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A SECOND-ORDER OVERLAPPING SCHWARZ METHOD

FOR A 2D SINGULARLY PERTURBED SEMILINEAR

REACTION-DIFFUSION PROBLEM

NATALIA KOPTEVA AND MARIA PICKETT

Abstract. An overlapping Schwarz domain decomposition is applied to a
semilinear reaction-diffusion equation posed in a smooth two-dimensional do-
main. The problem may exhibit multiple solutions; its diffusion parameter
ε2 is arbitrarily small, which induces boundary layers. The Schwarz method
invokes a boundary-layer subdomain and an interior subdomain, the narrow
subdomain overlap being of width O(ε| lnh|), where h is the maximum side
length of mesh elements, and the global number of mesh nodes does not exceed
O(h−2). We employ finite differences on layer-adapted meshes of Bakhvalov
and Shishkin types in the boundary-layer subdomain, and lumped-mass linear
finite elements on a quasiuniform Delaunay triangulation in the interior sub-
domain. For this iterative method, we present maximum norm error estimates
for ε ∈ (0, 1]. It is shown, in particular, that when ε ≤ C| lnh|−1, one iteration

is sufficient to get second-order convergence (with, in the case of the Shishkin
mesh, a logarithmic factor) in the maximum norm uniformly in ε. Numerical
results are presented to support our theoretical conclusions.

1. Introduction

Consider the singularly perturbed semilinear reaction-diffusion boundary-value
problem

Fu := −ε2Δu + f(x, u) = 0, x = (x1, x2) ∈ Ω ⊂ R
2,(1.1a)

u(x) = g0(x), x ∈ ∂Ω,(1.1b)

where ε is a small positive parameter, Δ = ∂2/∂x2
1+∂2/∂x2

2 is the Laplace operator,
f and g0 are sufficiently smooth functions, and Ω is a bounded two-dimensional
domain whose boundary ∂Ω is sufficiently smooth.

We shall examine solutions of (1.1) that exhibit sharp boundary layers, which are
narrow regions where solutions change rapidly (see Figure 1). To obtain reliable nu-
merical approximations of layer solutions in an efficient way, one has to use locally
refined meshes that are fine and anisotropic in layer regions and standard out-
side. When multidimensional meshes of different nature are introduced in different
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Figure 1. Multiple boundary-layer solutions of model problem
(5.1); in the interior subdomain u(x) ≈ z(x) (left) or u(x) ≈ −z(x)
(right), where ±z(x) are stable solutions of the reduced problem
(1.4).

non-overlapping subdomains (e.g., in layer regions and outside), it may be rather
inconvenient to match them, while non-overlapping non-matching meshes require
a special treatment (see, e.g., [6] for non-matching meshes used to solve a problem
of type (1.1)). Furthermore, different discretizations of differential equations may
be used in layer regions and outside, in which case they should be matched along
the interface boundaries (see, e.g., [8]).

Handling non-overlapping non-matching meshes and matching different discret-
izations along the interface boundaries can be entirely avoided by invoking iterative
overlapping domain decomposition methods of Schwarz-Chimera type; see, e.g., [20,
§1.5]. Note that non-overlapping domain decomposition methods, at best, have
conventional geometric rates of convergence when applied to singularly perturbed
problems of type (1.1). In contrast, overlapping methods, with the subdomain
overlap being as narrow as O(ε| lnh|), where h is the triangulation diameter, may
enjoy much faster convergence. To be more precise, we prove in this paper that
one iteration is sufficient to achieve second-order accurate computed solutions when
ε ≤ C| lnh|−1, where the global number of mesh nodes does not exceed O(h−2);
see Theorems 3.9 and 4.4 for details.

We now present a continuous version of the discrete Schwarz method that we
investigate. Define, for some 0 ≤ a < b, subdomains of Ω:

Ωa := {x ∈ Ω : dist(x, ∂Ω) > a}, Ω[a,b] := {x ∈ Ω : a < dist(x, ∂Ω) < b},
so we have Ω0 = Ω, Ω[a,b] = Ωa\Ωb, and ∂Ω[a,b] = ∂Ωa ∪ ∂Ωb. Consider the

overlapping subdomains Ωσ and Ω[0,2σ] = Ω\Ω̄2σ, where σ > 0 is sufficiently
small so that these subdomains are well defined and smooth; see Figure 2 (left).
Let uσ and u[0,2σ] be solutions of the following boundary value problems:

(1.2a) Fu[0,2σ] = 0 for x ∈ Ω[0,2σ],
u[0,2σ](x) = g0(x) for x ∈ ∂Ω,
u[0,2σ](x) = g2σ(x) for x ∈ ∂Ω2σ,

(1.2b) Fuσ = 0 for x ∈ Ωσ, uσ(x) = u[0,2σ](x) for x ∈ ∂Ωσ.

Here g0 is from the boundary condition of our original problem (1.1), while g2σ is
updated for each iteration by

(1.3a) g2σ(x) = g
[k]
2σ (x) :=

{
g
[1]
2σ(x) for k = 1,

u[k−1](x) for k = 2, 3, . . . , x ∈ ∂Ω2σ,
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Figure 2. Overlapping boundary-layer subdomain Ω[0,2σ] and in-
terior subdomain Ωσ (left); layer-adapted tensor-product mesh in
Ω[0,2σ] and quasiuniform Delaunay triangulation in Ωσ (right).

with some suitable initial guess g
[1]
2σ. Successively solving problems (1.2a) and (1.2b)

with g2σ = g
[k]
2σ , for k = 1, 2 . . ., we get the kth-iteration approximations:

(1.3b) u[k](x) :=

{
u[0,2σ](x) for x ∈ Ω̄[0,σ] = Ω̄\Ωσ,
uσ(x) for x ∈ Ω̄σ.

We discretize the domain Ω[0,2σ] as in Figure 2 (right), using layer-adapted
tensor-product meshes of Bakhvalov and Shishkin types whose number of mesh
nodes does not exceed Ch−2. We then solve problem (1.2a) in this domain using
standard finite differences in curvilinear coordinates. For problem (1.2b) in the
domain Ωσ, we use lumped-mass linear finite elements on a quasiuniform Delaunay
triangulation of diameter h.

When considering semilinear problems of type (1.1), it is frequently assumed in
the numerical analysis literature (see, e.g., [3, 23]) that fu(x, u) > γ2 > 0 for all
(x, u) ∈ Ω̄ × R and some positive constant γ. Under this assumption, our problem
(1.1) and the associated reduced problem (1.1), i.e.,

(1.4) f(x, z(x)) = 0 for x ∈ Ω,

defined by setting ε = 0 in (1.1), have unique solutions u and z. This global
assumption is however rather restrictive. For example, mathematical models of
biological and chemical processes frequently involve problems related to (1.1) with
f(x, u) that is non-monotone with respect to u. Therefore in the most important
case of ε ≤ Ch (see §3), we examine problem (1.1) under the following weaker
assumptions also used in [5, 18]:

• it has a stable reduced solution, i.e., there exists a sufficiently smooth solu-
tion z of (1.4) such that

(1.5a) fu(x, z) > γ2 > 0 for all x ∈ Ω̄;

• the boundary condition g0 on ∂Ω, also denoted ∂Ω0, satisfies the assump-
tion, with d = 0, that
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(1.5b)

∫ v

z(x)

f(x, s) ds > 0 for all v ∈
(
z(x), gd(x)

]′
, x ∈ ∂Ωd.

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when
a > b, while (a, b]′ = ∅ when a = b.

Note that if g0(x) ≈ u0(x), then (1.5b) follows from (1.5a) combined with (1.4),
while if g0(x) = u0(x) at some point x ∈ ∂Ω, then (1.5b) does not impose any
restriction on g0 at this point. (Problem (1.2a) should also satisfy (1.5b) with
d = 2σ; otherwise the nonlinear problem (1.2a) may have no solutions. When σ is

small, one can simply take g
[1]
2σ ≈ g0.)

Conditions (1.5) intrinsically arise from the asymptotic analysis of problem (1.1)
and guarantee that there exists a boundary-layer solution u such that u ≈ u0 in the
interior part of Ω, while the boundary layer is of width O(ε| ln ε|); see, e.g., [5, 18, 7].
Note that assumption (1.5a) is local, i.e., the reduced problem (1.4) is permitted
to have more than one stable solution. Furthermore, if multiple stable solutions of
the reduced problem satisfy (1.5), then problem (1.1) has multiple boundary-layer
solutions.

The discrete Schwarz method that we consider is a domain decomposition version
of the numerical method of [8], where problem (1.1), (1.5) was posed in a smooth
two-dimensional domain, and it was shown that one gets second-order convergence
in the discrete maximum norm under the condition ε ≤ Ch. Note that in the present
paper we give convergence estimates for all ε ∈ (0, 1]. In one dimension, similar
domain decomposition methods using layer-adapted meshes have been analyzed
for linear [16, 25] and semilinear [10] equations of type (1.1); in particular, faster
convergence of the algorithm for small values of ε was addressed in [10, 25]. The
numerical analysis literature addressing problems of type (1.1) posed in various two-
dimensional domains is discussed in [8]. In particular, the semilinear equation (1.1)
under the condition fu > γ2 > 0 was considered in [3, 23], while linear equations
of this type were considered in [1, 4, 14, 17].

The paper is organized as follows. In §2 we introduce independent meshes and
discretizations in the subdomains Ω[0,2σ] and Ωσ, and then present a discrete ver-
sion of the continuous Schwarz method (1.2), (1.3). The errors in the discrete
Schwarz method are estimated in two regimes: for ε ≤ Ch in §3 and ε ≥ Ch in §4.
So throughout §3 we let ε ≤ Ch. Asymptotic properties of solutions in particu-
lar subdomains are discussed, and then appropriate sub- and super-solutions are
constructed in §3.1. Errors in the continuous and discrete Swartz methods are esti-
mated, respectively, in §3.2 and §§3.3–3.4. In particular, in §3.4 we employ discrete
sub- and super-solutions, whose basic properties are sketched in §3.3. Through-
out §4 we let ε ≥ Ch and make a simplifying assumption that fu > γ2 > 0. Then
errors in the continuous and discrete Schwarz method are estimated, respectively,
in §4.1 and §§4.2–4.3. In §4.4 we get an auxiliary stability result for the finite-
difference discrete operator in Ω[0,2σ], which is used to establish supra-convergence
in this subdomain. In §4.5 we get another auxiliary result by extending a maximum
norm error estimate for the standard finite element method [23] to its lumped-mass
version. Finally, in §5, some numerical results illustrate our theoretical conclusions.

Notation. We let C denote a generic positive constant that may take different values
in different formulas, but is independent of ε, h and the number of iterations taken
by the Schwarz algorithm. A subscripted C (e.g., C1) denotes a positive constant
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2D SINGULARLY PERTURBED SEMILINEAR R-D PROBLEM 85

that is independent of ε, h and the number of iterations, but takes a fixed value.
For any two quantities y and z, the notation y = O(z) means |y| ≤ Cz.

