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Abstract. A semilinear second-order parabolic equation is considered in a regular and a sin-
gularly perturbed regime. For this equation, we give computable a posteriori error estimates in the
maximum norm. Semidiscrete and fully discrete versions of the backward Euler, Crank—Nicolson, and
discontinuous Galerkin dG(r) methods are addressed. For their full discretizations, we employ elliptic
reconstructions that are, respectively, piecewise-constant, piecewise-linear, and piecewise-quadratic
for r =1 in time. We also use certain bounds for the Green’s function of the parabolic operator.
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1. Introduction. Consider a semilinear parabolic equation in the form
(1.1a) Mu =0+ Lu+ f(x,t,u) =0 for (x,t) € Q :=Q x (0,7]

with a second-order linear elliptic operator £ = L(t) in a spatial domain @ C R™ with
Lipschitz boundary, subject to the initial and Dirichlet boundary conditions

(1.1b) u(x,0) = p(z) for z€Q, u(z,t) =0 for (z,t) € 9Q x [0,T].

We assume that f is continuous in Q2 x [0, T'] xR, is differentiable in the third argument,
and, for some nonnegative constants v and 7, satisfies

(1.2) 0<9? <0, f(x,t,2) <7 for (x,t,2) € Qx[0,T] x R.

The purpose of this paper is to obtain computable a posteriori error estimates for
fully discrete methods applied to problem (1.1). We consider the first-order backward
Euler and the second-order Crank—Nicolson discretizations in time. Furthermore, we
study the discontinuous Galerkin method dG(r), > 1, with Radau quadrature.

These results are applied to the model equation with £ := —?/A = —2 3" | 5%:

(1.3) Mu = dpu — 2 ANu+ f(z,t,u) =0

posed in a bounded polyhedral spatial domain 2 C R™ with n = 1,2, 3. This equation
will be considered in two regimes:

(i) e=1, v>0; (i) e<x1, v>0.
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Note that regime (ii) yields a singularly perturbed reaction-diffusion equation, whose
solutions may exhibit sharp layer phenomena. It is important in this regime that a
posteriori error estimates are robust in the sense that any dependence on the small
perturbation parameter ¢ should be shown explicitly [21, 25].

We will give error estimates in the mazimum norm, which is sufficiently strong to
capture sharp layers and singularities that may occur, in particular, if problem (1.1) is
of singularly perturbed type. Our estimates will be of interpolation type in the sense
that they will include certain terms that may be interpreted as approximating ij |0,
where p and 7; are the discretization order and local step size in time, respectively.

We employ the elliptic reconstruction technique, which was introduced in the
recent papers [22, 19, 6] as a counterpart of the Ritz-projection in the a posteriori
error estimation for parabolic problems. We also use certain bounds for the Green’s
function of the continuous parabolic operator in a manner similar to [6], only for a
more general semilinear parabolic operator of (1.3) (compared to 9, — A in [6]).

One distinctive feature of our analysis in this paper (compared, e.g., to [1, 6])
is that we use computed solutions and elliptic reconstructions that are piecewise-
polynomial of degree p— 1 in time, where p is the time discretization order. In partic-
ular, they are piecewise-constant in time when dealing with the first-order backward
Euler method and piecewise-linear and -quadratic, respectively, when dealing with
the second-order Crank—Nicolson method, and the third-order dG(1) method. Con-
sequently, we allow the residuals of computed solutions, as well as other functions, to
be understood as distributions; this inclusion plays a crucial role in our analysis.

Note that earlier pointwise/maximum norm a posteriori error estimates for
parabolic equations either are given for regular linear problems [9, 3, 6, 7] or are
not robust in the sense that they involve negative powers of € [3]. For a more detailed
comparison of our results with various earlier a posteriori error estimates, we refer
the reader to Remarks 5.3, 9.5, 9.9, and 11.7 below.

The paper is organized as follows. In section 2, we introduce the Green’s function
and obtain a certain stability lemma, which is the key ingredient of our a posteriori
error analysis. The contents of sections 3—6 and 8-11 are summarized in the table
below, while section 7 looks into elliptic a posteriori error estimators.

Summary | Backward Crank—

of results Euler Nicolson dG(r)
Semidiscretizations | section 3 section 4 section 5 section 6
Full discretizations | section 8 section 9 section 10 section 11

Notation. Throughout the paper, C, as well as ¢, denotes a generic positive
constant that may take different values in different formulas but is independent of
the diffusion coefficient € and any mesh sizes. We use |z| for the Euclidean norm of
x € R™. The usual spaces C(Q) and Hg(Q) are used, as well as the spaces L,({2),
1 < p < oo, with the norm || - ||, while (¢,7¢) = [, #(z)¥(z) dz denotes the inner
product in Ly(€2).

Distributions and left-continuity convention. Certain functions will be understood
as distributions [13], which will in most cases be indicated. By contrast, if a certain
function is Lebesgue-integrable in 2 x (0, T"), we shall refer to it as a regular function.
Whenever we deal with a regular function, it will be understood as left-continuous for
all t € (0,T]. In particular, this convention will be applied to all piecewise-continuous
temporal derivatives.
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2. The Green’s function of the parabolic operator. In this section we
consider the Green’s function G associated with the operator M of (1.1). Our interest
in the Green’s function is in that it will be used to express the error of a numerical
approximation in terms of its residual.

For definitions and properties of fundamental solutions and Green’s functions of
parabolic operators with variable coefficients, we refer the reader to [12, Chapter 1
and section 7 of Chapter 3]. For any pair of bounded functions v and w that vanish
on 99, the standard linearization yields Mv — Mw = [0, + L + a(z, t)](v — w), where
a(x,t) := fol 0. f(z,t,w + z[v — w]) dz. Hence, the difference v — w is represented as

v — w](z,t) = /Q Gla,1:£,0) [v— w](€,0) d¢

(2.1) —l—/o /Qg(x,t;f,s) [Mv — Mw](&, s) déds

with the help of the Green’s function G that we now define. For fixed (z,t) € @, the
Green’s function G(x,t; €, s) =: T'(, s) solves the adjoint terminal-value problem

(2.2a) [0s — L" 4+ a(&s)]T(&s)=0 for (&,5) € Qx[0,1),
(2.2b) L, t)=0(&6—x) for €€,
(2.2¢) ', s)=0 for (&,s) € 99 x [0,¢].

Here 6(+) is the Dirac d-distribution in R™ [13], and £* is the adjoint operator to the
linear operator L.
The analysis in this paper will be carried out under the following condition.
CONDITION 2.1. There are constants ko, k1 > 0 and ko > 0 such that the Green’s
function G of (2.2),(1.2) satisfies

t—1
Hg(xvt;'aS)HLQ < K:Oe_’yz(t_S)’ / Hasg(ﬂf,t;',S)HLQdS < K1 é(Tat)_FK:Qa
0

where x € Q, 7 € (0,t], t € (0,T], and ¢(7,t) := f: s~le 27" ds < In(t/7).

Note that our model problem satisfies this condition as follows.

