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We report the development of a fiber based Raman sensor to be used in endoluminal robotic 
surgery. Although this is a generic platform, the sensor mentioned in this article was adapted for 
the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic 
platform. On such platform, the Raman sensor is intended to identify ambiguous tissue margins 
during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a 
disposable sleeve was specially designed. A straightforward user-compatible interface was 
implemented where a supervised multivariate classification algorithm was used to classify different 
tissue types based on its Raman fingerprints so that it could be used without any knowledge of 
spectroscopic data analysis. The protocol avoids inter-patient variability in data and the system 
itself is not limited to be used in the classification of a specific tissue type. We performed ex vivo 
tissue classification assessments with this system where it showed >95% sensitivity and specificity 
for tissue classification. 
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1.  Introduction 

Access to complementary multimodal information regarding the tissue morphology and 
chemical composition can be of significant assistance to surgeons during robot- assisted or 
laparoscopic surgery. Various optical technologies can be used to obtain this type of 
information that can inform the surgical decisions regarding the incision margin during 
relevant procedures. Raman spectroscopy is a technique that can provide bio-chemical 
information of the sample which can then be used to discriminate between different tissue 
types [1]. In this respect, the development of fiber Raman probes has enabled in vivo tissue 
studies using Raman spectroscopy [2-4].  A Raman sensor that can act as an accessory to a 
surgical robot in turn represents a significant device for tissue margin identification. An 
attempt towards developing a prototype bio-sensor based on Raman spectroscopy to assist 
image-guided surgery has already been reported [5]. However this study only focused at the 
algorithm to use Raman spectroscopic sensing in surgical robotics. The study used a bulk 
Raman probe (probe head diameter ~1 cm, length of the rigid part of probe head ~ 0.5 m) 
which did not allow easy maneuvering during a real surgical environment. It also did not 
address the issues related to development of surgery-compatible hardware with respect to 
geometrical constraints and to sterilizability, or classification software signficant in a practical 
implementation in a real surgical environment. 
Here we report on the implementation of a full Raman-based sensing system 
(instrumentation, protocol and software) that can provide real-time analytical information 
and guidance during the surgical procedures. The device in this instance is designed with 
regard to the second-generation surgical robot platform - ARAKNES (Array of Robots 
Augmenting the KiNematics of Endoluminal Surgery) but the principles may be adapted to 
other robotic platforms [6]. A particular facet of the device was that the hardware was 
designed to be mechanically compatible with the ARAKNES robot. A sterile disposable sleeve 
ensures sterility of the fiber probe during surgical intervention. A simple protocol based upon 
supervised multivariate algorithm was developed for binary tissue discrimination and the 
software interface for this simple protocol can be operated by a person who does not have 
any prior experience in spectroscopy. The ability of this sensor to discriminate different tissue 
types has been demonstrated at a proof-of-principle level through ex-vivo tissue 
discrimination studies. 
 
2.  Instrumentation 

The optical hardware of the Raman sensor consists of three principal components – a laser, a 
spectrometer and a fiber Raman probe as shown in Figure 1. As mentioned in the previous 
section, the hardware design of the sensor was based on the compatibility of the sensor to 
the ARAKNES robot. The specifications for the sensor were that (i) the length of the fiber 
probe should be approximately 5 m so that the laser and spectrometer could be kept within 
a safe distance from the operating table, (ii) the probe should be flexible, with a maximum 
length of 50 mm for the longest rigid section of the probe head, to ensure manoeuvrability of 
the probe by the robotic arm inside the abdominal cavity, and (iii) the diameter of the probe 
must be 8 mm or less, as the access port in the robot for inserting probe into the body has a 
diameter of 8 mm.  
Based on these requirements, a custom designed Raman probe was obtained from a 
commercial company (Emvision LLC). It contained one excitation fiber with 200 µm diameter 



 

and 7 collection fibers each with a 200 µm diameter. The rigid probe head was 50 mm long 
with a diameter 3.8 mm. The probe head contained a low-pass filter at the excitation side and 
a long-pass filter at the collection side to reduce the background fluorescence from the optical 
fiber. The fiber pigtail was 5 m long and   the rear end of the probe was terminated by two 
SMA connectors to connect the probe to the laser and spectrometer. A GRIN lens at the tip 
of the probe head set the working distance to approximately 1 mm. The size of the excitation 
beam at the sample was ~ 500 µm.  
Typically, a power level of 100 mW was coupled into the Raman probe by a diode laser 
operating at 785 nm (PD-LD, BRAND AND MODEL, maximum power up to 500 mW). The 
collection signal from the fiber was directed to a spectrometer (Shamrock SR-303i, Andor 
Technology) using an f-number matcher. This spectrometer employed a 400 lines/mm 
grating, blazed at 850 nm and was equipped with a deep depletion, back-illuminated and 
thermoelectrically-cooled CCD camera (Newton, Andor Technology) for the detection of the 
Raman signal. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Hardware of the Raman  bio-sensor. 