2. Discrete Schwarz method. Discretizations

in particular subdomains

2.1. Local curvilinear coordinates. Let the boundary ∂Ω be parametrized by

x1 = ϕ(l), x2 = ψ(l), 0 ≤ l ≤ L,

where (ϕ(0), ψ(0)) = (ϕ(L), ψ(L)) and as l increases, the domain remains on the
left. Any functions that are defined for l beyond [0, L] should be understood as
extended L-periodically. We shall use the magnitude τ > 0 of the tangent vector
(ϕ′, ψ′) and the curvature κ of the boundary at (ϕ(l), ψ(l)) that are defined by

τ =
√
ϕ′2 + ψ′2, κ = κ(l) =

ϕ′ψ′′ − ψ′ϕ′′

τ3
.

In a narrow neighbourhood of ∂Ω that will be specified later, introduce the curvi-
linear local coordinates (r, l) by

(2.1) x1 = ϕ(l) + rn1(l), x2 = ψ(l) + rn2(l),

where (n1, n2) is the inward unit normal to ∂Ω at (ϕ(l), ψ(l)), i.e., it is orthogonal
to the tangent vector (ϕ′, ψ′) and is defined by

n1 =
−ψ′

τ
, n2 =

ϕ′

τ
.

Since ∂Ω is smooth, there exists a sufficiently small constant C1 such that in the
subdomain Ω̄2C1

the new coordinates are well-defined, the mapping (r, l) 	→ (x1, x2)
is one-to-one and invertible, and, furthermore,

(2.2) dist(x, ∂Ω) = r for all x ∈ Ω̄2C1
.

Throughout the paper we shall use a smooth positive cut-off function ω(x) that
equals 1 for r ≤ C1 and vanishes in Ω̄\Ω̄2C1

.
Note [8, Lemma 2.1] that the curvilinear coordinates (2.1) are orthogonal, and

for the Laplace operator we have

(2.3) �u = η−1 ∂

∂r

(
η
∂u

∂r

)
+ ζ

∂

∂l

(
ζ
∂u

∂l

)
, where η := 1 − κr, ζ := (τη)−1.

2.2. Layer-adapted meshes. To discretize the continuous Schwarz method in
(1.2), (1.3), we now introduce independent meshes in the overlapping subdomains
Ω[0,2σ] and Ωσ, to which we shall refer, respectively, as the boundary-layer subdo-
main and the interior subdomain; see Figure 2.

In the interior subdomain Ωσ introduce a quasiuniform Delaunay triangula-
tion of some small diameter h ∈ (0, 12 ), i.e., the maximum side length of any triangle

is at most h, the area of any triangle is bounded below by Ch2, and the sum of
the angles opposite to any edge is less than or equal to π (while any angle opposite
to ∂Ωσ does not exceed π/2). Let the union of all the triangles define a polygonal
domain Ωh

σ whose boundary vertices lie on ∂Ωσ.
The boundary-layer subdomain Ω[0,2σ] is the rectangle (0, 2σ)× [0, L] in the

coordinates (r, l). Hence in this subdomain introduce the tensor-product mesh
{(ri, lj), i = 0, . . . , 2N, j = 0, . . . Nl + 1}, where rN = σ and, as usual, r0 = 0,
r2N = 2σ, l0 = 0, and lNl

= L, while lNl+1 = l1 + L. Furthermore, let {lj} be
a quasiuniform mesh on [0, L], i.e., C−1h ≤ lj − lj−1 ≤ Ch. The choice of the
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86 NATALIA KOPTEVA AND MARIA PICKETT

layer-adapted mesh {ri} on [0, 2σ] is crucial and will be discussed later; see (a),(b)
below. Now assume only that ri − ri−1 ≤ h and

(2.4) C−1h−1 ≤ N ≤ Ch−1.

Note that we do not require that the interior and layer meshes have the same
sets of nodes on ∂Ωσ. Thus information will be exchanged between Ω[0,2σ] and Ωσ

using piecewise linear/bilinear computed solutions in these subdomains.
We focus on two particular choices of {ri}:

2.2(a) Shishkin mesh [24]. Set σ = σS := min{2γ−1ε lnN, 1
2C1} and introduce

a uniform mesh {ri}2Ni=0 on [0, 2σ], i.e., ri − ri−1 = σ/N = 2γ−1εN−1lnN .

2.2(b) Bakhvalov mesh [2]. Let ρ := ε and σB := 2γ−1ε| ln ρ|. We now set
σ := max{σB, σS} and ρ̄ := (1−ρ)+ [σ−σB]ρ/(2γ−1ε), and define the meshpoints
by ri := r

(
[1 − ε] i/N

)
for i = 0 . . . , 2N , where r(t) ∈ C1[0, 2ρ̄] is given by

r(t) :=

⎧⎨
⎩

−2γ−1ε ln(1 − t) for t ∈ [0, 1 − ρ],
σB + [t− (1 − ρ)](2γ−1ε)/ρ for t ∈ [1 − ρ, ρ̄],
2σ − r(2ρ̄− t) for t ∈ [ρ̄, 2ρ̄],

so that the submesh {ri}2Ni=N reflects the submesh {ri}Ni=1 in r = σ.

Remark 2.1. For the mesh §2.2(a) we always have 2σ ≤ C1, so this mesh is always
well-defined. The mesh §2.2(b) is well-defined provided that ε ≤ e−1 and 2σB ≤ C1;
otherwise we have ε > C for some constant C, and, imitating [2], we extend the
mesh definition §2.2(b) by using the mesh §2.2(a) with σ := 1

2C1. In general, when
ε > C, i.e., our problem is not singularly perturbed, one can simply use linear finite
elements on a quasiuniform Delaunay triangulation of the whole domain Ω̄ [23].
Note that one can replace lnN by ln(C ′N) in the definition of σS in §2.2(a), and
can also use ρ = C ′′ε for the mesh §2.2(b), with some arbitrary constants C ′, C ′′.

Remark 2.2. In the mesh definitions §2.2(a) and §2.2(b) the constant γ from (1.5a)
can be replaced by an arbitrary constant γ̃ ∈ (0, γ0), where γ0 is from Lemma 3.1;
see Remark 3.2.

2.3. Discretization in the boundary-layer subdomain. Recall that Ω[0,2σ] is
the rectangle (0, 2σ)× [0, L] in the coordinates (r, l). Hence rewrite problem (1.2a)
in the (r, l) coordinates using (2.3), and then discretize it using the standard finite
differences on the tensor-product mesh {(ri, lj)} as follows. For i = 1, . . . , 2N − 1,
j = 1, . . . , Nl, set

(2.5)
Fh
[0,2σ]Uij := −ε2η−1

ij Dr[η̃ijD
−
r Uij ] − ε2ζijDl[ζ̃ijD

−
l Uij ] + f(xij , Uij) = 0,

Ui,0 = Ui,Nl
, Ui,1 = Ui,Nl+1, U0,j = g0(x0,j), U2N,j = g2σ(x2N,j).

Here Uij is the discrete computed solution at the mesh node xij ∈ Ω̄[0,2σ],

D−
r vij :=

vij − vi−1,j

ri − ri−1
, Drvij :=

vi+1,j − vij
(ri+1 − ri−1)/2

,

D−
l vij :=

vij − vi,j−1

lj − lj−1
, Dlvij :=

vi,j+1 − vij
(lj+1 − lj−1)/2

and

ηij := η(ri, lj), ζij := ζ(ri, lj), xij := x(ri, lj),

η̃ij := η(ri−1/2, lj), ζ̃ij := ζ(ri, lj−1/2).
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2D SINGULARLY PERTURBED SEMILINEAR R-D PROBLEM 87

The computed solution U[0,2σ](x) for x ∈ Ω̄[0,2σ] is obtained by the standard bilinear
interpolation of Uij in the (r, l) coordinates on the tensor-product mesh {(ri, lj)}.

2.4. Discretization in the interior subdomain. We discretize problem (1.2b)
in Ωσ using lumped-mass linear finite elements. Let Sh ⊂ W 1

2 (Ωh
σ) be the standard

finite element space of continuous functions that are linear on each of the triangles
of our mesh in Ω̄h

σ. Let {qi} be the set of mesh nodes of the mesh in Ω̄h
σ. Now

we require the computed solution Uσ ∈ Sh to satisfy Uσ(qj) = U[0,2σ](qj) at each

boundary mesh node qj ∈ ∂Ωh
σ, and also

(2.6) Fh
σUσ(qi) :=

ε2

〈1, χi〉
〈∇Uσ,∇χi〉 + f(qi, Uσ(qi)) = 0 ∀ qi ∈ Ωh

σ,

where qi is an interior mesh node in Ωh
σ, and χi ∈ Sh is the standard nodal basis

function (i.e. χi(qj) equals 1 if i = j, and 0 otherwise). The notation 〈·, ·〉 is used
for the inner product in L2(Ω

h
σ). Note that the finite element method (2.6) uses

the lumped-mass discretization of the integral involving f , which is more evident
if (2.6) is multiplied by 〈1, χi〉. It is important to also note that as a Delaunay
triangulation is used, the discretization of the operator −� in (2.6) is associated
with an M -matrix (see, e.g., [30, §2]).

2.5. Discrete Schwarz approximations. We now imitate (1.3). The boundary
condition g2σ in (2.5) is updated for each iteration by

(2.7a) g2σ(x) = g
[k]
2σ (x) :=

{
g
[1]
2σ(x) for k = 1,

U [k−1](x) = Uσ(x) for k = 2, 3, . . . , x ∈ ∂Ω2σ,

with some suitable initial guess g
[1]
2σ. Successively solving problems (2.5) and (2.6)

with g2σ = g
[k]
2σ , for k = 1, 2 . . ., we get the kth-iteration approximations:

(2.7b) U [k](x) :=

{
U[0,2σ](x) for x ∈ Ω̄\Ω̄h

σ,
Uσ(x) for x ∈ Ω̄h

σ.

Strictly speaking, (2.7a) is well-defined for k ≥ 2 only if Ω2σ ⊂ Ωh
σ, while we have

Ω2σ ⊂ Ωσ, so some extrapolation of Uσ from Ω̄h
σ onto Ω̄σ\Ω̄h

σ may be employed.
In practice, no extrapolation is required as dist(∂Ω2σ, ∂Ωσ) = σ ≥ Cε lnh and
dist(∂Ωh

σ, ∂Ωσ) = O(h2). Consequently, whenever ε ≥ Ch2, relation (2.7a) is well-
defined; otherwise, as we shall show in Theorem 3.9, one iteration of the discrete
Schwarz method is sufficient.

Remark 2.3. One advantage of the above domain decomposition method is related
to the condition numbers of the associated linear systems. Note that the condition
number (roughly, the ratio of the largest eigenvalue to the smallest) for a similar
method without domain decomposition [8] is expected to be close to O(h−2) (for
a Shishkin mesh in one dimension, this is shown in [21]). For the finite differences
in the boundary-layer subdomain Ω[0,2σ], we expect a similar condition number (in
view of the eigenvalues for a finite difference method obtained in [22, §II.3.2]). But
for the finite elements in the interior subdomain Ωσ, in view of [26, Theorem 5.1],
one expects a much smaller condition number of O(ε2h−2 + 1).
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88 NATALIA KOPTEVA AND MARIA PICKETT

3. Maximum norm error analysis for 0 < ε ≤ Ch

3.1. Continuous problems in particular subdomains. Sub- and super-
solutions. As our method involves the numerical solution of the differential equa-
tion (1.1a) in certain subdomains, we shall first consider this equation and asymp-
totic properties of its solutions in arbitrary particular subdomains Ωa and Ω[a,b].