LEMMA 2.2. Let e € (0,1] and v > 0. Under assumption (1.2), the model
problem (1.3) satisfies Condition 2.1 with ko := 1, k1 := 25/’—;“, and an e-independent
constant ke > 0. If f(z,t,2) = a(z)z + b(x,t), then ke = 0. In general, ko =
(72 — 42) ko, where kg = ka(y) if v > 0 and kg = ka(T) if v =0.1

Proof. We defer the proof to section 12. d

Condition 2.1 will be employed by means of the following lemma, which plays a
crucial role in our analysis. The lemma is formulated in the context of an arbitrary
nonuniform mesh in the time direction

(23) O=to<t1 <to<---<tpy =T with Tj:tj—tj,1 for ]:1,,M

LEMMA 2.3. Suppose the parabolic operator M of (1.1) satisfies (1.2) and Con-
dition 2.1, and v, w are bounded in 2 x [0,T]. Furthermore, let v(-,t), w(-,t) €
HY(Q)NC(Q) fort €[0,T], and

IThe constants ko and k1 given by Lemma 2.2 are reasonably sharp. For example,
for the constant-coefficient version Oiu — €202u + 4?u = b(z,t) of (1.3) in the spa-
tial  domain Q: =R, a  calculation  [16]  yields ||G(z,t;-,5)|1,0 = e~ (t=5)  and

105G (z, -, 8)|[1,0 < (V2(me)~ L (t—s)"t +42) e=7?(t=9) 50 Condition 2.1 is satisfied with xo = 1
(as in Lemma 2.2), k1 = /2 (me)~1 ~ 0.48, ko = 1, while Lemma 2.2 gives k1 = 3-273/2 ~ 1.06.
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(2.4) Mo —Mw=0p+79 in Q,

where the function p is continuous and bounded on [to,t1] and each (t;—1,t;], while
Ot is continuous and bounded on (tpm—1,tm] for some 1 <m < M, and ||9(-, $)|/ .0
is integrable w.r.t. s in (0,ty,) (possibly, in the sense of distributions). Then

Il =@l tm) o

S/ioe_'yzt’"H[v—w—u](-,O)||OO7Q—|—(mém—klig) sup ||u(-,s)||oo7Q

SE0,tm—1]
+ro lim [luC9)] o+ romm  sup [0l 9)]|
s—th ’ SE(tm—1,tm] :
t7n
2.5) + ko / e =) |l9(-,5)| o, ds,
; ,

where Ly, = Ly, (y) = f:Z s~le=37" 5 ds < In(tm/7m)-

Remark 2.4. The term Oy in the right-hand side of (2.4) is understood in the
sense of distributions. A typical p is continuously differentiable in time on each
(tj—1,t;] and has jumps at t € {tj};-’!ll, but our left-continuity convention allows us
to avoid ambiguity when integrating by parts. It may help the reader to consider
an equivalent interpretation of such evaluations. For some small positive )\, one can
replace t;r by t; + X and p by pa such that py = p for ¢t € [t;—1 + A, ¢;], and it
is continuous and linear in time on each [t;,t; + A]. Then one deals with a regular
function O;uy, while the final result is obtained by taking the limit as A — 0.

Similarly, in all calculations involving I', one can initially replace it by a regular
function T'y obtained using a regular approximation ) of § in (2.2b), and then let
A — 0F. With regard to the regularity of I'; Condition 2.1 implies for any 7 € (0, )
that 9,I" € L1(2 x [0,¢ — 7]), while an inspection of the proof of Lemma 2.2 yields a
stronger regularity with 9,I" € Lo(Q x [0,¢ — 7]).

Remark 2.5. One can easily check that if v = 0, then ¢,, = In(¢,,, /7). Otherwise,
if v > 0, one has £n,(y) = E1(39%7) — E1(37%tm), where Ey(t) = [ s7le % ds; so
lm(y) < |1n(%727m)| provided that %’szm < 0.67. (This is easily checked by finding
the only root ~ 0.67 of the equation F;(s) = |Ins| on (0,1).) Note also that ¢; =0
for any v > 0.

Proof of Lemma 2.3. Combining representation (2.1) with the notation I'(¢, s) :=
G(x,tm; &, s) for the Green’s function of (2.2), one gets

o — w](&, tm) = ([v — w](-,0), T(-,0)) + /0 " (Mo — Mu(-,s), T(-, ) ds.

Here, in view of (2.4), the integral on the right-hand side involves p and ¥ and so can
be represented as a sum J,, + Jy of the corresponding integrals, which we consider

+
separately. We use the notation fb = limg_,o+ fb—m and so split J,, as

t:r—zfl tm
Ju=JM + TP = /0 (Ospt, (-, 5)) ds + /t+ (Osp1,T(+, 5)) ds.

Here, for J,Sl), an integration by parts yields

Jl(tl) = <u(-,t;71),1—‘(-,tm,1)> - </‘('70)7P('70)> B /Otm_1<u('7s)768P('78)> ds.
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Consequently, we arrive at

v — w)(&, tm) = ([o — w — (-, 0), T(-,0)) — / " i s), T 5)) ds

tm

+<u(,t;; 1) P('atmfl)>+/ <53u,l"(-,s)>ds

t+

(2.6) + /O " (9(,5), T(,5)) ds,

where the last term represents Jy. Finally, Condition 2.1 implies that
5 tm—1
T, 8) 0 < Koe™ m =) <k, / 0sT(, 8)|l1,0ds < K1 b + K2,
0

so we get the desired result. d ‘

The following version of Lemma 2.3 involves certain approximations I') of I'(-, ¢;).

LEMMA 2.3*. Under conditions of Lemma 2.3, suppose that instead of (2.4) one
has Mv — Mw = Oy + 9 + U, where 0,(-,t) = Z;T;l VIS(t —t;) fort e [O,tm], If
there exist some functions {Fj ’”:11 such that (97, Fj> =0 forj=1,. —1, and
ZJ L T lIH; HT(t) =T i < ks (1, t) for some positive weight functwns {H;}
and some constant k3, then the statement of Lemma 2.3 remains valid, only with an
additional term k3 €(7,t) max =1, m— 1{T_1H7-l2 ¥ |sc,2} in the final line of (2.5).

Proof. Imitate the proof of Lemma 2. 3, and note that now we have (2.6) with an

additional term 7" 99 T(- 1)) = Py 11<193 U(-,t;)—T3). 0O

3. Summary of results for semidiscrete methods (no spatial discretiza-
tion). In this section we describe our results for the abstract parabolic problem (1.1)
discretized in time on an arbitrary nonuniform mesh (2.3) using semidiscrete backward
Euler, Crank—Nicolson, and discontinuous Galerkin methods.

Let u solve problem (1.1) with the parabolic operator M satisfying (1.2) and let
Condition 2.1, and let U7 € H}(2) N C(£), associated with the time level ¢;, solve a
corresponding semidiscrete problem with U° = (. Then, for m = 1,..., M, we give a
posteriori error estimates of the type

||Um — u(~,tm)Hoo’Q < Cl(ﬂl ém + /Qz)j:fn HX ||oo Q + 02 Ko ||Xm||OO 0

(3.1) +K02/ (0n =) 9, )] s

The quantities that appear in this estimate are specified by Theorems 4.1 and 5.1
and Corollary 6.3 below, and can be summarized as follows:

p Xt [ Ci [ G

Backward Euler| 1 Uit —ys Y —pd on(t_1,t]| 1 | 2
Crank—Nicolson| 2 Tjp1 (I — i) Y — 1149 11
dG(1)-Radau| 3 | 3741 (297 — 397 +1/3 4 gitl) ) — Iy 49 2|14

Here for the evaluation of x/*! and 9 we use

(3.2) "/JJJFQ = L(tj+a) Urte fCstitas Ut “), 1& =LE)U+ f(,t,U),
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where a € (0, 1] is any value for which the approximate solution U/ at time t;4, =
t; + atjq1 is available from the definition of the semidiscrete method. Also, U is
a piecewise-polynomial interpolant of the computed solution of degree p — 1, while
1,147 is a piecewise-polynomial interpolant of 1) of the same degree using the same
interpolation points.

