validity of Lemma 13,

1
‖R�k2�‖∞

�jeM j2
H1

α#�Ω�
− ‖k‖2∞‖eM‖2L2

α#�Ω�
� ≤
����
�
1
k2

TM
�e

M; eM
�
Γ�

����
� jaM�eM; U − ψ�j

by using Galerkin orthogonality [18, p. 58], where ψ � eiαxψα

with ψα ∈ Xα. By noting that j�TM
�v; v�Γ� j ≤ j�T�v; v�Γ� j, and

using Eqs. (34) and (46) with UM
h minimizing aM , the last in-

equality is derived using Céa’s lemma [18, p. 64] and the trace
theorem [15,18,23,24] with the equivalence of the norms in H
and inH1

α#�Ω�. The duality argument [18, p. 137] can be used to
approximate ‖ · ‖L2

α#�Ω�, with the dual problem given by

Eq. (39) and Lemma 14 to write

1

‖R�k2�‖∞
�‖eM‖H − 2‖k‖∞C1‖eM‖H�

≤
Cd

k2ref
‖U − ψ‖H � d

k2ref
e
−�B−b� sin�zn∕2�

�������������������
�M−jαj�2−k2

j

p
‖U‖

H
1
2
α#�Γ1;��

:

Letting ck � ‖R�k2�‖∞∕k2ref and supposing 2‖k‖∞C1 < 1,
then C4 � 1 − 2‖k‖∞C1 > 0 and

‖eM‖H ≤
ck

C4
d

�
C‖U − ψ‖H � e

−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖U‖

H
1
2
α#�Γ1;��

�

with cmin � inf jnj>�Md∕2π� sin�zn∕2�. From Definition 1 and
Theorem 2,

‖eMα ‖H ≤ 4
ck

C4
d

�
C‖Uα − ψα‖H

�e
−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
α#�Γ1;��

�
: (47)

Lemma 14, Eq. (47), and Definition 1 together with
Theorem 2 lead to

‖eMα ‖L2
α#�Ω� ≤ 2

d

C4
ckC1

�
C‖Uα − ψα‖H

�e
−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
α#�Γ1;��

�
:

It can be shown that UM
α is unique by consideringM tending to

infinity.

C. Estimate of the Total Error
By denoting the total error by eα � Uα − UM

αh , it can be esti-
mated as follows.

Theorem 17. Let jkj ≥ kref > 0, the maximum mesh size

h ∈ �0; h0�, and the degree of the polynomial basis p ∈
�p0;∞� be such that kh0∕p0 < 1 with 2C1‖k‖∞ < 1, where

C1 is defined in Lemma 14 so that C4 � 1 − 2C1‖k‖∞ > 0.
Let M ∈ N be such that M ≥ M0, let Uα be the continuous sol-

ution of Eq. (35), let UM
αh be the corresponding discretized

solution with the truncated DtN operator, and let the total

error be eα � Uα − UM
αh . Then the total error satisfies

‖eα‖H ≤ 4
ck

C4
�3Cd� 1�‖Uα − ψα‖H

� 4
ck

C4
de

−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
#�Γ1;��

;

and

‖eα‖L2
#�Ω� ≤ 2

ck

C4
C1�3Cd� 1�‖Uα − ψα‖H

� 2d
ck

C4
C1e

−�B−b�cmin

�������������������
�M−jαj�2−k2

j

p
‖Uα‖

H
1
2
#�Γ1;��

;

for all ψα ∈ Xα, where ck � ‖k‖∞∕k2ref , Cc is given in Lemma

12, C is as in Lemma 6, and cmin � inf jnj>�Md∕2π� sin�zn∕2�
with zn as defined in Eq. (4).
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Proof. Note that ‖eα‖H ≤ ‖Uα − UM
α ‖H � ‖UM

α − UM
αh‖H,

where ‖Uα − UM
α ‖H has already been shown in Theorem 16.

An a priori error estimate for the second term can be derived
in a similar way to that performed in Theorem 16. By denoting
eMh � UM − UM

h , where UM � eiαxUM
α and UM

h � eiαxUM
αh , it can

be shown similarly as in Lemma 13 that

1
‖R�k2�‖∞

jeMh j2H1
α#�Ω�

− ‖eMh ‖2L2
α#�Ω�

≤ jaM�eMh ; eMh �j�
����
�
1
k2

T�eMh ; e
M
h

�
Γ�

����:
Hence, from Definition 1, and letting jkj ≥ jkref > 0,

1

‖R�k2�‖∞
‖eMh ‖2H − 2‖k‖2∞‖eMh ‖2L2

α#�Ω�

≤ jaM�eMh ; eMh �j �
1

k2ref
j�TM

�e
M
h ; e

M
h �j:

Similarly to Eq. (42), it can be shown that

‖eMh ‖H − 2C1‖k‖∞‖eMh ‖H ≤ ck�2Cd� 1�‖UM − ψ‖H;

where ψ � eiαxψα such that ψα ∈ Xα. Since 2C1‖k‖∞ < 1,
C4 � 1 − 2C1‖k‖∞ > 0 and so

‖eMh ‖H ≤
ck

C4
�2Cd� 1�‖UM − ψ‖H:

For M ≥ M0, UM tends to U ; therefore

‖eMh ‖H ≤
ck

C4
�2Cd� 1�‖U − ψ‖H:

From Definition 1,

‖eMαh‖H ≤ 4
ck

C4
�2Cd� 1�‖Uα − ψα‖H: (48)

From Lemma 14 and Theorem 2,

‖eMαh‖L2
#�Ω�

≤ 2
ck

C4
C1�2Cd� 1�‖Uα − ψα‖H: (49)

Theorem 16 together with Eqs. (48) and (49) is used to
finish the proof.