Let ua(x) and u[a,b](x) be solutions of the problems (compare with (1.2))

(3.1) Fua = 0 for x ∈ Ωa, ua(x) = ga(x) for x ∈ ∂Ωa,

(3.2) Fu[a,b] = 0 for x ∈ Ω[a,b],
u[a,b](x) = ga(x) for x ∈ ∂Ωa,
u[a,b](x) = gb(x) for x ∈ ∂Ωb.

Here 0 ≤ a < b ≤ C1 so that the domains Ωa and Ω[a,b] are well-defined. Only to
avoid considering cases, we assume that gd ≥ u0(d) for d = a, b.

Then solutions ua and u[a,b] of problems (3.1) and (3.2) typically exhibit bound-
ary layers, and their standard first-order asymptotic expansions uas ; a and
uas ; [a,b] are given [5, 8, 18] by

uas ; a(x) = z(x) +
[
v0; a(ξ

+, l) + εv1; a(ξ
+, l)

]
ω(x),(3.3a)

uas ; [a,b](x) = z(x) +
[
v0; a(ξ

+, l) + εv1; a(ξ
+, l)

]
(3.3b)

+
[
v0; b(ξ

−, l) + εv1; b(ξ
−, l)

]
.

(Note that the cut-off function ω = 1 in Ω[a,b], so uas ; [a,b] − uas ; a = [v0; b + εv1; b].)
Here the components [v0; a + εv1; a] and [v0; b + εv1; b] describe the boundary layers
along ∂Ωa and ∂Ωb, respectively. They use the stretched variables ξ+ = ξ+a := r−a

ε

and ξ− = ξ−b := b−r
ε . More generally,

ξ±d := ±(r − d)/ε.

When there is no ambiguity, as, e.g., in (3.3), the notation ξ± is used for ξ+a and
ξ−b . Note that ξ±d = 0 corresponds to r = d, and ξ+d has the same positive direction

as the r-axis, while ξ−d has the opposite direction.
The boundary-layer functions v0; d(ξ

±, l) and v1; d(ξ
±, l) in (3.3), with d = a, b,

satisfy the ordinary differential equations

−
(

∂
∂ξ±

)2
v0; d + f(x̄d, z(x̄d) + v0; d) = 0 ,(3.4a) [

−
(

∂
∂ξ±

)2
+ fu(x̄d, z(x̄d) + v0; d)

]
v1; d = ∓Qd(ξ

±, l) ,(3.4b)

with the boundary conditions

(3.4c) v0; d(0, l) = gd(x̄d) − z(x̄d), v1; d(0, l) = v0; d(∞, l) = v1; d(∞, l) = 0,

where the variable l appears as a parameter, and

(3.4d)
x̄d = x̄d(l) :=

(
ϕ(l) + dn1(l), ψ(l) + dn2(l)

)
∈ ∂Ωd,

Qd(ξ
±, l) := ξ± d

drf(x, z(x) + s)
∣∣
x:=x̄d; s=v0;d

+ κ
1−κd

(
∂

∂ξ±v0; d
)
.

Note that relations (3.4) either all use ξ+ = ξ+d and so define v0; d(ξ
+) and v1; d(ξ

+),

or all use ξ− = ξ−d and then define v0; d(ξ
−) and v1; d(ξ

−). Note also that Qd in

(3.4d) is obtained using η−1 ∂η
∂r

∣∣
r=d

= κ
1−κd .
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To construct sub- and super-solutions for problems (3.1) and (3.2), we need a
perturbed version ṽ0; d = ṽ0; d(ξ

±, l; p) of v0; d, which, for d = a, b, is defined by
generalizing equations (3.4a) with the boundary conditions (3.4c):

(3.5)
−
(

d
dξ±

)2
ṽ0; d + f(x̄d, z(x̄d) + ṽ0; d) = pṽ0; d,

ṽ0; d(0, l; p) = gd(x̄d) − z(x̄d), ṽ0; d(∞, l; p) = 0.

Clearly, we have ṽ0; d(ξ
±, l; 0) = v0; d(ξ

±, l) for d = a, b. Now, by replacing all
v0; d by their perturbations ṽ0; d and introducing a perturbation term C0p, we get
perturbed versions βa and β[a,b] of the asymptotic expansions of (3.3):

βa(x; p) = z(x) +
[
ṽ0; a(ξ

+; p) + εv1; a(ξ
+)

]
ω(x) + C0p,(3.6a)

β[a,b](x; p) = z(x) +
[
ṽ0; a(ξ

+; p) + εv1; a(ξ
+)

]
(3.6b)

+
[
ṽ0; b(ξ

−; p) + εv1; b(ξ
−)

]
+ C0p.

Here p is a small real number that will be chosen later and is typically o(h); for
some small p > 0 the functions β[a,b](x;±p) will serve as sub- and super-solutions.

The following lemma combines the results of [11, Lemma 2.1 and (2.15)]; the
proof uses dynamical systems in the analysis of problems (3.4) and (3.5).

Lemma 3.1. Set γ2
0 = minx∈∂Ωa∪∂Ωb

fu(x, z(x)) > γ2, where γ > 0 is from (1.5a).
Given assumption (1.5b) with d = a, b, there exists p0 ∈ (0, γ2

0) such that for all
|p| ≤ p0, problems (3.4) and (3.5) have solutions v0; a(ξ

+, l), v0; b(ξ
−, l), v1; a(ξ

+, l),
v1; b(ξ

−, l), ṽ0; a(ξ
+, l; p) and ṽ0; b(ξ

−, l; p). We also have

(3.7) v0; d(ξ
±, l) ≥ 0, ∂

∂p ṽ0; d(ξ
±, l; p) ≥ 0, where d = a, b.

Furthermore, for an arbitrarily small but fixed δ ∈ (0, γ0 −
√
p0), there is a positive

constant Cδ such that

(3.8)
∣∣( ∂

∂ξ±

)k
ṽ0; d

∣∣ +
∣∣( d

dξ±

)k
v1; d

∣∣ +
∣∣ ∂
∂p ṽ0; d

∣∣ ≤ Cδ e
−(γ0−

√
p0−δ) ξ± max

∂Ωd

|gd − z|

for d = a, b and ξ± ≥ 0, k = 0, 1, . . . , 4.

Remark 3.2. As γ0 > γ, choosing p0 and δ in Lemma 3.1 sufficiently small, we
can make γ0 − √

p0 − δ in (3.8) satisfy γ0 − √
p0 − δ > γ, which then yields

e−(γ0−
√
p0−δ) ξ± ≤ e−γ ξ± Consequently, we have

(3.9) e−(γ0−
√
p0−δ) ξ+a ≤ e−γ (x−a)/ε, e−(γ0−

√
p0−δ) ξ−b ≤ e−γ (b−x)/ε.

Similarly, we can choose p0 and δ so that γ0 −
√
p0 − δ > γ̃ for any γ̃ < γ0, which

then yields (3.9) with γ replaced by γ̃.

Next we investigate the perturbed asymptotic expansions βa(x; p) and β[a,b](x; p).

Lemma 3.3. Under the assumptions of Lemma 3.1, the functions βa(x; p) and
β[a,b](x; p) of (3.6) satisfy

(3.10) Fβa(x; p) = C0p fu(x, z) + [1 + C0λa] p v0; a(ξ
+, l) + O(ε2 + p2)

for x ∈ Ωa, where λa = λa(x) := fuu
(
x, z + ϑv0; a

)
and ϑ = ϑ(x) ∈ (0, 1), and

Fβ[a,b](x; p) = C0p fu(x, z) + [1 + C0λ[a,b]] p [v0; a(ξ
+, l) + v0; b(ξ

−, l)](3.11)

+ O(ε2 + p2 + e−γ(b−a)/(2ε))

for x ∈ Ω[a,b], where λ[a,b] = λ[a,b](x) := fuu
(
x, z+ϑ̂[v0; a+v0; b]

)
, ϑ̂ = ϑ̂(x) ∈ (0, 1).
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Proof. The first assertion (3.10) (for a = 0) is given by [8, Lemma 2.8].
Next, consider x ∈ Ω[a,(a+b)/2]. In view of (3.10), to obtain the second asser-

tion (3.11) in this case, it suffices to prove the bound |Fβ[a,b](x; p) − Fβa(x; p)| ≤
Ce−γ (b−r)/ε ≤ Ce−γ(b−a)/(2ε) for all r ∈ (a, (a + b)/2] and similar bounds for
|λ[a,b] − λa| and |v0; b|. In particular, the first of the required bounds follows from

Fβ[a,b](x; p) − Fβa(x; p) = −
(

d
dξ+

)2
[β[a,b] − βa] + O(β[a,b] − βa)

combined with β[a,b] − βa = ṽ0; b + εv1; b, for which we have (3.8), (3.9) and (2.2).
For x ∈ Ω[(a+b)/2,b], estimate (3.11) is obtained similarly, but using a version of

(3.10), in which βa is replaced by β[a,b] − [ṽ0; a + εv1; a], so λa and v0; a(ξ
+, l) are

replaced by fuu
(
x, z + ϑv0; b

)
and v0; b(ξ

−, l), respectively. �
Corollary 3.4. Let b− a ≥ (4/γ)ε| ln(Ch)|. Then there exists positive C0 and C2

such that the functions βa(x; p) and β[a,b](x; p) of (3.6), for all 0 < |p| ≤ p0, satisfy

(sgn p)Fβa(x; p) ≥ C0|p| γ2 − C2(ε
2 + p2),

(sgn p)Fβ[a,b](x; p) ≥ C0|p| γ2 − C2(ε
2 + p2 + h2),

Proof. Recall (1.5a) and that v0; a(ξ
+, l) ≥ 0 and v0; b(ξ

−, l) ≥ 0, by (3.7). Now
invoke Lemma 3.3 choosing a positive C0 that does not exceed minx∈Ω̄a

|λa(x)|−1

and minx∈Ω̄[a,b]
|λ[a,b](x)|−1 so that 1+C0λa(x) ≥ 0 and 1+C0λ[a,b](x) ≥ 0. Finally,

note that e−γ(b−a)/(2ε) ≤ Ch2. �
Lemma 3.5. Let 0 ≤ a < b ≤ C1 and b − a ≥ (4/γ)ε| ln(Ch)|. Let f satisfy
assumption (1.5a), and the boundary data gd, where d = a, b, of problems (3.1) and

(3.2) satisfy (1.5b). Then there is a sufficiently small positive constant C̃0 such that

if ε ≤ C̃0, then problem (3.1) has a solution ua, and if ε + h ≤ C̃0, then problem
(3.2) has a solution u[a,b], such that∣∣(ua − uas ; a)(x)

∣∣ ≤ Cε2 for x ∈ Ω̄a,(3.12a) ∣∣(u[a,b] − uas ; [a,b])(x)
∣∣ ≤ C(ε2 + h2) for x ∈ Ω̄[a,b],(3.12b)

where uas ; a and uas ; [a,b] are defined in (3.3). Furthermore,

|(u[a,b] − ua)(x)| ≤ C(ε2 + h2) for x ∈ Ω̄[a,(a+b)/2],(3.12c)

|(u[a,b] − z)(x)| ≤ C(ε2 + h2) for x ∈ ∂Ω(a+b)/2,(3.12d)

|(ua − z)(x)| ≤ C(ε2 + h2) for x ∈ Ω̄(a+b)/2.(3.12e)

Proof. Existence of ua (for a = 0) and relation (3.12a) are established in [5, 18].
For existence of u[a,b], set p̄ := 2C2

C0γ2 (ε2 + h2) so that 1
2C0p̄ γ

2 ≤ C2(ε
2 + h2).