Remark 3.1 (interpolation-type estimates). The quantity |x’| in (3.1) approxi-
mates 7} |0fu(-,t;)|. This immediately follows from x/ = U7 —U’~! for the backward
Euler method. For the Crank-Nicolson and dG(1) methods, note that /< approxi-
mates Lu+ f(-,t,u) at t = tj1q, 50 X’ approximates 77 |07 (Lu+ f(-,t,u))| (in fact,
X =1} O N I,_1.41)), while (1.1) gives |07 (Lu+ f(-,t,u))| = [P ul.

Remark 3.2 (pth-order estimates). Remark 3.1 and the definitions of ¢ for the
backward Euler, Crank-Nicolson, and dG(1) methods imply that (3.1) gives an a pos-
teriori error estimate of order p with p = 1, 2, and 3, respectively.

4. Semidiscrete backward Euler method (no spatial discretization).
Consider an arbitrary nonuniform mesh (2.3) in the time direction and discretize
the abstract parabolic problem (1.1) in time using the first-order backward Euler
method as follows. We associate an approximate solution U7 € H}(Q) N C(Q) with
the time level ¢; and require it to satisfy

(4.1a) SUP+ LU+ =0 inQ, j=1,..., M, U% = o,

i it , , .
(4.1b) where 6,U7 := ——, L7 :=L(t;), and [ := f(-,t;,U7).

T

For this discretization, we give the following a posteriori error estimate.

THEOREM 4.1. Let u solve problem (1.1) with the parabolic operator M satisfying
(1.2) and Condition 2.1 and U’ solve the corresponding semidiscrete problem (4.1).
Then, for m = 1,..., M, one has (3.1) with x/ = U/ — U=, C; =1, Cy =2, and ¥
defined by

(42) ﬂ(at) :i(vt)_’[r/;(at])a ’[r/;(at) :‘C(t)Uj+f(7ta Uj) fO?” te (t]—17tﬂ]
Proof. Let I ;U be the standard piecewise-linear interpolant of U7 in time:
(43)  NU(st) = 22U 4 222207 fort € [t ty), j=1,..., M.

Furthermore, we define a piecewise-constant interpolant U of UJ by

(4.4) U(t):=U7 forte(tj1,t;], j=1....,M,  U(-0):=U"

(so U is continuous on [to,t1]). Note that the temporal derivative 9;U is understood
as a distribution, while 9;(I; U) is a regular function, equal to §;U7 for t € (t;_1,t;]
(in agreement with our left-continuity convention). Consequently, (4.1a) implies that

(4.5) (L, U)y+9 =1  for (z,1) € Q.

Here we also used the observation that by (4.4), the regular function o of (4.2) can
be rewritten as ¥ = ¢ — [LIU7 + f7] for t € (t;_1,1;].
As MU = 0,U + ¢ and Mu = 0, so (4.5) implies that

MU - Mu=8]U - 1,,U]+9 inQ.
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Now the desired bound for U™ —u(-, t,,) = [U —u](-, t,n) is obtained by an application
of Lemma 2.3 with p := U — I, ;U and 9 of (4.2), using the following two observations.
First, we note that [U —u — pu](-,0) = U' —¢p— (U' — ) = 0. Second, for t € (t;_1,1;],
one has
p=1t U U = =l <], 7 [0m] = X

This completes the proof. a

COROLLARY 4.2. Under assumption (1.2), the a posteriori error estimate of
Theorem 4.1 applies to the model problem (1.3) with ¥ = f(-,t,U7) — f(-,t;,U7) and
the constants kg, k1, ko from Lemma 2.2.

5. Semidiscrete Crank—Nicolson method (no spatial discretization). Con-
sider an arbitrary nonuniform mesh (2.3) in the time direction and discretize the ab-
stract parabolic problem (1.1) in time using the second-order Crank—Nicolson method
as follows. We associate an approximate solution U’ € H}(Q) N C(Q) with the time
level ¢; and require it to satisfy

(5.1a)  &U/ + LU+ LU + 3T ) =0 inQ, j=1,...,M,
where we again let

0 ) Ui —yi—1 , ) .
(5.1b) U’ =¢, &U):=———, L' :=L(t), and f[f):=f(,t;,U7).
7j
To give an a posteriori error estimate for this discretization, we will use the stan-
dard piecewise linear interpolation I; ¢, which, for any continuous function w = w(t),
is defined by

(5.2)  Lyw(t) = “Fw(tia) + =2 w(ty) fort € [toi,t], j=1,...,M.

Recall an almost identical definition (4.3) for the piecewise-linear interpolant I ;U of
the computed solution; the latter plays a crucial role in our analysis of this section.
THEOREM 5.1. Let u solve the problem (1.1) with the parabolic operator M
satisfying (1.2) and Condition 2.1, and let U7 solve the corresponding semidiscrete
problem (5.1). Then form =1,...,M, one has (3.1) with x7 = 7; (wj — wj’l) using
W= LU+ fI, C = %, Cy = %, and 9 defined by
(5.3)  V=v—-hLw, b=LOU+f(t,0),  U(t)=1,U(1)
fort € [0,T], where we use I ;U(-,t) of (4. 3) and I 1 of (5.2).
Proof. Let t € [t;_1,t;]. First, note that =1 t¢+19 LW+ pT) + O+ Y,

where p1 1= fttJ [Il,tw — (It + )] dt, so

t
(54) p=1;"x / (t—=tj 1) dt = =5 (t; = t)(t —tj—1) -7, 2x7 for t € [t;—1,1].

tj

Next, note that U(-,t) = I1,U(-,t) implies that 9,U = 6,U7 = —4 (71 + ¢7) for
t € (tj—1,t;] (where we also invoked (5.1a)). Combining these two observations, one
deduces that 8,U + 1 = Oy + 9. As MU = 9,U + ¢ and Mu = 0, so

(5.5) MU — Mu =y +19 inQ.
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Both sides in this relation are regular functions; it is valid for ¢t € (0,7] as p of (5.4)
is continuous for ¢ € [0, T7.

Now the desired bound for U™ — u(-,t,,) = [U — u](-,tm) is obtained by an
application of Lemma 2.3 to (5.5) with u given by (5.4) and ¢ by (5.3), using the
following two observations. First, note that [U — u — y](-,0) = U% — ¢ — 0 = 0.
Second, for t € (tj_1,t;], one has

(5.6) ul < g Ix'| and 710l < 5 X),

while p(-, ¢} ;) = 0. This completes the proof. 0

COROLLARY 5.2. Under assumption (1.2), the a posteriori error estimate of
Theorem 5.1 applies to the model problem (1.3) with ¥ = f(-,t, 1, U)—I1 4[f (-, t, L,U)]
and the constants Ko, K1, ko from Lemma 2.2.

Remark 5.3. The a posteriori error estimate given by Theorem 5.1 resembles
(but is not identical to) error estimates of [1]. Our analysis of the semidiscrete Crank—
Nicolson method seems more straightforward as we work with the standard piecewise
linear interpolant of the computed solution, while the analysis in [1] involves a con-
struction of a certain piecewise-quadratic polynomial of the computed solution in
time. Furthermore, in section 10, we derive a posteriori error estimates for fully
discrete Crank—Nicolson methods, which were not considered in [1].