2.1 Disposable sleeve 

Maintaining the sterility of the probe is crucial for in vivo use during surgical intervention. The 
cost of this particular design of probe makes it not feasible to be used as a disposable probe 
and so a sterile disposable sleeve was provided into which the fiber probe could be inserted. 
The sterile sleeve was designed using a flexible tubing (Tygon, Cole-Parmer) having an inner 
diameter (ID) of 4.8 mm and outer diameter (OD) of 6.4 mm. The rigid portion of the sleeve, 
constituting the probe head, was fabricated in poly(methyl methacrylate) (PMMA) with a 6.5 
mm ID and a 7.5 mm OD and 10 mm length, to which the flexible tubing was attached. A 
sapphire window (Comar Optics, UK) of 7.5 mm diameter and 1 mm thickness was fixed to 
the other end of the rigid sleeve head. Both the flexible tubing and sapphire window were 
glued to the rigid sleeve tip using UV curable adhesive (Norland 60). The sapphire window 
provided a background-free optical access to the tissue when the fiber probe was inserted 
into the sleeve. Because the probe had a 1 mm working distance, with a 1 mm thick optical 
window, the probe+sleeve assembly couldbe operated as a contact probe brought into 
contact with the tissue when acquiring Raman spectral data. This provided a stable Raman 
signal amplitude by reducing the variability in the sample-probe distance. 



 

 Another design consideration for the sleeve was the compatibility with a suitable surgical 
linsertion protocol. Indeed, during the insertion of the probe through the laparoscopic access 
port to the patient abdomen, the probe is not yet manoeuvred by the robot. It is therefore 
essential to keep the probe tip rigid, so that it can be driven within the field of view of the 
laparoscopic viewing system (camera) and within the grasping range of the arm of the surgical 
robot. Once the arm holds the tip of the probe, the probe should be sufficiently flexible to be 
maneuvered inside the abdomen cavity. To facilitate this, a guide wire system was introduced 
into the sleeve. PTFE microbore tubing (Cole Parmer) with 1.07 mm ID and 1.68 mm OD was 
inserted coaxially into the flexible sleeve tubing, acting as a self-lubricating channel for 
inserting the guide wire. Roslau piano wire of OD 1 mm, annealed for increased elasticity, was 
used as the guide wire, which could be inserted and retracted into the PTFE microbore to 
control the sleeve rigidity. A schematic of the cross-section of the fiber sleeve is given in Figure 
2a. 
The total length of the sleeve was 1 m, which was compatible with the requirements for the 
sterile area in the operating theatre and in the robot channels, and it was possible to insert 
the fiber probe directly into the sleeve without the need of any lubricant. Though this sleeve 
design is suitable for volume production as it is, it  lends itself to high-volume production, 
where both fiber probe insertion channel and the guide wire insertion channel could be 
extruded as a single dual-lumen piece. A photograph of the sleeve with the fiber probe 
inserted is shown in Figure 2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: [a] Schematic of the disposable sleeve cross section. [b] Photograph of the 
disposable sleeve head into which the fiber probe was inserted 

 



 

2.2 Mechanical compatibility to surgical robot 

The mechanical compatibility of the fiber probe with the sleeve was tested with the ARAKNES  
surgical robot. It was observed that the robotic arm could hold the Raman probe and that the 
probe was flexible enough to be manoeuvred by the robotic arm. The guide wire when 
inserted provided sufficient rigidity to the probe during insertion into the access port. 