Then the choice C̃2
0 := C0γ

2

2C2
min{p0, C0γ

2

2C2
} provides p̄ ≤ p0 and 1

2C0p̄γ
2 ≥ C2p̄

2.

So applying Corollary 3.4 yields Fβ[a,b](x;−p̄) ≤ 0 ≤ Fβ[a,b](x; p̄). Furthermore,
since (3.7) implies that β[a,b](x; p) is increasing in p, while β[a,b](x; 0) = uas ; [a,b](x),
we get

(3.13) β[a,b](x;−p̄) ≤ uas ; [a,b](x) ≤ β[a,b](x; p̄).

Thus β[a,b](x;−p̄) and β[a,b](x; p̄) are ordered sub- and super-solutions for prob-
lem (3.2). Therefore this problem has a solution u[a,b] such that β[a,b](x;−p̄) ≤
u[a,b](x) ≤ β[a,b](x; p̄) and hence for this solution we obtain the desired bound
(3.12b) from

(3.14) |u[a,b](x) − uas ; [a,b](x)| ≤ β[a,b](x; p̄) − β[a,b](x;−p̄) ≤ Cp̄.
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2D SINGULARLY PERTURBED SEMILINEAR R-D PROBLEM 91

The final estimate here follows from β[a,b](x; p̄) − β[a,b](x;−p̄) = 2p̄ ( ∂
∂p ṽ0; a +

∂
∂p ṽ0; b + C0)

∣∣
p=θ

, where we used (3.6b) and (3.8). Thus we have (3.12b).

In view of (3.12a), (3.12b), it suffices to prove versions of (3.12c)–(3.12e), in which
u[a,b] and ua are replaced by uas ; [a,b] and uas ; a, respectively. They follow as (3.3)
yields uas ; [a,b]−uas ; a = Ib and uas ; [a,b]− z = Ia + Ib, while uas ; a− z = Iaω, where

Ia :=
[
v0; a(ξ

+
a , l) + εv1; a(ξ

+
a , l)

]
and Ib :=

[
v0; b(ξ

−
b , l) + εv1; b(ξ

−
b , l)

]
so |Ib| ≤ Ch2

for x ∈ Ω̄[a,(a+b)/2] and |Ia| + |Ib| ≤ Ch2 for x ∈ ∂Ω(a+b)/2, while |Ia| ≤ Ch2 for

x ∈ Ω̄(a+b)/2. Here the bounds for Ia,b are obtained by combining (3.8), (3.9) with

ξ−b = b−r
ε , ξ+a = r−a

ε and (2.2). �
3.2. Error in the continuous Schwarz method. We are now prepared to bound
the error in the first iteration u[1] of the continuous Schwarz method (1.2), (1.3).

Theorem 3.6. Let (4/γ)ε ln(Ch) ≤ 2σ ≤ C1 and ε + h ≤ C̃0, where C̃0 is from

Lemma 3.5. Let the boundary data g0 and g2σ = g
[1]
2σ of problems (1.1) and (1.2a)

satisfy (1.5b) with d = 0, 2σ. Then there exist a solution u of problem (1.1) and a
first-iteration approximation u[1] defined by (1.2), (1.3) such that

|(u− u[1])(x)| ≤ C(ε2 + h2) for x ∈ Ω̄.

Proof. Applying Lemma 3.5, with a := 0 and b := 2σ, to problems (1.1) and
(1.2a) immediately yields existence of their solutions ua = u and u[a,b] = u[0,2σ].

Furthermore, as u[1] = u[0,2σ] in Ω̄[0,σ], estimate (3.12c) implies u[1]−u = O(ε2+h2)

in Ω̄[0,σ]. Note also that (3.12e) yields u−z = O(ε2+h2) for x ∈ Ω̄σ, while u[1] = uσ

in this subdomain. So, to complete the proof, it remains to show that there exists
a solution uσ of problem (1.2b) such that

(3.15) uσ − z = O(ε2 + h2) for x ∈ Ω̄σ.

As the boundary condition in (1.2b) is gσ = u[0,2σ] on ∂Ωσ, then (3.12d) yields

gσ − z = O(ε2 + h2) on ∂Ωσ. So one can easily check that the boundary condition
of problem (1.2b) satisfies assumption (1.5b) with d = σ. Now, Lemma 3.5, applied
to problem (1.2b) as a particular case of (3.1) with a = σ, implies existence of
a solution uσ such that uσ − uas ;σ = O(ε2 + h2). Furthermore, using (3.8) to
estimate the boundary-layer components of uas ;σ, we observe that they do not
exceed Cδ max∂Ωσ

|gσ − z| = O(ε2 + h2). This yields uas ;σ = z + O(ε2 + h2) and
hence (3.15). �
3.3. Z-fields. We shall invoke the theory of Z-fields in our analysis of discretiza-
tions (2.5) in Ω[0,2σ] and (2.6) in Ωσ.

Definition. An operator F : Rn → R
n is a Z-field if for all i �= j the mapping

xj 	→
(
F(x1, x2, . . . , xn)

)
i
is a monotonically decreasing function from R to R when

x1, . . . , xj−1, xj+1, . . . , xn are fixed.

Lemma 3.7 ([15]). Let F : Rn → R
n be continuous and a Z-field. Let r ∈ R

n

be given. Assume that there exist α, β ∈ R
n such that α ≤ β and Fα ≤ 0 ≤ Fβ.

(The inequalities are understood to hold true componentwise.) Then the equation
Fy = 0 has a solution y ∈ R

n with α ≤ y ≤ β.

Proof. The proof can be found in Lorenz [15], and also in [11]. Alternatively,
the desired result can be obtained by imitating the proof of [19, Theorem 3.1] (it
is crucial in this argument that the discrete operator F + CI satisfies a discrete
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maximum principle, where I is the identity operator and C is an arbitrarily large
but fixed positive constant). �

The elements α and β of Rn that appear in Lemma 3.7, are called ordered sub-
and super-solutions of the discrete problem Fy = 0.

Remark 3.8. The discrete operators Fh
[0,2σ] of (2.5) and Fh

σ of (2.6) are Z-fields [8].

3.4. Error in the discrete Schwarz method for ε ≤ Ch. Throughout this
subsection for any fixed positive constant C, we take

(3.16) ε ≤ Ch.

This is not a practical restriction. Furthermore, in §4, we shall consider the case of
ε ≥ Ch.

Theorem 3.9. Let (3.16) be satisfied, and the mesh {ri}2Ni=0 be one of the meshes

in §2.2(a),(b). Let the boundary data g0 and g2σ = g
[1]
2σ of problems (1.1) and (1.2a)

satisfy (1.5b) with d = 0, 2σ. Then there exist a solution u of problem (1.1) and a
first-iteration computed solution U [1] defined by (2.5), (2.6), (2.7) such that

|(u− U [1])(x)| ≤ Ch2| lnh|m for x ∈ Ω̄,

where m = 2 for the Shishkin mesh of §2.2(a) and m = 0 for the Bakhvalov mesh
of §2.2(b).

Proof. In view of Theorem 3.6 and definitions (1.3b) and (2.7b) of u[1] and U [1], it
suffices to show that∣∣(U[0,2σ] − u[0,2σ])(x)

∣∣ ≤ Ch2| lnh|m for x ∈ Ω̄[0,2σ],(3.17a) ∣∣(Uσ − uσ)(x)
∣∣ ≤ Ch2| lnh|m for x ∈ Ω̄σ.(3.17b)

To prove (3.17a), note that problem (1.2a) is a particular case of (3.2), so we shall
use some results of §3.1 setting a := 0 and b := 2σ. The corresponding function
β[0,2σ](x; p) is defined by (3.6b). We claim that for all |p| ≤ p0 at all interior mesh
nodes xij , i = 1, . . . , N − 1, j = 1, . . . , Nl, we have

(3.18)
∣∣Fh

[0,2σ]β[0,2σ](xij ; p) − Fβ[0,2σ](xij ; p)
∣∣ ≤ Ch2| lnh|m.

Note that the term ε2ζ ∂
∂l (ζ

∂
∂lβ[0,2σ]) in Fβ[0,2σ] and its discretization in Fh

[0,2σ]β[0,2σ]

are both O(ε2), so do not exceed Ch2 by (3.16). The truncation error for the
remaining term ε2η−1 ∂

∂r (η ∂
∂rβ[0,2σ]) is bounded by CN−2 lnm N , as can be shown

by imitating the argument of [11, Lemma 3.3 and §3.4.2]. Combining this with
(2.4), we get (3.18).

Next, set p̄ := C̄h2| lnh|m and, using (3.18), choose C̄ sufficiently large so that
|Fh

[0,2σ]β[0,2σ]−Fβ[0,2σ]| ≤ 1
2C0p̄γ

2 for all |p| ≤ p0 including p = ±p̄. Now, by Corol-

lary 3.4 and (3.16), for sufficiently small h, we have ±Fβ[0,2σ](x;±p̄) ≥ 1
2C0p̄γ

2.

Consequently, ±Fh
[0,2σ]β[0,2σ](xij ;±p̄) ≥ 0. Combining this with (3.13), we con-

clude that β[0,2σ](xij ;±p̄) are ordered discrete sub- and super-solutions. As dis-
cretization (2.5) is a Z-field (see Remark 3.8), an application of Lemma 3.7 yields
existence of U[0,2σ](xij) between these sub- and super-solutions. Furthermore, a ver-

sion of (3.14) for U[0,2σ](xij) implies |(U[0,2σ] − uas ;[0,2σ])(xij)| ≤ Cp̄ ≤ Ch2| lnh|m.

Noting that, by (3.3b), (3.8), we also have |(uI
as ;[0,2σ]−uas ;[0,2σ])(xij)| ≤ Ch2| lnh|m,

where uI
as ;[0,2σ] is the bilinear interpolant of the computed solution on the mesh
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{(ri, lj)}, we get |(U[0,2σ]−uas ;[0,2σ])(x)| ≤ Ch2| lnh|m. Combining this with (3.12b)
yields the desired estimate (3.17a).