6. Semidiscrete discontinuous Galerkin method dG(r) with Radau
quadrature (no spatial discretization). Consider an arbitrary nonuniform mesh
(2.3) in the time direction and discretize the abstract parabolic problem (1.1) in time
using the discontinuous Galerkin method dG(r) (described, e.g., in [10, 27]) as follows.

First, introduce the Radau points Ar := {a : 0 < agp < a1 < -+ < ap = 1}
(e.g., r = 1 corresponds to A = {3, 1}). We shall also use the augmented set
A = {0} U Ag of r +2 points. Next, on [0,1] introduce the basis {¢r(s)}},_, for
polynomials of degree r with the property pg(a;) = dx; and the polynomial (.41 of
degree r + 1 such that

6.1)  Ga(0)=1,  CGyalar) =0 for k=0,....r,  Cc:=L0¢11(s).
Also define the two interpolants on (¢;,%;41]: fr’t(b c II, with (IAMQS) (tita) = 0(tjta)
for o € .AR and Ir+1,t¢ S Hr+1 with (Ir+1,t¢) (tj+cx) = ¢(tj+cx) for a € A.

Let UY := . Given an approximate solution U7 € H}(Q) N C(Q) associated
with the time level ¢;, we require approximate solutions U7 T* € H} () N C(R), for
k=0,...,7, respectively associated with the time levels t;,,,, to satisfy

Ti+1

tit1 R
(6.20) [U(- ) — U] tpk(O)+/++ (0.0 + L] o (55) dt =0 fork=0,...,r,
£

(6.2b) where U := ZUjJrO"“ op(EL), =LA U + f(-,t,U) fort € (tj,t;11].

Tit1
k=0

Note that (6.2) represents the dG(r) method with Radau quadrature, exact for poly-
nomials of degree 27, while if the term fntz/J is replaced by v, then we get the dG(r)
method without quadrature.

Next, an application of I,,1 ¢ to the approximate solutions {U’t%, a € A} gen-
erates U and the related function z/NJ:
6.3)  U:=U~-[UCt)) = U] Gu(EL),  d=Lt)U+ f(t.0).

Ti+1
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Note that Ir+1,t1ﬁ allows a representation

(6.4) L1 = Iptp + 0 T Cgl G (52,

Tj+1

where /! .= T;’ilz O [I,41.4¢], so, with the notation 17T = (-, t;,,), one has

(65) X =70 Cc [ = B, £)] = i O[99 = S w4 (0)].
k=0

THEOREM 6.1. Let u solve the problem (1.1) with the parabolic operator M
satisfying (1.2) and Condition 2.1, and let U’ solve the corresponding semidiscrete
problem (6.2). Then for m = 1,..., M, one has (3.1) with ¥ = v — I,414%, the
constants Cy; = C’C_1 maxse(o,1] | [y (rr1(0) do| and Cy = C’C_1 maxgeo,1] [Gr+1(5)], and
the notation (6.1),(6.3), (6.5).

Proof. First, note that (6.2a) is equivalent to

(6.6) /tj+1[6tU+Irtw] e

J

)dt:0 for k=0,...,r

Ti+1

This is easily checked by getting d;[U — U] from the first relation in (6.3) and then
noting that f:j“ O {—Cri1 (%) Foor (52) dt = ¢x(0). (The latter is easily obtained

Ti+1

using integration by parts and the fact that f

tJ+1

p(t)dt = 0 for any polynomial p of
degree 2r vanishing at the Radau points. )

Next, note that (6.6) yields oU + Ir b = 0 (as this function is a polynomlal of
degree r on [t;,t;41]). Now, as MU = 8,U + 1 and Mu = 0, while 1/) I, t1/) + 99,
SO

t
MU — Mu = 6,5/L + 19, o= / [Ir+1,tw - Ir7t’t/1] dt for t € [tj7tj+l]'
t

J

It should be noted that by virtue of (6.4), the function p is continuous in time. (This
follows from Crt1 Vanishing at the Radau points.) Furthermore, u satisﬁes the bounds
(5.6) With and % 5 respectively replaced by C; and Cs, while pu(-,t ) =0. The

desired bound for U " — (-, tm) = [ —u(-, tm) is then obtained by an application of
Lemma 2.3. ad

Remark 6.2. Similarly to Remark 3.1, the quantity |x?| in (3.1) approximates

TJH—Q 10, T2u(-,t;)|, so Theorem 6.1 gives an a posteriori error estimate of order 7 + 2.

6.1. Particular case dG(1). For r = 1, the Radau points Ag = {3, 1} are
used, so (6.2) is equivalent to?

(6.7a) Ut I 4 Ly (3y9H13 4 it = o,
(6.7b) UIt3 9 4 Loy (5yd 3 — it =

Furthermore, a calculation using (6.1), (6.5) yields (2(s) = 3(s—1)(s— %) and C¢ = 6,
and also

(68)  Ipyip =t — [yt I3y B (Lt bt Ll ¢ (S,

Ti+1
2This is, in fact, an implicit two-stage Runge-Kutta method of order 3. The functions UJ3+1/3

and U7t! obtained from (6.7) give third-order approximations to u at the time levels tj11/3 and
tjy1, respectively.
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where x/ T =72, 02 (I, ) is given by
(6.9) X =31y (207 — 39T T3 7T,

Note that U is generated similarly to .[27,5’(; by an application of the interpolant I3+
to the approximate solutions {U7, U+1/3 {i+1},

COROLLARY 6.3 (dG(1)). For the semidiscrete method ( 7), the statement of
Theorem 6.1 is valid with the notation (6.8),(6.9) and C1 = &, Cz = .

Remark 6.4 (computability). The computation of the right-hand side in the
estimate (3.1) involves computing x/*! of (6.9) for j < m. Note that the terms /+1/3
and ¢’/ *1 which appear in (6.9), can be explicitly represented using (6.7).

6.2. Application to a general t-independent operator £ and the model
problem (1.3). Suppose that the coefficients of the linear elliptic operator £(t) are
independent of the variable ¢; we shall highlight this case by using the special notation
L := L for this operator.

_ Recall that the estimator of Theorem 6.1 (as well as Corollary 6.3) involves ¢ =

P — T+1t’(/JW1th¢ ﬁU—i—f( ) As T, r+1t[£U] [r+1tU] EU S0
(6.10) 0= f(,t,0) — Lp14[f (.1, U)].

Note that now ¥ does not involve £ and can be bounded using the properties of the
function f. Our findings are summarized in the following result.

COROLLARY 6.5. Let the elliptic operator L(t) = L be independent of the vari-
able t; then the statements of Theorem 6.1 and Corollary 6.3 remain valid with the
simplification (6.10).

Finally, recall that in the model problem (1.3) the elliptic operator £ = —&2A is
t-independent, so we apply Corollary 6.5 to this problem.

COROLLARY 6.6. Under assumption (1.2), the a posteriori error estimates of
Theorem 6.1 and Corollary 6.3 apply to the model problem (1.3) with the constants
Ko, K1, Ko from Lemma 2.2, and the simplification (6.10).

7. Elliptic a posteriori error estimators. In this section, we consider a
steady-state version of the abstract parabolic problem (1.1):

(7.1) Lv+g(,v)=0 inQ, v=0 on 0f,
and its discretizations in the form
(7.2a)  Find vy, € Vi : Lyon + Pulg(, )] =0, where V, 1= Vi, N Hy ().

Here V, C C (Q) is some finite element space, and with some interpolation operator
I, : C(Q) — Vj, we use some operators L, and P, such that
L= HY(Q) = Vi — In[g(-,0)],

(7.2b) : g
Prv e Vy + Ipv VUEO(Q), Prop = v, Vo € V.