3. Protocol and software 

A key objective was to develop a protocol that could be used by a surgeon who did not have 
detailed prior knowledge relating to Raman spectroscopy. Another consideration while 
developing the protocol was to ensure the highest possible sensitivity and specificity for this 
sensor for binary classification of tissues. One standard approach in tissue classification based 
on a supervised algorithm is to use a global training dataset to classify the query sample [7]. 
However, a downside with this approach is inter-patient variability in the bio-chemical 
composition of the tissue.  
This sensor is designed to assist the surgeon in pin-pointing tissue margins. In particular,it 
assists the surgeon in identifying the separation line between two different tissue types, when 
such line location is otherwise visually ambiguous. This implies the clear presence of two 
tissue types (inside, type-A, and outside, type-B, the incision region) before the incision 
process takes place, and hence gives the opportunity to train the classifier using the two tissue 
regions from the patient itself. The protocol can therefore avoid inter-patient variability.  
A flow chart of the three-step protocol is shown in Figure 3. The creation of the training 
dataset involves positioning the probe at tissue type-A and recording Raman spectra, 
subsequntly recording Raman spectra from the type-B region. The Raman spectra acquired 
from the ambiguous region would then be classified using the training dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Flow chart of the protocol used in tissue classification 

 
The training dataset includes a maximum of five Raman spectra each recorded from a single 
point on each of the two tissue types. Three Raman spectra would be acquired from each 
individual point while acquiring the query data and each of these three Raman spectra would 
be classified using the classification algorithm. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Screenshots of the front-end interface [a] User mode [b] Expert mode 
 
 
 
Raman spectra within the region 500 cm-1

 to 2000 cm-1 were used in testing the classification 
algorithm. All Raman spectra were post-processed by smoothing the data using a Savitzky-
Golay filter and base-lining using an iterative modified polynomial fitting [8, 9].  
 
In the classification algorithm, a Fisher Linear Discriminant Analysis (FLDA) was applied on the 
training dataset to reduce the dimensionality of the data. FLDA reduces the dimensionality in 
the feature space and transforms the multidimensional feature space into a one-dimensional 
feature space in such a way that the intra-class variance is minimized and the inter-class mean 

distance is maximized [10, 11]. The transformation vector v  obtained from the training 
dataset during this process was then applied to the query dataset as well   to reduce   to one 
dimension. Furthermore, the query data would be classified by finding the nearest mean 
distance to a class.   
The software interface for this sensor was developed in Labwindows CVI 2009 (National 
Instruments).  The front-end of the software interface can be run in two modes – either the 
User mode or the Expert mode. Screenshots of the front-end of the software interface are 
given in Figure 4.  The Expert mode is designed to be used by an eventual service technician, 
where Raman acquisition parameters such as exposure time may be modified and the 
acquired Raman spectrum would be displayed. By comparison, the User mode had a 
minimalistic design, where there is no requirement to modify any settings  such that once the 
system is initialized, a training dataset and query dataset may be acquired and the classified 



 

output be presented as a binary display. The user does not see the acquired Raman spectrum 
and does not require any expertise in analysing Raman spectroscopic data in the use of this 
system. A further operation mode, not described in this paper as not relevant to the present 
discussion, allows operation of an equivalent of the User mode through the robot operating 
console, thus rendering the full system transparent to the surgeon, who does not need to 
interact directly with the sensor acquisition system. 

4. Ex-vivo tissue analysis 

The efficacy of the Raman sensor to classify different tissue types was assessed at a proof-of-
principle level by ex-vivo tissue analysis. The assessments were conducted in two modalities. 
Firstly, the Raman probe was positioned by hand over resected tissue samples and secondly, 
the Raman probe was mounted on a 6-axis robotic arm (VP-6242G Denso Robotics) and 
positioned on the tissue sample (Fig. 5). 

 

 

 

 

 

 

Figure 5: Photograph of the fiber probe mounted on the robotic arm to record Raman 
spectra from ex-vivo tissue samples 

 
As per the protocol defined for this sensor, there would not be any pre-recorded training 
dataset. This makes it necessary to validate the algorithm for several   training datasets. The 
ex-vivo tissue classification procedure was designed in the following manner. All the tissue 
samples used in these studies were sourced from a local butcher, certified for human 
consumption. The tissue samples had a thickness between 10 – 15 mm and were placed in 
100 mm diameter petri dishes. One tissue type would be considered as type-A and the other 
tissue type would be considered as type-B. A training dataset was recorded from one point 
on each tissue type. Subsequently, ten query data points were   recorded from each of the 
tissue types, in a randomized sequence in order to avoid any spurious correlation of the 
classifier. The acquired query data points were classified using the training dataset, and a 