For (3.17b), in view of (3.15), it suffices to show that |Uσ−z| ≤ Ch2| lnh|m. Note
that, by (3.17a), at each mesh node qj ∈ ∂Ωσ we have Uσ = u[0,2σ] +O(h2| lnh|m),

while u[0,2σ] = uσ = z + O(h2| lnh|m) due to (1.2b) and (3.15). Consequently,

|(Uσ − z)(qj)| ≤ C̄h2| lnh|m at all qj ∈ ∂Ωσ for some sufficiently large C̄.
Let zI be the piecewise linear interpolant of z on the triangulation in Ω̄h

σ. At
any interior mesh node qi ∈ Ωh

σ one has

〈∇zI ,∇χi〉 = 〈∇[zI − z],∇χi〉 − 〈�z, χi〉.

Combining this with the interpolation error estimate |∇(zI − z)| ≤ Ch and the
standard quasiuniform-mesh properties 〈1, |∇χi|〉 ≤ Ch and 〈1, χi〉 ≥ Ch2, we con-
clude that |〈∇zI ,∇χi〉| ≤ C ′〈1, χi〉. Now set p̄ := C̄h2| lnh|p with C̄ ≥ 2γ−2C ′C2,
where C is from (3.16), and let h be sufficiently small so that, by (1.5a), we have
fu(x, z ± p̄) ≥ 1

2γ
2. A calculation shows that ±Fh

σ [zI ± p](qi) ≥ 1
2γ

2p̄− C ′ε2 ≥ 0.

Consequently, zI ± p̄ are sub- and super-solutions for the discrete problem (2.6).
So, by Remark 3.8, an application of Lemma 3.7 yields existence of a solution Uσ

such that zI − p̄ ≤ Uσ ≤ zI + p̄. Hence |Uσ − zI | ≤ 2p̄. Combining this with
|zI − z| ≤ Ch2 implies (3.17b). �

Theorem 3.9 above implies that if ε ≤ Ch, one iteration of the discrete Schwarz
method is sufficient to attain second-order convergence (with, in the case of the
Shishkin mesh, a logarithmic factor) in the maximum norm uniformly in ε. In the
next section we shall investigate the errors in the case of ε ≥ Ch.

4. Maximum norm error analysis for ε ≥ Ch

4.1. Preliminaries. Error in the continuous Schwarz method. Throughout
this section, we make a simplifying assumption that

(4.1) fu(x, u) > γ2 > 0 for all (x, u) ∈ Ω̄ × R.

Under this assumption, problem (1.1) has a unique solution, and furthermore, ap-
plying the standard linearization, for any two functions v and w one gets

(4.2) Fv − Fw = L[v − w], L := −ε2� + p(x), p(x) > γ2 > 0 for x ∈ Ω̄.

To be more precise, here the coefficient p(x) =
∫ 1

0
fu(x,w + s[v − w]) ds, i.e., it

involves the functions v and w. Bearing this in mind, throughout this section, we let
p(x) denote a generic coefficient in L, which in different places will involve different
v and w. Similarly, for the discrete operators Fh

[0,2σ] of (2.5) and Fh
σ of (2.6), we

shall employ their linearized versions Lh
[0,2σ] and Lh

σ obtained using f(xij , Vij) −
f(xij ,Wij) = p(xij)[Vij−Wij ] and f(qi, V (qi))−f(qi,W (qi)) = p(qi)[V (qi)−W (qi)],
respectively. In view of (4.1), the discrete operators Lh

[0,2σ] and Lh
σ satisfy the

discrete maximum principle.
Under condition (4.1), it is not difficult to estimate the error in the continuous

Schwarz method.

Theorem 4.1. Let u be a solution of problem (1.1) under condition (4.1), and let
u[k] be the kth iteration approximation (1.2), (1.3) obtained using σ ∈ [C ′ε, C1] for
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some C ′ and some |g[1]2σ| ≤ C. There are positive constants c0 and θ′ ∈ (0, 1), inde-

pendent of ε, σ and k, such that |u[k] − u| ≤ Cθk in Ω̄, where θ ≤ min{e−σγ/ε, θ′}
for ε ∈ (0, c0], and θ ≤ θ′ for ε ∈ [c0, 1]. If Ω is convex, then θ′ = 1

2 .

Proof. Set θ = θε(σ) := maxx∈Ω̄[0,σ]
|φε(x)|, where for each ε ∈ (0, 1], σ ∈ [C ′ε, C1],

the auxiliary function φε solves the problem

(4.3) [−ε2� + γ2
∗ ]φε = 0 in Ω[0,2σ], φε = 0 on ∂Ω, φε = 1 on ∂Ω2σ,

with some γ∗ > γ. In view of (2.3), a calculation shows that the barrier functions
B1(r) := e−γ(2σ−r)/ε and B2(r) := r/(2σ) satisfy, respectively, [−ε2� + γ2

∗ ]B1 ≥
(−γ2 − εγC ′′ + γ2

∗)B1 for some C ′′, and [−� + γ2
∗ ]B2 ≥ κ/(2σ)

1−κr + γ2
∗B2. So, by

the maximum principle, φε ≤ B1 if ε ≤ c0 := (γ2
∗ − γ2)/(γC ′′), while φ1 ≤ B2

if κ ≥ 0, i.e., if Ω is convex. These two observations imply that θ ≤ e−γσ/ε

for ε ≤ c0, and θ ≤ θ′ := 1
2 if Ω is convex. To choose θ′ for a non-convex Ω,

note that the maximum principle implies that 0 ≤ φε < 1 in Ω̄[0,σ], and also

φε ≤ φ1 in Ω̄[0,2σ] so θε(σ) ≤ θ1(σ) < 1. Now, for ε ≥ c0 we have σ ≥ c0C
′ so

θ ≤ θ′′ := maxσ∈[c0C′,C1] θ1(σ) < 1, where θ′′ is independent of ε and σ. Therefore

θ ≤ θ′ := max{e−γC′
, θ′′} for all ε ∈ (0, 1]. Thus, under our choice of θ′, we have

θ ≤ min{e−σγ/ε, θ′} for ε ∈ (0, c0], and θ ≤ θ′ for ε ∈ [c0, 1].

We now focus on the error in the Schwarz method. Let t[k] := max∂Ω2σ
|g[k]2σ −u|,

where one has t[1] ≤ C∗ for some C∗. Now let γ∗ := minΩ̄×[−C̄,C̄] fu > γ2, where

C̄ := γ−2 maxΩ̄ |f(x, 0)| + max∂Ω |g0| + C∗ is independent of ε, σ and k. Consider
the first iteration. In view of (1.1) and (1.2a), a linearization of type (4.2) yields
L(u[0,2σ] − u) = 0 in Ω[0,2σ], with p(x) ≥ γ2

∗ , subject to u[0,2σ] − u = 0 on ∂Ω and

|u[0,2σ] − u| ≤ t[1] on ∂Ω2σ. So, using the maximum principle, we conclude that

|u[0,2σ]−u| ≤ t[1]φε in Ω̄[0,2σ]. Therefore |u[1]−u| ≤ θt[1] in Ω̄[0,σ] and consequently

|uσ − u| ≤ θt[1] on ∂Ωσ. Also, in view of (1.1) and (1.2b), a linearization of
type (4.2) yields L(uσ − u) = 0 in Ωσ. So, by the maximum principle, we get
|u[1]−u| = |uσ −u| ≤ θt[1] in Ω̄σ as well. Thus we have shown that |u[1]−u| ≤ θt[1]

in Ω̄, which, by (1.3a), implies that t[2] ≤ θt[1]. Repeating this argument for further
iterations and then noting that |t[1]| ≤ C∗, we get the desired result. �

4.2. Auxiliary computed solutions in Ω[0,2σ] and Ωσ. In this subsection we

investigate auxiliary computed solutions Ũ[0,2σ] and Ũσ. The first solution Ũ[0,2σ]

is obtained in Ω̄[0,2σ] by the bilinear interpolation of Ũ[0,2σ](xij), where

(4.4a) Fh
[0,2σ]Ũ[0,2σ](xij) = 0, (Ũ[0,2σ]−g0)(x0,j) = 0, (Ũ[0,2σ]−u)(x2N,j) = 0,

with Ũ[0,2σ](xi,0) = Ũ[0,2σ](xi,Nl
) and Ũ[0,2σ](xi,1) = U[0,2σ](xi,Nl+1). The other

solution Ũσ ∈ Sh and satisfies

(4.4b) Fh
σ Ũσ(qi) = 0 ∀qi ∈ Ωh

σ, Ũσ(qj) = u(qj) ∀qi ∈ ∂Ωh
σ.

Here Fh
[0,2σ] and Fh

σ are the discrete operators that were used in problems (2.5), (2.6)

for U[0,2σ] and Uσ. The only difference between these pairs of problems is in that

we use the exact solution u of (1.1) in the boundary conditions for Ũ[0,2σ] and Ũσ.
To estimate the errors of these auxiliary computed solutions, we need pointwise
derivative estimates for the exact solution u.
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Lemma 4.2. Under condition (4.1), problem (1.1) has a unique solution u, and

(4.5a) | ∂j+m

∂xj
1∂x

m
2

(u− z)| ≤ C
[
ε2 + ε4−(j+m) + ε−(j+m)e−γa/ε

]
for x ∈ Ω̄a,

where 0 ≤ a ≤ C1, j+m = 0, . . . , 4, and z is a solution of (1.4) with | ∂j+m

∂xj
1∂x

m
2

z| ≤ C.

Furthermore,

(4.5b) | ∂j+m

∂rj∂lmu| ≤ C
[
1+ ε4−(j+m) + ε−j e−γr/ε

]
for x ∈ Ω̄[0,C1], j,m = 0, . . . , 4.

Proof. We defer the proof of this lemma to Appendix A. �

We combine technical error estimates for Ũ[0,2σ] and Ũσ in the following lemma.

Lemma 4.3. Let u be a solution of (1.1) under condition (4.1), ε ≥ Ch, and the

mesh {ri}2Ni=0 be one of the meshes in §2.2(a),(b). Then for the solutions Ũ[0,2σ]

and Ũσ of problems in (4.4) we have

|(Ũ[0,2σ] − u)(x)| ≤ Ch2| lnh|m for x ∈ Ω̄[0,2σ],(4.6a)

|(Ũσ − u)(x)| ≤ Ch2 ln(C + ε/h) for x ∈ Ω̄h
σ,(4.6b)

where m = 2 for the Shishkin mesh of §2.2(a) and m = 0 for the Bakhvalov mesh
of §2.2(b).

In the proof of this lemma, for the finite element solution Ũσ we essentially use
a maximum norm error estimate by Schatz and Wahlbin [23], which we generalize
for the case of lumped-mass finite elements.

For the finite difference solution Ũ[0,2σ], a certain technical difficulty is due to
the mesh {lj} being quasi-uniform, so the truncation error in the l direction is
O(h), while, by (4.6a), the error is O(h2| lnh|m). Thus the finite-difference method
in Ω[0,2σ] is supra-convergent (i.e., its error has a higher order of accuracy than
may be expected from the local truncation error; the term supra-convergence was
introduced in [12]). Note that the only maximum-norm supra-convergence error
estimate in two dimensions of which we are aware is obtained in [28] by combining
supra-convergence in the norm H1 with a discrete Sobolev inequality. In compar-
ison, our proof of (4.6a) extends the classical one-dimensional supra-convergence
analysis presented in [22].