Note that as any vy, € Vj, vanishes on 9, so Vi, — I [g(+, 0)] = Vi, — In[g(-, vp)], so the
definition (7.2) is consistent.

Assumptions. We assume, for any admissible g, that
(i) there exist unique solutions v and vy, of problems (7.1) and (7.2), respectively;

(ii) an a posteriori error estimate is available for these solutions in the form
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(7:3) lv = vnlloo.2 < (Vi vs g 0n))-

Note that the availability of elliptic a posteriori error estimates, such as (7.3),
enables one to employ elliptic reconstructions of computed solutions in the a posteriori
error estimation of the related parabolic problems. Moreover, £, and Pj are not
necessarily needed to be evaluated explicitly to compute the a posteriori estimator for
either the elliptic problem or the parabolic problem.

Remark 7.1 (relation of g to f). We shall employ the functions g of the type
g(z,v) = f(z,t,v) + 1(z) for some fixed ¢t and some function ¥ (which approximates
d2u(x,t)). So problem (7.1) will typically have a unique solution by virtue of (1.2).

Remark 7.2 (uniqueness assumption). The uniqueness assumption (i) is not
essential but simplifies the presentation. In fact, one can replace assumptions (i), (ii)
by the following alternative assumption: For each solution vy, of problem (7.2), there
exists a solution v of problem (7.1) such that one has (7.3).

To be more specific, the uniqueness assumption is used only in section 8.2 below
to establish (8.9). Under the alternative assumption, @) and w),"® will be particular
solutions of the two discrete problems in (8.8), for which one then employs appropriate
particular solutions R/ and RI+* of the two corresponding elliptic problems in (8.7)
such that one can deduce (8.9).

7.1. Elliptic model problem. Many standard finite element discretizations of
elliptic equations (including those with quadrature) allow a representation of type
(7.2). For example, consider a steady-state elliptic version of our model problem (1.3)
posed in a bounded polyhedral domain Q C R™:

(7.4) —*Av+g(z,v)=0 forzcQ, v=0 forzecd, d.g(x,z)>~>>0.

With a finite element space Vi, € C(€) and Vj, := Vj, N H} (), a standard Galerkin
finite element method for this problem can be described by

(7.5) Find vy, € ‘o/h : €2 (Vop, Vwp) + (g(~,vh),wh>h =0 Ywy, € ‘D/h,

where (-, )}, is either exactly the inner product (-,-) in Lo(£2) or some quadrature
formula for (-, -).

Remark 7.3. The discretization (7.5) is of type (7.2) provided that the Gram ma-
trix (¢, ¢;)n of the basis {¢;} in Vj, is invertible. Then let (Ly,wp)n = £2(V, V)
and (Prq, wp)n = (g, wn)n, subject to (7.2b), for all ¢ € H} (), ¢ € C(Q), wy, € Vi.

Suppose, for example, that {(qn,wn)n = (qn,wp) for all g, w, € Vj,. Then
(Lhp,wn) = e*(V, V) and (Phg, wn) = (g, wn)n, subject to (7.2b), for all ¢ €
H(Q), ¢ € C(Q) and wy, € Vj,. In particular,

(i) if (-, -)n := (-, ) (i.e., no quadrature is used), then P}, is the Lo projection;

(ii) if a quadrature of type (g, wp)n := (Inq, wp) is used, where I}, is some inter-
polation operator onto V;, then P, := Ij.

Remark 7.4. Suppose that one employs a quadrature of lumped-mass type defined
by {(q,¢i)n = (In(q¢:), 1) = qi(¢s, 1) for all basis functions ¢; of Vj,, where ¢ € C(Q)
and Y ¢;¢; = Inq. Then again Py, := Ip,, but Lyup := > a;¢; with a; := azw
for interior mesh nodes, and a; := —[g(-,0)]; for boundary mesh nodes. Consequently,
Ly, is easily computable for any v, € V}, by applying the normalized stiffness matrix
to the column vector of nodal values {vp, ;}.

We cite elliptic estimators of type (7.3) for particular cases of (7.4) and (7.5) in
Appendix A (for both e =1 and € < 1).
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8. Summary of results for fully discrete methods. Computability. In
this section we describe our results for full discretizations of the abstract parabolic
problem (1.1) satisfying (1.2) and Condition 2.1. To fully discretize this problem,
we apply a spatial discretization of type (7.2) to the semidsicrete backward Euler,
Crank-Nicolson, and discontinuous Galerkin methods as follows.

A finite element space V/T' € C(Q) and a computed solution u)™' € V/*! .=

th 1N HE(Q) are associated with the time level £, while an auxiliary computed
solution @ € H{(Q) is associated with the time level t}L. (This is indicated by the
hat notation, typically, either @) € Vj or u; € V/ 1) A full discretization is then ob-
tained from a semidiscretization using operators Ly, (t) and PfLH for which, in agree-
ment with (7.2b), with some interpolation operator I} ™" onto V™', we assume that
sy O H@) =S VI =L 40)] for tE (t,ti],

’P,{HU c V,f“ + I,jlﬂv Vo e C(Q), ”P,{th =, Yo, € V,.f+1.

Note two particular cases of interest for the auxiliary computed solution ﬁi:

(8.2a) Case A: af :=I/tlul, [V v/t =PIt =al;

(8.2b) Case B: ﬁfl = ugl = @{I € V;.f, U%HG f/}f’rl.
Here in Case A, uh is obtained by applying some linear interpolation operator ot

to uh, for which it is assumed that 2 1w, = w, for all wy, € VjJrl To define 121,
one may employ, e.g., the standard Lagrange interpolation or the Lo projection. Note
that if V;/ C V/ 1 then Cases A and B are identical.

Form=1,..., M, we give a posteriori error estimates of the type

it =)l < o€ " = el g

+ O3 Ko Hx’,?”oo ot (C3ko+1)n™

4 Z [ e o) g

(8.3) + Ko Z e (bm—ts)
j=1

h u‘]]IHooQ :

The quantities that appear in this estimate are specified by Theorems 9.2, 10.3,
and 11.4 below and can be summarized as follows:

P A G| G| CilCs] A

Backward Euler | 1 wl ™t — ) 1|2 ]1]1 {1}
Crank—Nicolson | 2 T (W — ) L1312 3| {o"1}
dG(1)-Radau | 3 | 3741 (207 — 30, P ef™)| 2 | L | 2 |10 [{ot, i1}

Here for the evaluation of x{f we use wh and wj + that satisfy (similarly to (3.2))
(8.4a) PIFYI = Lo (t) @+ PIT (ot )],
(8.4b) 'PJJrl j+a Eh( j+a) ute P}Jerl[f('ﬂ litas ug;roz)]’
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where a takes values from A\ {0}, for which the computed solution u),"* is available

from the definition of the method, while for a = 0™ we use ﬁh and @j Note that in

Case A of (8.2a), relations (8.4) simplify using ¢/} = PJ 7 and )t = Pitiyite
The quantity 7/ in (8.3) is related to the error due to the spatial dlscretlzatlon

used; it is defined using the elliptic estimator 1 from (7.3) by

(8.5a) = n(V,{H,uflﬂ,gjﬂ(-,ufrl)) it A={1},

i.e., for the backward Euler method, and, otherwise, by
(8.5b)

j i+1 ~j ~j ~ j+1 j+a i+ j+a
= maX{n(Vf U?Ngj(-,Ui)),aegl%ﬂn(vff* gt (gt ))}

where
(8.5¢) Pew) = fet0) =0, @) = f e, ) — 9T

The quantity 9, is similar to 9 in (3.1) but involves the so-called elliptic recon-
struction of the computed solution, so we defer the definition and estimation of this
quantity to sections 8.2 and 8.3. The constants C; and Cs in (8.3) are the same as in
the estimate (3.1) for the corresponding semidiscrete method.