 

confusion matrix was generated. Care was taken to ensure that none of the query data was 
acquired from same point in the tissue sample and none of the query data was recorded from 
the tissue region used for recording the training dataset. An exposure time of 1 s at a 100-
mW excitation power level at the sample was used for all of the measurements detailed in 
this section. 
Table 1 shows the results of the assessment when the probe was positioned by hand on the 
tissue. It can be seen that the sensor gave a classification result having an accuracy exceeding 
95% even for similar tissue samples such as bovine and lamb adipose tissues [12]. 
Because the sensor was developed to be manoeuvred by a robotic arm, a second assessment 
was carried out, where the probe was positioned using a robotic arm, as shown in Figure 5. 
This differs from a hand positioning, as the robot controls the absolute location of the probe, 
ratjer than the pressure and/or the relative location between probe and tissue, as a hand 
manipulation does.The protocol for testing the sensor remained same as the one described 
before and the results of the tissue classification are as given inTable 2, where it can be seen 
that the accuracy was above 95% in this case as well.  
 
 
 
 
 

Table 1: Results of ex-vivo tissue classification for data acquired by positioning the probe by 
hand. 

Positive 
class 

Negative 
class 

Sensitivity Specificity Accuracy 

Bovine 
adipose  

Bovine 
muscle 

100% 100% 100% 

Porcine 
adipose  

Porcine 
muscle 

100% 100% 100% 

Porcine 
adipose  

Porcine 
skin 

100% 100% 100% 

Porcine 
adipose  

Bovine 
adipose 

100% 100% 100% 

Bovine 
adipose 

Lamb 
adipose 

96% ± 6% 95% ± 5% 95% ± 
5% 

Bovine 
muscle 

Lamb 
muscle 

95% ± 5% 90% ± 7% 85% ± 
15% 

 

 

 

 



 

Table 2: Results of ex-vivo tissue classification for data acquired by positioning probe using a 
robotic arm. 

Positive 
class 

Negative 
class 

Sensitivity Specificity Accuracy 

Bovine 
adipose  

Bovine 
muscle 

100% 100% 100% 

Porcine 
adipose  

Porcine 
muscle 

100% 100% 100% 

Porcine 
adipose  

Bovine 
adipose 

95% ± 
10% 

95% ± 
10% 

95% ± 
10% 

5. Discussions 

It can be seen from the mechanical tests and ex-vivo tissue classification tests that the Raman 
bio-sensor developed for ARAKNES is effective and the protocol developed implied that a user 
with no prior spectroscopy experience would be able to use it. One of the key advantages of 
this protocol is that it is not limited to a specific tissue type. Given that the training dataset is 
acquired locally, this sensor may be used to distinguish between any two tissue types 
provided there is variation in the bio-chemical compositions. 
A wide range of literature over last decade has confirmed that Raman spectroscopy can be 
used in the discrimination of normal and cancerous tissues for a variety of tissue sites through 
in-vivo and ex-vivo studies [13-16]. In principle, the Raman bio-sensor developed in this 
collaboration could be used for all of these applications. The sensor design is modular and so 
this facilitates independent upgrades of the hardware (fiber Raman probe, laser or 
spectrometer) or software (classification algorithm) if the sensitivity of the system has to be 
enhanced for specific applications.   

6. Conclusion 

Photonics-based sensing tools have the potential to provide a wealth of complementary 
information regarding the mechanical and chemical properties of tissues that would assist 
surgeons in making better informed decisions during surgical procedures. Here, we have 
demonstrated the development of a Raman-based bio-sensor that offers a means for tissue 
discrimination in endoluminal robotic surgery where the hardware of this system has been 
designed to be compatible with ARAKNES surgical robot. A disposable sleeve was designed to 
ensure the sterility of the probe. Given that the end-user of this sensor would be a surgeon 
(possibly without detailed experience of spectroscopy), we defined a protocol that gives 
binary information. The software interface developed had an ‘expert’ and ‘user’ mode, where 
the user mode could be used in a straightforward way without going into the complexities of 
Raman spectroscopic techniques. The protocol creates a training dataset locally from the 
tissue from the same patient for the supervised classifier. This avoids inter-patient variability 
of Raman information and makes the sensor generic for use in binary discrimination between 
any types of tissues. The system was tested to be mechanically compatible with the ARAKNES 



 

robot and a better than 95% accuracy was demonstrated in a proof-of-principle ex-vivo tissue 
classification assessment, both when the probe is held by hand and when it is manuipulated 
by a robotic arm. This sensor thus represents a generic platform for the exploitation of Raman 
spectroscopy as a complementary technique for tissue discrimination in laparoscopic surgery.  
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