5. NUMERICAL RESULTS
The α-quasi-periodic method can be applied straightforwardly
to any geometry, and its implementation is independent of the
number of scatterers inside the scattered region. In this
section, a grating composed of two dielectric transmitting cyl-
inders is considered as shown in Fig. 2. The reflection effi-
ciency of order zero (R0) (the ratio of the reflected field to
the incident field [11, p. 65]), for the TM case (Case 2B), where
the wavelength-spatial periodicity ratio λ∕d varies from 0.7
to 1, is computed numerically. These structures are of interest
in the field of 2D photonic bandgap structures that are used as
tunable filters. A cylindrical harmonic expansion approach,
called the lattice sum technique, has been used to study this
problem previously [29]. However, the lattice sum technique is
limited to scattering with polygonal geometry and is depen-
dent on the number of cylinders inside the scattered region.
This limitation does not apply to the finite element method
presented in this paper. The α-quasi-periodic method is used
below to solve the problem and a comparison with the lattice
sum technique is presented. To illustrate the accuracy of the
α-quasi-periodic method, a polynomial basis of degree 4 with
21 633 degrees of freedom is used and R0 is plotted as a func-
tion of λ∕d in Fig. 2(b). It can be concluded from this figure
that the numerical results from the α-quasi-periodic method
are in good agreement with those from the lattice sum tech-
nique. The deployment of the α-quasi-periodic method to more
complex geometries is the subject of ongoing work.

In the following example, the transmitting dielectric lamel-
lar grating as shown in Fig. 3 is considered. This type of gra-
ting is used in modeling multiscale phenomena grating
problems, and has been studied in [9] using a hybrid approach
that combines a perfectly matching layer technique and an
adaptive finite element method. Here the wavenumbers are
fixed as k1 � 2π and k2 � �0.22� 6.71i�2π, the angle of inci-
dence is θ � π∕6, and the period is d � 1. The α-quasi-periodic
method is once again used below to solve the problem with
uniform mesh using polynomial degree 6, and a comparison
with [9] is presented. To provide a basis for a relative error,
the global method in [9] is used with 201205 dof, which gives

R
Adapt
0 � 0.8484815. The relative error using the adaptive finite

Fig. 2. (a) Double layered dielectric transmitting cylinders. (b) Comparison between the reflection efficiency of order 0 from the α-quasi-periodic
method (full line) and the lattice sum technique (dots) [29] for dielectric transmitting cylinders for the TM case [see (a)]. The reflection efficiency is
shown as a function of the ratio of the wavelength of the incident field (λ) to the lattice period (d).
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element method in [9] and our method can be compared by

defining err � jR0�α − quasiperiodic� − R
Adapt
0 j∕RAdapt

0 .

6. CONCLUSION
Diffraction gratings have been used, for example, in crystal-
line silicon solar cells [1], gas sensors [2], high-intensity color
displays [30], and medical x-ray imaging [3,4]. The gratings are
also used on credit cards or other identification cards as a
security measure, providing an image that can be read by
an optical scanner [31]. In order to develop these technologies
further, it would be useful to have fast and reliable mathemati-
cal models so that putative designs can be constructed. The
appropriate model is given by the Helmholtz equation, but this
needs to be solved numerically even for fairly simple diffrac-
tion gratings. In this paper, a rigorous a priori error analysis
for the α-quasi-periodic transformation method has been
derived.

To start with, the physical and mathematical aspects of the
problem of diffraction when an electromagnetic wave inter-
acts with a periodic grating have been described. From
Maxwell’s equations, it can be shown that the problem can
be decomposed into two elementary mathematical problems,
which are TM and the TE Helmholtz problems. For each prob-
lem, the grating can be perfectly conducting or transmitting,
and so there are four cases. To keep this paper at a reasonable
length, the results presented here were restricted to Case 2B
(TM case for the transmitting dielectric grating). The domain
was truncated with respect to the y direction, and appropriate
DtN maps were introduced. The boundary value problem cor-
responding to the truncated domain was formulated, where
the incident wave was included via the boundary conditions.
An equivalent but alternative formulation that incorporated
the incident wave via an inhomogeneous forcing term (with
compact support) was considered so that a regularity result
could be derived. This regularity result showed an explicit
dependence on the wavenumber k and the forcing term f ,
and it was then used to prove the well-posedness of the varia-
tional formulation. It also gave a hold on the convergence and
the stability of the solution when the scattering problem was
approximated using finite elements. In fact, if h denotes the
maximum mesh size of the elements, and p the highest order
of the finite element basis, since the dependence of the regu-
larity results on the wavenumber k is known explicitly, the a

priori error estimate presented a power factor of kh∕p.
Hence, the mesh size h and the order of the polynomial basis
p for a given wavenumber k can be chosen to balance the com-
putational time and the accuracy of the approximate solution.

The α-quasi-periodic method is used to solve numerically the
problem of two dielectric transmitting cylinders studied in
[29], using the lattice sum technique and the lamellar grating
studied in [9] using the adaptive finite element technique. The
application is straightforward regardless of the shape and the
number of scatterers inside the scattered region as opposed to
the lattice sum technique. Good agreement of the numerical
results with those in [29] and in [9], using the α-quasi-periodic
method, is obtained.
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