Remark 8.1 (interpolation-type estimates). Similarly to Remarks 3.1 and 3.2
for the semidiscrete methods, the quantity |x7| in (8.3) approximates 7}’ |0 u(:, ¢;)|;
consequently, (8.3) gives an a posteriori error estimate of order p with p = 1,2, and 3
for the backward Euler, Crank—Nicolson, and dG(1) methods, respectively.

Remark 8.2. The final term in the error estimate (8.3) vanishes when one has
u{l = wuj for all j = 1,...,M, ie., in Case B of (8.2), and also in Case A if the
mesh is not coarsened. Note also that in some cases the final term in (8.3) can be
improved to (9.14); see Remark 9.3, which applies to the backward Euler as well as
to the Crank-Nicolson and dG(r) methods.

8.1. Computability of ng and 77 in the a posteriori error estimate (8.3).
For the backward Euler method we shall use (see Remark 9.1 on v, 1)

(8.6)
i1 .
j+1 JHL ag L uj, _”gz 1 Gy G+1 1
Xp =, — Uy, Yy = B @ Gy ) = f i, uy ) — Uy
j

where the relation for g/*! agrees with (8.5¢). As ufrl and ) are available during
the computation process, so x7, 1 and n/TL of (8.5a) are easily explicitly computable

For the Crank—Nicolson and dG(1) methods, the computability of Xh and 7’
of (8.5), being somewhat less straightforward, reduces to the availability of wj Indeed,
for the Crank—Nicolson method, one can explicitly represent wj + (by means of (10.4)
assuming that z/;fl is available), while for the dG(1) method, 7 +1/3 and z/ﬂfl are
explicitly computable (by means of (11.3a)). So, if wh is available, one can indeed
explicitly compute xJ " and 77+,

We now briefly discuss possible approaches to the computation of 1/3{1 when applied
to the model problem (1.3) in Case A of (8.2). In this case, ﬁfl € \7,.f+1 and (8.4a)
simplifies to ] = Eh(t+) + PITf(- tj,4)], so it may help the reader to recall
Remarks 7.3 and 7.4; see also Remark A.1. (For Case B, we give Remark 8.3 below.)
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(i) ?gpposg Vi = V,le. Then, by (8.4) combined with wffl = PinZH, one
enjoys 97 = 17, where 1] has already been computed.

(ii) Suppose that PZH is associated with a lumped-mass quadrature (q, ¢;)p.
Then, as described in Remark 7.4, PZH = I,{’Ll is some interpolation operator onto
th *1 while Eh(t;r) a; is easily computable for any ﬁi € th 1 by applying the nor-
malized stiffness matrix to the column vector of nodal values {11{”} Consequently,
the computation of 1&,31 using the right-hand side in (8.4a) involves only explicit com-
putations.

(iil) In the general case, the computation of z/;fl by means of the right-hand side
in (8.4a) involves an application of Eh(t;r) and PZH. Note that Remark 7.3 implies
that, roughly speaking, Lh(t;r)vh for any vy, € th *1 can be obtained by an application
of M jjrll K41 to the column vector of nodal values {vp,;}, where M;;q is the mass
matrix and Kj4q is the stiffness matrix associated with the time level ¢;4;. Such
computations may be expensive.

Note also that, in some cases, an inversion of the mass matrix may be entirely
avoided as follows. Suppose ¢} — wy, is involved in the estimator with some function
wp,, and an inversion of M := M, is required to compute 1&{1 Then one can instead
use the bound ||y}, —wp | o < 1M~ |loo[[M (4, —wn)|| o, where || M =" denotes

the associated matrix norm (which may be bounded a priori). As M 1/3?1 is explicitly
computable (using an application of the normalized stiffness matrix to the column
vector of nodal values associated with @7 ), all the computations become explicit.

Remark 8.3 (Case B). In case (8.2b) with V}f ¢ V,{H, for the Crank-Nicolson
method, 1/3?1 is not given by the right-hand side in (8.4a), so wffl and 1&,31 are computed
by means of (10.3), using the above items (ii) or (iii) in the computation of w,{“. For
the dG(1) method in this case, one can use 1&{1 = 1/1{; by virtue of Remark 11.3.

8.2. Elliptic reconstruction. Definition of ¥4. In our error analysis for
fully discrete methods, we employ the elliptic reconstruction of the computed solution,
which was introduced in the recent papers [22, 19, 6] as a counterpart of the Ritz-
projection in the a posteriori error estimation for parabolic problems.

We associate elliptic reconstructions R with the time level t;r and RI*e for
a € A\{0"} with the time level ¢;,,. They are defined, using §’ and ¢g/** of (8.5¢),
as the unique solutions in H}(Q) N C(Q) of the elliptic problems

(87)  LU)R +F@R) =0,  Lltja) R + g (2, ) =0,

Note that (8.7) describes two versions of the elliptic problem (7.1) with £ := L(¢;),
g = ¢’, and with £ := L(tj4a), g := ¢’T, and exact solutions R/ and RIT%,
respectively. Furthermore, the numerical method (7.2), using the finite element space
v/ *1 applied to these two problems yields
(8.8) L . o .
La(t]) By + PR 9 (2, R =0, La(tjea) B + Py [g7F (@, RYF)] = 0.

We have assumed that solutions of these two discrete problems are unique. Thus,
Ril =4) and R}T® = w}". This is easily checked by combining (8.8) with the
definitions of §/ and ¢’T® in (8.5¢) and then using (8.4). Consequently, applying
the elliptic a posteriori error estimate (7.3) to the exact solutions &/ and R/T® and
the corresponding computed solutions @], and u} ' *, and recalling 77*! of (8.5), one
gets

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/11/13 to 130.159.104.144. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1508 NATALIA KOPTEVA AND TORSTEN LINSS

(8.9)
|R7 — i) oo <P T if 0T € A, ||RTT —ul ™o < P for a € A\{O).

Next, similarly to U, 1/;, and ¥ of section 3, we define a piecewise-polynomial R
and then ¥ and ¥, by

(8.10) R:= I 1R, Yr =LA R+ f(t,R), Op = thn — Iy, twR

Here I, 1+ is a piecewise-polynomial interpolation operator of degree p — 1 using
the interpolation points {t;i., @ € A} on each (t;,t;41]. (The difference between
Iy and I+ is that now we use the interpolation point t;r rather than ¢;, while
If, =1Ioy.)

Note that by virtue of (8.7), (8.5¢), the definition of ¢g in (8.10) implies that
(8.11)  Yp(t)) =4 0T €A Yp(tjta) =9 fora e A\{0T}.

8.3. Estimation of ¥,. We now briefly discuss possible approaches to the esti-
mation of ¥y, in the case of a t-independent £, which includes the model problem (1.3).
Then ¥, of (8.10) simplifies to

(8.12) On =9, 5= f(,t, R) = I}, [f(- 1, R)].