Proof of (4.6a) (Supra-convergence of the Finite Difference Discretization). Let

uij := u(xij) and Ũij = Ũ[0,2σ](xij). Using (1.1a), (4.4a) and then the definition

(2.5) of Fh
[0,2σ], we get

(4.7) Fh
[0,2σ]Ũij − Fh

[0,2σ]uij = Fu(xij) − Fh
[0,2σ]uij = ε2(η−1

ij R1 + ζijR2),

where

R1 = Dr[η̃ijD
−
r uij ] − ∂

∂r (η ∂
∂ru)

∣∣
(xij)

, R2 = Dl[ζ̃ijD
−
l uij ] − ∂

∂l (ζ
∂
∂lu)

∣∣
(xij)

.

For R1, employing Taylor series expansions, one can show that

|R1| ≤ C
[
(ri−ri−1)

2M
(4)
i + |ri+1−2ri+ri−1|M (3)

i

]
, M

(s)
i :=

s∑
n=0

max
r∈[ri−1,ri+1]

l∈[0,L]

| ∂n

∂rnu|.
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For the Shishkin mesh of §2.2(a), combining ri−ri−1 ≤ 2γ−1εN−1 lnN with (4.5b)
yields |ε2η−1R1| ≤ CN−2 ln2 N . For the Bakhvalov mesh of §2.2(b), we only con-
sider i ≤ N/2 (as the other case is similar). A calculation shows that

Si := ε−2(ri − ri−1)
2 + ε−1|ri+1 − 2ri + ri−1| ≤

CN−2

max{(1 − i+1
N ), ρ}2

≤ CN−2ε−2.

Consequently, by (4.5b), one has

|ε2η−1R1| ≤ CSi

[
ε4M

(4)
i + ε3M

(3)
i

]
≤ C

[
N−2 + Sie

−γri−1/ε
]
≤ CN−2,

where we used e−γri−1/ε ≤ max{(1 − i−1
N ), ρ}2 and N−1 ≤ Ch ≤ Cε = Cρ.

Note that R2 is only O(h) as {lj} is a general non-uniform mesh. To establish
supra-convergence of our discretization, we imitate the truncation error analysis of
[9, Lemma 3.1]; see also [22, Chap. III, §4]. Noting that

R2 = Dl[ζ̃ij μ̂ij ] + Dlwi,j−1/2 − ∂
∂lw

∣∣
xij

, μ̂ij := D−
l uij − ∂

∂lu
∣∣
xi,j−1/2

, w := ζ ∂
∂lu,

and then employing Taylor series expansions, one gets R2 = Dl[μ(ri, lj)]+ ν̂ij . Here

μ(r, lj) := (lj−lj−1)
2( 1

24ζ
∂3

∂l3u+ 1
8

∂2

∂l2w)
∣∣
(r,lj−1/2)

, |ν̂ij | ≤ Ch2 max
Ω̄[0,2σ]

(| ∂3

∂l3w|+| ∂4

∂l4 u|),

so, by (4.5b), one has |ν̂| ≤ Ch2 and | ∂n

∂rnμ| ≤ Cε−nh2 for n = 0, 1, 2.
Linearizing (4.7) and combining our findings for R1 and R2, we conclude that

Lh
[0,2σ][Ũij − uij ] = ε2ζijDl[μ(ri, lj)] + νij , εn| ∂n

∂rnμ| ≤ Ch2, |ν| ≤ Ch2| lnh|m.

Consequently, |Ũ(xij) − u(xij)| ≤ Ch2| lnh|m (this immediately follows from the
stability result for the operator Lh

[0,2σ] given by Corollary 4.7 which we defer to

§4.4). Combining this with the interpolation error bound |uI −u| ≤ Ch2| lnh|m for
the bilinear interpolant uI of the exact solution u on the mesh {(ri, lj)} (which is
obtained again using (4.5b)), we get the desired estimate (4.6a). �

Proof of (4.6b) (Lumped-Mass Finite Element Error). We claim that

(4.8a) |(Ũσ − u)(x)| ≤ Ch2 ln(C + ε/h)
[
‖u‖C2(Ω̄h

σ)
+ El.m.

]
for x ∈ Ω̄h

σ,

where the error due to the lumped-mass discretization of f(x, u) is described using

(4.8b) El.m. := ‖Ψ‖C2(Ω̄h
σ)

+ ε−1‖Ψ‖C1(Ω̄h
σ)
, Ψ(x) := f(x, u(x)).

Estimate (4.8) is a generalization of a maximum norm error estimate [23] for the
standard finite element method (for which estimate (4.8a) with El.m. = 0 imme-
diately follows from [23, Theorems 6.1 and 12.1]). We defer the proof of (4.8)
to §4.5.

As the domain Ω is smooth, we note that Ωh
σ ⊂ Ωσ̃, for some σ̃ ≤ σ − Ch2 ≤

σ − Cε. Note also that, by (1.4), we have Ψ(x) = [u − z]
∫ 1

0
fu(x, z + s[u − z]) ds,

so ‖Ψ‖Cn(Ω̄h
σ)

≤ C‖u− z‖Cn(Ω̄h
σ)

. Consequently, by (4.5a), a calculation shows that

‖u‖C2(Ω̄h
σ)

≤ C[1 + ε−2e−γσ̃/ε] and ‖Ψ‖Cn(Ω̄h
σ)

≤ C[ε2 + ε−ne−γσ̃/ε] for n = 1, 2,

so it remains to prove that I := ε−2e−γσ/ε ≤ C. On both the Shishkin mesh
and the Bakhvalov mesh of §2.2(a),(b), we have σ ≥ σS , so a calculation yields
I ≤ ε−2 max{N−2, e−γC1/(2ε)} ≤ C, where we used (2.4) and ε ≥ Ch. �
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4.3. Error in the discrete Schwarz method for ε ≥ Ch.

Theorem 4.4. Let u be a solution of problem (1.1) under condition (4.1), ε ≥ Ch,
and let U [k] be the discrete kth iteration approximation (2.5), (2.6), (2.7) obtained

using some |g[1]2σ| ≤ C and one of the meshes {ri}2Ni=0 in §2.2(a),(b). Set m = 2 for
the Shishkin mesh of §2.2(a) and m = 0 for the Bakhvalov mesh of §2.2(b). There
are constants c0 and θ′ ∈ (0, 1), independent of ε and k, such that

(4.9) |(U [k] − u)(x)| ≤ C[θk + h2| lnh|m + h2 ln(C + ε/h)] for x ∈ Ω̄,

where θ ≤ min{e−σγ/ε, θ′} for ε ≤ c0, and θ ≤ θ′ for ε ≥ c0. If Ω is convex, then
θ′ ≤ 1

2 . If ε ≤ 1
4C1γ(lnN)−1, then θ ≤ Ch2.

Proof. We shall partly imitate the proof of Theorem 4.1. Note that the con-
dition σ ∈ [C ′ε, C1] of this theorem is satisfied if we take a sufficiently small
C ′ ≤ 1

2C1. Applying the numerical method (2.5) to problem (4.3) for φε, we
get the computed solution Φε, which satisfies a discrete equation of the type
[−ε2�h

[0,2σ] + γ2
∗ ]Φε(xij) = 0 in Ω[0,2σ], subject to the boundary conditions Φε = 0

on ∂Ω and Φε = 1 on ∂Ω2σ. Now set Θ := maxxij∈Ω̄\Ωh
σ
|Φε|. Note that a version

of Lemma 4.2 can be obtained for the derivatives of the exact solution φε. Further-
more, imitating the proof of (4.6a), one can show that the error |(Φε − φε)(x)| ≤
Ch2| lnh|m. Combining these two observations with dist(∂Ωσ, ∂Ωh

σ) ≤ Ch2, one
concludes that |Θ − θ| ≤ Ch2| lnh|m, where θ is from Theorem 4.1. Note also that
ε ≤ 1

4C1γ(lnN)−1 implies σ ≥ σS = 2γ−1ε lnN , so θ ≤ N−2 ≤ Ch2.

Next, introduce some notation using g[k] of (2.7a) and Ũ[0,2σ] and Ũσ of (4.4):

T [k] = max
∂Ω2σ

|g[k]2σ − Ũ[0,2σ]|, T̃σ = max
qi∈∂Ωσ

|(Ũ[0,2σ]− Ũσ)(qi)|, T̃2σ = max
∂Ω2σ

|Ũ[0,2σ]− Ũσ |.

Note that T [1] ≤ C∗ for some C∗ (in fact, T [1] ≈ t[1], where t[1] is from the proof of
Theorem 4.1). In view of (4.6), it suffices to estimate

E[k] := max
x∈Ω̄\Ω̄h

σ

|(U [k] − Ũ[0,2σ])(x)| + max
x∈Ω̄h

σ

|(U [k] − Ũσ)(x)|.

Consider the first iteration. By (2.5) and (4.4a), a linearization of type (4.2)

yields the discrete equation Lh
[0,2σ](U[0,2σ]−Ũ[0,2σ]) = 0 in Ω[0,2σ], where p(xij) ≥ γ2

∗ ,

subject to U[0,2σ] − Ũ[0,2σ] = 0 on ∂Ω and |U[0,2σ] − Ũ[0,2σ]| ≤ T [1] on ∂Ω2σ. So,

using the discrete maximum principle, we conclude that |U[0,2σ] − Ũ[0,2σ]| ≤ T [1]Φε

in Ω̄[0,2σ]. This immediately implies |U [1]− Ũ[0,2σ]| ≤ ΘT [1] in Ω̄\Ω̄h
σ. Furthermore,

|(Uσ − Ũσ)(qj)| ≤ ΘT [1] + T̃σ at any mesh node qj ∈ ∂Ωσ. Combining this with

Lh
σ(Uσ − Ũσ)(qi) = 0 for all qi ∈ Ωh

σ, which follows from (2.6) and (4.4b), and

applying the discrete maximum principle, we get |U [1]−Ũσ| = |Uσ−Ũσ | ≤ ΘT [1]+T̃σ

in Ω̄h
σ. Finally, by (2.7a), we have T [2] ≤ ΘT [1] + T̃σ + T̃2σ. Noting that ΘT [1] ≤

θT [1] + |Θ − θ|C∗, we summarize our findings for the first iteration as follows:

E[1] + T [2] ≤ θT [1] + λ, λ := |Θ − θ|C∗ + T̃σ + T̃2σ.

Next, by (4.6), we have

(4.10) λ ≤ C[h2| lnh|m + h2 ln(C + ε/h)],

while θ ≤ θ′, with θ′ ∈ (0, 1) independent of ε and k. As T [1] ≤ C∗, we also
get T [2] ≤ C∗ for sufficiently small h. Repeating the above argument for further
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iterations yields E[k] +T [k+1] ≤ θT [k] +λ and therefore E[k] ≤ θkT [1] +λ(1− θ)−1.
In view of (4.6) and (4.10), the desired estimate (4.9) follows. �

Corollary 4.5. Under the conditions of Theorem 4.4, for ε ≤ 1
4C1γ(lnN)−1, we

have

|(U [1] − u)(x)| ≤ C [h2| lnh|m + h2 ln(C + ε/h)] for x ∈ Ω̄.

