Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Transient electric birefringence study of rod-shaped water-in-oil microemulsions

Mantegazza, Francesco and Degiorgio, Vittorio and Giardini, Mario Ettore and Price, A. Louise and Steytler, David C. and Robinson, Brian H. (1998) Transient electric birefringence study of rod-shaped water-in-oil microemulsions. Langmuir, 14. pp. 1-7. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Transient electric birefringence (TEB) studies have been carried out on water-in-oil w/o microemulsions stabilized by Ni(AOT)2, the nickel salt of bis(ethylhexyl) sulfosuccinate. The system forms rod-shaped droplets at low water contents which convert to more spherical aggregates as the water content is increased. TEB data have been obtained as a function of microemulsion volume fraction, φ, water content, and temperature. Relaxation transients of the electric birefringence signal were found to be nonexponential, following asymptotically a stretched-exponential behavior. The value of the stretching exponent at low volume fraction is consistent with the assumption that the length probability distribution is exponential. A model describing the Kerr response of the microemulsion droplets is developed. By using this model we derive the specific Kerr constant as a function of the volume fraction, finding a good agreement with the experimentally observed behavior. We also use the model to derive, from the initial slope of the relaxation, the mean rod length Lm. It is found that Lm grows approximately as the square root of φ. Values for Lm obtained from TEB are in good agreement with those obtained from small-angle neutron scattering measurements.