Remark 8.4 (backward Euler). For the backward Euler method, R = R’ so (8.12)
simplifies to ¥), =9, g = f(-,t, R7) — f(,t;, R7) for t € (tj_1,t;]. As ¥, p involves
the elliptic reconstruction R’, which is unavailable during the computation process,
instead one can use ¥y g, (Where Up, = uh) which can be estimated by sampling (it
suffices to use a few values of ¢ on each interval (¢;_1,t;]). Note that the discrepancy
of J;  from ¥y, can be easily estimated. For example for t € (tj—1,t;], we have

||[19f,1~%_19f771h]('7t)||009 <’ sup ||8Zf('vta Z)_azf('vtjvz)HooQ

’ (ti—1,tj]xR '

<7’ sup H@tazf(-,t,z)uoo o

(tj—1,tj] xR ’

where we used (8. ) and 7/ is computed using (8.5a). In fact, if |0;0. f| < C, then

the discrepancy [|[[0; 5 — ¥f,a,](,t)|lsc,0 between ¥, 5 and ¥y,4, becomes O(7; ),
i.e., negligible compared with the terms 7/ that explicitly appear in (8.3).

Remark 8.5 (Crank-Nicolson and dG(1)). In general, for the estimation of 9, »

n (8.12), one can use ¥y g, with @ := I;_; ;up, which can be estimated by Samphng7

as one expects U, p ~ Uy,q,. For example if |0, f| < Cy for some constant C, using

‘ﬁﬁﬁ — Yy

< ‘f('atvah) - f('vth)| + ‘I;,t[f('vtaﬂh) - f('vth)‘v

one easily gets a very crude bound ||[Jf,r — Vf,a,](,t)]|cc0 < CuCrrt! for t €
(tj,tj+1] with C, = 2 for the Crank-Nicolson method and C, = % for the dG(1)
method. Furthermore, in some special cases (e.g., if f is linear in the third argument)
one can, in fact, get a sharper bound of type [0} 5 — ¥ f,ra,](-; 1) loo,0 < C Tj41 it
for t € (t;,¢;41] with some constant C. Then the discrepancy between 9, z and U4,
becomes negligible compared with the terms 77! that already appear in (8.3).
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9. Fully discrete backward Euler method. Consider a fully discrete back-
ward Euler method for the model problem (1.3), obtained by applying the spatial
discretization (7.5) to a version of the semidiscrete backward Euler method (4.1):

(9.1) Find v} € V/ 62<Vui,th> + (f(t,ul) + 67l wpy, =0 Ywy € v/

for j = 1,...,M, where (-,-), is either exactly the inner product (-,-) in L2(Q) or
some quadrature formula for (-, -).
The term 67w}, approximates dyu and is defined by
gt
(9.2a) Sfup == —h " where 4 = uj.
7

The operator §; is identical to é; of (4.1b) for j = 1, while for j > 1 it involves the
intermediate computed solution ﬁgfl € H}(Q) that we associate with the time level
t;ll, for which we note possible choices (8.2).

Note that the full discretization (9.1) can be represented as
(9.2b) L ud + Py [f (-t u) + 67w ] = 0

with Egl = Lp(t;) and 77,{ subject to (8.1). For some particular cases of (-,-);, the
operators E{I and 77,{ are defined as in Remarks 7.3 and 7.4, only using V,f instead
of Vj. Furthermore, (9.2b) can be considered a full discretization of the abstract
parabolic problem (1.1) obtained by applying a spatial discretization of type (7.2) to
the semidiscrete problem (4.1). o . . .

Note that by virtue of (8.1), £} ul € V7 — II[f(-,t;,0)], while as both u) and
§7ul vanish on 9, so V,.f — I[f(-t;,0)] coincides with V,f — Df (- ty,ul) + 0Ful],
so the definition (9.2) is consistent.

9.1. A posteriori error estimate using a piecewise-constant elliptic re-
construction. To estimate the error of the fully discrete backward Euler method
(9.2), set A := {1} (i.e., always use j + a = j + 1) and recall the elliptic reconstruc-
tions R7 defined for j = 1,..., M by (8.7). This definition involves ¢/, which in its
turn involves ] = —d;uj , both defined in (8.6).

Remark 9.1. By (9.2b), ¥} = —6;u], implies P,Z 1/)?1 =L ui + Pty )],
ie., wi satisfies (8.4b). (In Case A of (8.2), this relation simplifies using ”P,Z fl = z/ﬂl)
Consequently, R/ satisfies (8.9) with A := {1}.

We now give an a posteriori error estimate for the fully discrete method (9.2).

THEOREM 9.2. Let u solve the problem (1.1),(1.2) with the parabolic operator
M that satisfies Condition 2.1 and w; solve the discrete problem (9.2). Then for
m=1,...,M, one has (8.3) with n’ and xJ, defined by (8.5a),(8.6), C1 =1, Cy = 2,
Ct = C3 =1, and a regular function ¥y, defined, fort € (tj—1,t;], j=1,...,M, by

(9.3)
(1) = r(t) —dr(-t5), Vr(-t) = LR + f(-,t, R)) fort € (tj_1,t;].

Here R7 is the elliptic reconstruction defined by (8.7),(8.6) using A := {1}.
THEOREM 9.2*. The statement of Theorem 9.2 is valid with the terms ||x} | .0

and HXT”oogz in (8.3) respectively riplaced by Hui _ ui—lnmﬂ and ||uj" — UT_lﬂoo,Q
and also e (tm—t5) replaced by e Y (t7n7t‘j+1)'
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We first give a proof of Theorem 9.2* and then generalize it to prove Therorem 9.2.

Proof of Theorem 9.2*. In view of Remark 9.1, ||R7 — u} ||oo,0 < 177, s0 to get the
desired bound of type (8.3) for u}’ — u(-,ty,), it suffices to obtain a bound of type
(8.3) for R™ — w(-, t,) only with (C5 ko + 1) replaced by C3 ko = ko, and then apply
the triangle inequality. So we focus on estimating R™ — u(-, t,,).

We partially imitate the proof of Theorem 4.1. Let I; ;uy, be a standard piecewise-

linear interpolant of w), in time:

(9.4) Igup (1) = 5l 4 ti—j“ui fort e [tj—1,t;], j=1,...,M.

Furthermore, we define a piecewise-constant interpolant R of R’ in time by
(9.5) R(,t):=R forte (tj_1,t;], j=1...,M;  R(-,0):= R

(so R is continuous on [to, 1]; compare with U of (4.4)). The temporal derivative d; R
is understood in the sense of distributions, while 0¢(I; rup) is a regular function.

Note that with our definition of R, the functions in (9.3) are identical with those
in (8.10) (using p = 1), so we also enjoy the observation (8.11), which can be rewritten
as Yr(-,t;) = ) = —6fuj. Combining this with (9.3) yields Y = 9y — §;uj, so

(9.6) (I qup) + o =0n +0.  inQ,
where 9, is a regular function defined by
(9.7) Vi (-, 1) := Op (L1 sun) — 5:qu for t € (t;—1,t;].
As MR = ;R + 1 and Mu = 0, so (9.6) yields
MR — Mu = d[R — I qup) + [0 +9.]  inQ.

Now the desired bound of type (8.3) for R™ — u(-,t,,) = [R — u](-, ) only with
(C5rk0 + 1) replaced by C3ko = ko is obtained by an application of Lemma 2.3 with
=R — I up and ¥ := 9, + ¥, using the following three observations. First, note
that

(9.8) [R—u—p)(-,0) = R' —p— (R —u}) = uj) — .