4.4. Stability of the finite difference operator in the boundary-layer sub-
domain. In this subsection we establish a stability result for the linearization
Lh
[0,2σ] of the finite difference operator Fh

[0,2σ] of (2.5). This result was crucial

in the proof of the supra-convergence estimate (4.6a). We start with an auxiliary
lemma for a related one-dimensional operator.

Lemma 4.6. Let the function W (r, lj), for r ∈ [0, 2σ], j = 1, . . . , Nl, satisfy

(4.11) MW (r, lj) := −Dl[ ζ̃(r, lj)D
−
l W (r, lj) ] + W (r, lj) = Dl[μ(r, lj) ],

subject to periodicity conditions W (r, l0) = W (r, lNl
) and W (r, l1) = W (r, lNl+1),

where ζ̃(r, lj) := ζ(r, lj−1/2) and μ(r, l1) = μ(r, lNl+1). Then we have

(4.12) | ∂m

∂rmW (r, lj)| ≤ C

m∑
n=0

max
r∈[0,2σ]

l=1,...,Nl

| ∂n

∂rnμ(r, lj)| for m = 0, 1, 2.

Proof. Differentiating (4.11) in r, we get, with the notation Wm(r, lj) := ∂m

∂rmW (r, lj),

ζm(r, lj) := ∂m

∂rm ζ̃(r, lj) and μm(r, lj) := ∂m

∂rmμ(r, lj),

MW1(r, lj) = Dl[ ζ1(r, lj)D
−
l W (r, lj) + μ1(r, lj) ],

MW2(r, lj) = Dl[ ζ2(r, lj)D
−
l W (r, lj) + 2ζ1(r, lj)D

−
l W1(r, lj) + μ2(r, lj) ].

Note that ζ̃(r, lj) ≥ C > 0, so problem (4.11) is well posed. Define two discrete

L2(0, L) norms by ‖y‖2h =
∑Nl

j=1 y
2
j (lj − lj−1) and ‖y‖2h,∗ =

∑Nl

j=1
1
2y

2
j (lj+1 − lj−1).

Now, applying the method of energy inequalities [22, Chap. II, §3.5] to (4.11), one
can show that ‖D−

l W (r, ·)‖h + ‖W (r, ·)‖h,∗ ≤ C‖μ(r, ·)‖h. Furthermore, we get

‖D−
l W1(r, ·)‖h + ‖W1(r, ·)‖h,∗ ≤ C‖ζ1D−

l W + μ1‖h ≤ C(‖μ‖h + ‖μ1‖h)

and a similar estimate for W2. Thus we have

‖D−
l Wm(r, ·)‖h + ‖Wm(r, ·)‖h,∗ ≤ C

m∑
n=0

‖μn(r, ·)‖h for m = 0, 1, 2.

The desired result follows as for all r ∈ [0, 2σ] we have ‖μm‖h ≤ C maxj |μm(r, lj)|
and maxj |Wm(r, lj)| ≤ C(‖D−

l Wm‖h +‖Wm‖h,∗) (the former estimate is a discrete
version of a Sobolev imbedding theorem). �

The main result of this section is as follows.

Corollary 4.7. Let Lh
[0,2σ] be linearization of type (4.2) of the finite difference

operator Fh
[0,2σ] in (2.5). Let Vij, for i = 1, . . . , 2N − 1, j = 1, . . . , Nl, satisfy

Lh
[0,2σ]Vij = ε2ζijDl[μ(ri, lj)] + νij ,
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subject to Vi,0 = Vi,Nl
, Vi,1 = Vi,Nl+1 and V0,j = V2N,j = 0, where we also have

μ(r, l1) = μ(r, lNl+1) and νi,0 = νi,Nl
, νi,1 = νi,Nl+1. Then

(4.13) max
i,j

|Vij | ≤ C
( 2∑
n=0

εn max
r∈[0,2σ]
l=1,...,Nl

| ∂n

∂rnμ| + max
ij

|νij |
)
.

Proof. A calculation using Wij := W (ri, lj) from Lemma 4.6 shows that

Lh
[0,2σ](Vij −Wij) = νij + ε2η−1

ij Dr[η̃ijD
−
r Wij ] + (ε2 − pij)Wij .

This implies that

|Lh
[0,2σ](Vij −Wij)| ≤ C

(
max
ij

|νij | +
2∑

n=0

εn max
r∈[0,2σ]

l=1,...,Nl

| ∂n

∂rnW |
)
.

Now, |Vij | ≤ |Vij −Wij |+ |Wij |, while, by the discrete maximum principle, we have
|Vij − Wij | ≤ C max |Lh

[0,2σ](Vij − Wij)|. Combining this with (4.12), we get the

desired estimate (4.13). �

4.5. Proof of the lumped-mass finite element error estimate (4.8). In this
subsection, we generalize a maximum norm error estimate for the standard finite
element method [23] to its lumped mass version. Note that the energy arguments
are not suitable in estimation of the lumped-mass error for singularly perturbed
equations of type (1.1), as they result in the error constants involving negative
powers of the small parameter ε.

We use the notation of §2.4, and also the space S̊h := {χ ∈ Sh, χ = 0 on ∂Ωh
σ},

and the forms

a(v, w) := ε2〈∇v,∇w〉 + 〈f(x, v), w〉,

ah(v, w) := ε2〈∇v,∇w〉 + 〈f(x, v), w〉h, 〈ϕ,w〉h :=

∫
Ωh

σ

(ϕw)I ,

where (ϕw)I is the standard piecewise linear interpolant of the function ϕw. Then

the lumped mass solution Ũσ ∈ Sh of (4.4b) using the operator Fh
σ of (2.6), and

the standard finite element solution uh ∈ Sh satisfy ah(Ũσ, χ) = 0 and a(uh, χ) = 0

for all χ ∈ S̊h. We shall also use the form

(4.14) δh(v, w) := a(v, w) − ah(v, w),

and the discrete function rh ∈ S̊h such that

(4.15) a(uh + rh, χ) − a(uh, χ) = δh(u, χ) ∀ χ ∈ S̊h.

Note that for any v, w and any nodal basis function function χi, a calculation yields

(4.16) |δh(v, χi) − δh(w, χi)| ≤ C 〈1, χi〉 max
Ω̄h

σ

|v − w|.

Our proof is in two steps. First, we shall show that

(4.17) |Ũσ − uh| ≤ C
(
max
Ω̄h

σ

|uh − u| + max
Ω̄h

σ

|rh|
)
.

For all χ ∈ S̊h we have ah(Ũσ, χ) = a(uh, χ), so, invoking (4.14) and (4.15), we get

ah(uh + rh, χ) − ah(Ũσ, χ) = ah(uh + rh, χ) − a(uh, χ) = δh(u, χ) − δh(uh + rh, χ).
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Next, by (4.16),

|ah(uh + rh, χi) − ah(Ũσ, χi)| ≤ 〈1, χi〉 max
Ω̄h

σ

(|uh − u| + |rh|),

which can be rewritten in terms the linearization Lh
σ of Fh

σ as

|Lh
σ(uh + rh − Ũσ)| ≤ C max

Ω̄h
σ

(|uh − u| + |rh|).

Now, by the discrete maximum principle, |uh+rh−Ũσ| ≤ C max |Lh
σ(uh+rh−Ũσ)|,

which immediately yields (4.17).
It remains to estimate rh. Linearizing (4.15), we get A(rh, χ) = δh(u, χ) for all

χ ∈ S̊h, where the symmetric bilinear form A(·, ·) is given by

A(w, χ) = ε2〈∇w,∇χ〉 + (pw, χ), p(x) :=

∫ 1

0

fu(x, uh + srh) ds.

Consider an arbitrary point x∗ ∈ τ∗, where τ∗ is some triangle of our triangulation
in Ωh

σ. Then, imitating the proof of [23, Theorem 6.1] we first use an inverse
inequality and then the dual argument to get

(4.18) |rh(x∗)| ≤ Ch−1‖rh‖L2(τ∗) = Ch−1 sup
φ∈C∞

0 (τ∗), ‖φ‖L2(τ∗)=1

〈rh, φ〉.

For any such φ, we introduce vh ∈ S̊h such that A(vh, χ) = 〈φ, χ〉 for all χ ∈ S̊h.
The solution v of the corresponding continuous problem will be employed as well.
Then

(4.19) h−1〈rh, φ〉 = h−1A(rh, vh) = h−1δh(u, vh).

Note that an inspection of the analysis of [23, §6] yields

(4.20) h−1‖vh‖L1(Ωh
σ)

≤ C, h−1‖∇vh‖L1(Ωh
σ)

≤ Cε−1(1 + h/ε) ln(C + ε/h).

Indeed, the first bound in (4.20) follows from [23, (6.21)]. The second bound in
(4.20) is obtained as follows. First, note that [23, (6.17)] yields ‖∇(v−vh)‖L1(Ωh

σ)
≤

C(h/ε)2 ln(C + ε/h). Then ‖∇v‖L1(Ωh
σ)

≤ (h/ε) ln(C + ε/h) is obtained employing

[23, (2.7),(6.8)] by imitating the estimation in [23, (6.12),(6.13)]. Combining these
observations with ε ≥ Ch, we get (4.20).

Now we are ready to estimate the right-hand side in (4.19). In view of (4.14),
setting Ψ(x) := f(x, u(x)), we get

|δh(u, vh)| = |〈Ψ, vh〉 − 〈Ψ, vh〉h| ≤ C(‖Ψ‖C2‖vh‖L1
+ ‖Ψ‖C1‖∇vh‖L1

) · h2,

where we used a version of [29, Lemma 3.1]. Combining this with (4.20) immediately
yields

h−1|δh(u, vh)| ≤ C El.m.h
2 ln(C + ε/h),

where the quantity El.m. is defined in (4.8b). In view of (4.18), (4.19), we now arrive
at |rh(x∗)| ≤ C El.m.h

2 ln(C + ε/h) for all x∗ ∈ Ω̄h
σ. Combining this with (4.17) and

noting that [23, Theorems 6.1 and 12.1] imply |uh−u| ≤ Ch2 ln(C+ε/h)‖u‖C2(Ω̄h
σ)

,

we get the desired lumped-mass finite element error estimate (4.8). �
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Table 1. Errors maxΩ̄ |U [1] − Uref | and maximum nodal errors |u− Uref |

Shishkin mesh Bakhvalov mesh
N ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−2 ε = 10−4 ε = 10−8

32 4.344e-3 6.849e-3 6.900e-3 3.390e-3 1.171e-3 1.172e-3
64 7.903e-4 1.191e-3 1.201e-3 9.683e-4 3.004e-4 2.999e-4

128 2.825e-4 2.065e-4 2.131e-4 2.827e-4 7.658e-5 7.644e-5

∣ ∣
U

[1
] −

U
r
e
f

∣ ∣

32 2.248e-2 2.273e-2 2.274e-2 3.658e-3 3.841e-3 3.843e-3
64 8.959e-3 9.039e-3 9.039e-3 9.156e-4 9.532e-4 9.536e-4

128 3.215e-3 3.232e-3 3.232e-3 2.311e-4 2.387e-4 2.388e-4∣ ∣
u
−

U
r
e
f

∣ ∣

5. Numerical results

Our model problem (see [8]) is posed in the domain Ω shown on Figure 2, whose
boundary ∂Ω is parameterized by x1 = ϕ(l) := R cos θ and x2 = ψ(l) := R sin θ,
where l ∈ [0, 2π],

R = R(l) = 0.4 + cos2(l/2), θ = θ(l) = l + e(l−5)/2 sin(l/2) sin l.

In this domain, we consider (1.1) with

(5.1) b(x, u) =
(
u− z(x)

)
u
(
u + z(x)

)
, z(x) = x2

1 + x1 + 1.

Thus ±z(x) are two stable solutions and 0 is an unstable solution of the corre-
sponding reduced problem. The boundary condition g0(x) = (x1 − x2

1)/3 satisfies
(1.5b) for both ±z; see Figure 1. We present numerical results only for the solution
u near z; see Figure 1 (left); the results for the solution near −z are similar.

This model problem was solved by the discrete discrete Schwarz method (2.5),

(2.6), (2.7) with g
[1]
2σ

∣∣
(r=2σ,l)

:= g0
∣∣
(r=0,l)

. In the boundary-layer subdomain Ω[0,2σ],

we used the Shishkin and Bakhvalov meshes {ri} of §2.2(a),(b) with γ := 0.8γ0,

where γ0=3
√

2/4 (see Remark 2.2), and C1 := 0.2, σS := min{2γ−1ε ln(N/2), 1
2C1},

ρ := 2ε (see Remark 2.1). The mesh {lj}, with Nl := 4N , was chosen so that the
arc-length between any two consecutive boundary mesh nodes was (almost) con-
stant. In the interior subdomain Ωσ, we required the diameter of quasiuniform
Delaunay triangulations to not exceed N−1. In (2.5), we set ζ̃ij := 2/[ζ−1

i,j−1 + ζ−1
ij ]

which is ζ(ri, lj−1/2)+O(h2) (so all our theoretical results remain valid for this mod-
ification). The discrete nonlinear problems (2.5) and (2.6) were solved by Newton’s
method.

In Tables 1 and 2, we compare the kth-interation Schwarz approximation U [k]

with the reference computed solution Uref obtained using the numerical method
[8] on the mesh that coincides with the triangulation for the corresponding U [k]

in Ω̄σ and the matching-tensor product mesh {(ri, l̃j), i = 0, . . . , N, j = 0, . . . , Ñl}
in Ω̄[0,σ]. Note that for ε ≤ Ch, the error Uref − u of this method was shown to

be O(h2| lnh|m) in the discrete maximum norm [8]. In both tables, we also give
the maximum nodal values of the errors Uref − u computed as described in [11, §4]
(by employing an auxiliary computed solution obtained after bisecting the tensor-
product mesh in Ω[0,σ] in both directions and dividing each triangle of the Delaunay
triangulation in Ωσ into four triangles of the same shape).
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Table 2. Case of ε = 0.1: Number of iterations k, value of

maxxij∈∂Ω2σ
|(g[k+1]

2σ − g
[k]
2σ )(xij)| triggering the stopping criterion,

errors maxΩ̄ |U [k] − Uref | and maximum nodal errors |u− Uref |

Shishkin & Bakhvalov meshes, ε = 0.1
N = 32 N = 64 N = 128

k 13 16 19

|g[k+1]
2σ − g

[k]
2σ | 9.480e-4 2.360e-4 5.824e-5

|U [k] − Uref | 1.094e-2 2.859e-3 8.336e-4

|u− Uref | 9.684e-3 2.656e-3 7.489e-4

Table 1 describes errors of the first-interation approximation U [1] for ε ≤ 10−2,
and thus illustrates Theorem 3.9 and Corollary 4.5. We observe that the maximum
errors |U [1]−Uref | are close to or much smaller than the maximum errors |u−Uref |.

In Table 2, we focus on ε = 0.1. As for our domain Ω, the subdomain Ω[0,C1]

is well-defined for a relatively small C1 = 0.2, the condition ε ≤ 1
4C1γ(lnN)−1

of Corollary 4.5 is violated (note that in this case σ = 1
2C1 and the Bakhvalov

mesh coincides with the Shishkin mesh). So, in view of Theorem 4.4, a number of
iterations is required for our method to produce an accurate computed solution. We

used the stopping criterion maxxij∈∂Ω2σ
|(g[k+1]

2σ −g
[k]
2σ )(xij)| ≤ N−2. We again note

that the maximum errors |U [k] − Uref | are close to the maximum errors |u− Uref |.
In summary, the above numerical results agree with the theoretical conclusions

of Theorems 3.9, 4.4 and Corollary 4.5.

Appendix A. Proof of Lemma 4.2

Proof. We decompose the solution u into a regular component v and a boundary-
layer function w as follows. By imitating the argument of [4, §2], where a linear
equation of type (1.1a) was considered in a rectangular domain, one can smoothly
extend the function f into some extended domain Ω∗ × R such that Ω ⊂ Ω∗ and
dist(∂Ω, ∂Ω∗) > 1. Then one can show that there exists a regular function v such

that Fv = 0 in Ω∗, with | ∂j+m

∂xj
1∂x

m
2

v| ≤ C[1 + ε4−(j+m)] and | ∂j+m

∂xj
1∂x

m
2

(v − z)| ≤
C[ε2 + ε4−(j+m)] in Ω̄ for j,m = 0, . . . , 4.

Thus it remains to prove our assertions (4.5a) and (4.5b) with u − z and u,
respectively, replaced by w := u − v. The standard linearization yields Lw =

−ε2�w + p(x)w = 0 in Ω, with p(x) =
∫ 1

0
fu(x, v + sw) ds, while w = gw := g0 − v

on ∂Ω, so gw is a sufficiently smooth regular function.
Consider the barrier function B0(x) := ω(x)e−γr/ε +C ′ε4, where ω is the cut-off

function from §2.1, and C ′ is a sufficiently large constant. We claim that LB0 ≥ 0
in Ω. Indeed, in Ω2C1

, where ω = 0, this follows from L[ε4] ≥ p(x)ε4 ≥ γ2ε4. Next,
in Ω[0,C1], where ω = 1, using (2.3), we get L[e−γr/ε] ≥ [−γ2 − εγC ′′ + p(x)]e−γr/ε

(with C ′′ = maxx∈Ω̄[0,C1]
|η−1 ∂

∂rη|). So for ε ≤ c0 := min(γ2
∗ − γ2)/(γC ′′), where

γ∗ := minx∈Ω̄

√
p(x), we have L[e−γr/ε] ≥ 0 and hence again LB0 ≥ 0. (Note that

for ε ≥ c0, problem (1.1) is not singularly perturbed so the desired bounds (4.5)
follow from the Schauder-type estimates.) Finally, in Ω[C1,2C1], where 0 < ω < 1,
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2D SINGULARLY PERTURBED SEMILINEAR R-D PROBLEM 103

one has r > C1 and therefore |L[e−γr/ε]| ≤ Ce−γC1/ε ≤ C ′γ2ε4. So we get LB0 ≥ 0
in Ω[C1,2C1] and thus in the entire domain Ω.

Now an application of the maximum/comparison principle yields |w| ≤ CB0(x)
so we get (4.5a) and (4.5b) for j = m = 0. To estimate the derivatives of w, note
that the stretching transformation x̂ = x/ε maps any domain Ωa into the domain

Ω̂a and, using the notation ŵ(x̂) = w(x) and p̂(x̂) = p(x), we get �ŵ = p̂ŵ.
Next, using the interior Schauder-type estimates [13, p. 110, (1.12)] for any inte-

rior subdomain Ω̂a with a ∈ [ε, C1] and dist(∂Ω̂a−ε, ∂Ω̂a) = 1, and then rewrit-

ing the result in the original variables x = (x1, x2), we get maxΩ̄a
| ∂j+m

∂xj
1∂x

m
2

w| ≤
Cε−(j+m) maxΩ̄a−ε

|B0|. This implies that

(A.1) | ∂j+m

∂xj
1∂x

m
2

w| ≤ Cε−(j+m)[e−γa/ε + ε4] for x ∈ Ω̄a, j,m = 0, . . . , 4,

where a ∈ [ε, C1]. For a ∈ [0, ε], bound (A.1) is obtained in a similar way, but

using the global Schauder-type estimates [13, p. 110, (1.12)] in the domain Ω̂. So
we have (A.1) for all a ∈ [0, C1]. This immediately yields (4.5a). Furthermore,
restricting (A.1) to x ∈ ∂Ωa and then setting a := r yields (4.5b) for m = 0.

It remains to prove (4.5b) for m = 1, . . . , 4. To do this, we first need to show

that | ∂m

∂lm p| ≤ C in Ω[0,C1]. As the definition of p involves the regular function v

and the boundary-layer function w = u− v, it suffices to show that | ∂m

∂lmu| ≤ C in
Ω[0,C1], which is the rectangle [0, C1] × [0, L] in the variables (r, l). Note that, by

(1.1b) and (4.5a), we have | ∂m

∂lmu| ≤ C on ∂Ω∪∂ΩC1
. Now, differentiating equation

(1.1a) in l, and then using (2.3) and the crude estimate | ∂j+m

∂xj
1∂x

m
2

u| ≤ Cε−(j+m)

to deal with the term Υ := ∂
∂l (�u) − �( ∂

∂lu), one gets |[−ε2� + fu(x, u)] ∂∂lu| =

|ε2Υ − ∇xf(x, u) · ∂x
∂l | ≤ C. So applying the maximum/comparison principle, we

conclude that | ∂∂lu| ≤ C and hence | ∂∂lp| ≤ C. In a similar manner, differentiating
equation (1.1a) m times in l and applying the maximum/comparison principle to

estimate ∂m

∂lmu, one can show that indeed | ∂m

∂lm p| ≤ C in Ω[0,C1] for m = 1, . . . , 4.

We are now ready to establish (4.5b) for m > 0. Each of ∂m

∂lmw, for m = 1, . . . , 4,

will be estimated using the barrier function Bm(x) := e−rγ/ε + C ′ε4−m. Imitating
the argument that was used to estimate LB0, one can show that LBm ≥ CBm.
Note also that, by (A.1) with a := C1, we have | ∂m

∂lmw| ≤ CBm on ∂Ω ∪ ∂ΩC1
.

For m = 1, a calculation shows that |L( ∂
∂lw)| ≤ CB0 ≤ CB1, so an application of

the maximum/comparison principle yields | ∂∂lw| ≤ CB1 in Ω̄[0,C1]. Furthermore,

imitating the argument that was used to prove (A.1), one gets | ∂j+m

∂xj
1∂x

m
2

( ∂
∂lw)| ≤

Cε−(j+m)[e−γa/ε + ε3], which implies (4.5b) for m = 1. For m = 2, 3, 4, estimate
(4.5b) is obtained similarly. �
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