Next, for t € (tj_1,t;], we have g = RI —ul + 5= (u) —u~"). Thus,

Tj
(9.9) | <R —wd |+ Jud, —u) "' and 7 |0l = [ul, —uf, '],

where ||R? — ui”oog < 7/. Finally, (9.7) combined with (9.2a),(9.4) implies that
9 t) = Tij(ﬁi_l — )" for t € (tj_1,t,]. Therefore,

tj+1 ) )
(9.10) / eV (tm=s) Hﬁ*(.’s)uwﬂ ds < e (bm—tit1)

~J .0
up, uhHoo,Q’
tj

where 49 —u? = 0. The three observations (9.8), (9.9), (9.10) yield the required bound
for [|R™ — u(-, tm)| oo, d

Proof of Theorem 9.2. We imitate the proof of Theorem 9.2, except I ;up of
(9.4) is replaced everywhere by the piecewise-continuous interpolant
(911)  Ifgup(t) =2 oy~ 4+ 2], fort € (to1,ty], j=1,..., M,

Ti
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with I7 jup(-,0) := 4 = uj. Furthermore, 9, is defined not by (9.7), but by
(9.12)  Vu(-,t) = Op (I} un) — 0fui, = [a " —uf, "J6(t —tf ,) for t € (t;_1,1],

where §(-) is the one-dimensional Dirac d-distribution. (Note that 4 = u$ and the
right-continuity convention at ¢ = 0 imply that ¥. = 0 on [0,¢1].) So instead of (9.10)
we use

m—

tTn
(9.13) / e =9 |9, (-, 5) Z Hom—ts))|
0

The required bound for R™ — u(-,t,,) = [R — u](-, t,,) is again obtained by an appli-
cation of Lemma 2.3 only with p := R — I} yup, for which we have a version of (9.9)
with uffl replaced by ﬂgfl. d

Remark 9.3 (improved mesh-coarsening term). In some cases the coarsening
term that appears in the final line of (8.3) can be improved to the form

(9.14) kg L(T, t)j:11}1'<fi:}1;71{7-j*1 [H; 9 |lso0},  where ¢/ = w = al
with #; representing the local mesh size associated with ‘o/j This version of (8.3) is
easily obtalned by an application of Lemma 2.3* using 9, from (9.12) provided one has
a version of Lemma 2.2 for bpatlal derivatives of the Green’s function. Indeed, let uJ !
be the Ly projection of u} " onto V7. Then (u} ™' —al =", T7) = 0 for any T} € V/. So
choosing T, = I'T(-, t;), it suffices to show that [H; HT(-t ) T o < ks ; C_t
The desired result follows if one has [|I'(,¢;)|[wz() < K3 ;—= The latter bound is
crucial in this argument; it involves the spatial derivatives of F and can be obtained
from [7, (2.2)] if L = —A+1 in a smooth domain and f = f(z,t), with an unspecified
k3 = O(1), and from [16, (2.18b)] if £ = —?02 u + a(x1), with k3 = O(™2).

It is important to note that k3 = O(s72) (as, by (2.2a), AT = e2[-05 + a|T;
see also [16]). So in the singularly perturbed regime ¢ < 1, the mesh-coarsening term
(9.14) may be considerably larger than the original final term in (8.3). Whether the
latter is sharp is still an open question. (See [17] for preliminary numerical results.)

Note also that unless the mesh is coarsened a finite number of times, the choice
of appropriate strategies for mesh coarsening/updating remains a very delicate issue
even in the regular regime; see the counterexample in [8, section 4].

9.2. Model problem (1.3): Regular regime. Let u solve the problem (1.3)
with ¢ = 1, v > 0, posed in a bounded polyhedral spatial domain £ C R", n = 2,3,
and let u}, solve the discrete problem (9.1) with V;/ and (-, )}, defined, for each time
level t;, as in section A.1. To be more specific, we let 7;13 be a conforming and shape-
regular triangulation of Q made of elements T, V}f be the space of continuous piecewise
polynomial finite element functions of degree [ > 1, and V,.f = V}f N H(2). We then
employ a quadrature formula (o, w); := ZTGT,{ Qr(pw), as described in section A.1.

COROLLARY 9.4. Let the above numerical method be applied to problem (1.3)
with e =1, v > 0. Then the a posteriori error estimates of Theorems 9.2 and 9.2*
are valid with 9y, simplified to (8.12) and estimated as described in Remark 8.4, and

’f]j :no(vhjauiaf(3t]3ui)+5z{ui) fO?”]ZI,,M’

where 1o is defined in (A.1).
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Remark 9.5. The backward Euler method for a linear version of (1.3) with e =1
was considered in [9, 3, 6, 7], in Case B of (8.2), equivalent to Case A with a;;l being
the Ly projection of ui_l onto th . The a posteriori error estimate of Corollary 9.4
resembles (but is not identical to) the ones of [9, (1.13)] and [3] in that it involves
terms such as |uj, — u§;1| that may be interpreted as approximating 7;|0;u|. Note also
that [9, (1.13)] is given without proof and does not appear to be proved elsewhere.
The proofs in [3] invoke bounds of temporal and spatial derivatives of a generalized
parabolic Green’s function in the L1 (€2) norm and appear fairly complicated compared
to our approach. (We also discuss [3] in Remarks 9.9 and 11.7 below.)

By contrast, the a posteriori error estimates of [6, 7] include terms (denoted by
7;|g7 =g’ 1| in [6]) that may be interpreted as approximating the quantity 7;|0fu+- |,
which seems less suitable for a first-order method in time.

The mesh-coarsening terms in [9, 7] are similar to (9.14).

9.3. Model problem (1.3): Singularly perturbed regime in one dimen-
sion. Now, consider ¢ < 1. Let u solve (1.3) with € € (0,1], v > 0, posed in the
domain Q := (0,1). Let up solve the discrete problem (9.1) with V! and (-,-) de-
fined, for each time level ¢;, as described in section A.2. Thus we use the space V; of
continuous piecewise-linear finite element functions on an arbitrary nonuniform mesh
{xf}f\il with 0 = 2 < 2] < .-+ < 2 = 1 under absolutely no mesh regularity
assumptions. Two choices (A.2a) and (A.2b) of (-,-);, are discussed in section A.2;
both should now use the piecewise-linear interpolant I, := Ij. onto V.

COROLLARY 9.6 Let the above numerical method be applied to problem (1.3)
with e € (0,1], v > 0, Q := (0,1). Then the a posteriori error estimates of Theo-
rems 9.2 and 9.2* are valid with ¥y, simplified to (8.12) and estimated as described in
Remark 8.4, and

77] :Wa(vffaf(atgaui)"‘é:“i) for]:]-aaMa

where n. is defined in (A.4) with I}, replaced by I}Z.

We also refer the reader to a recent paper [16], where we obtain a similar but
slightly sharper result by using a more intricate direct analysis that invokes sharp
bounds of the spatial derivatives of the parabolic Green’s function.

Remark 9.7. The a posteriori error estimators of Corollary 9.6 are robust. Indeed,
the only terms in (8.3) that involve the small parameter £ are the spatial estimators
1’7, whose robustness can be discussed similarly to the steady-state case; see Re-
mark A.2 below. In fact, this remark applies to n? with g, = f(-,t;,u},) + d;u), and v
replaced by u(,t;). Thus 7’ involves e~2h?|I;g.|, which approximates h?|92u(-,t;)|,
and also e 'h?|0, (Ig+)|, which approximates € |03u(-, ¢;)| and has similar magnitude
to h?|02u(-,t;)| in the layer regions.

Furthermore, the numerical results in [16, section 4 with Remark 3.2] show that
at least on a fixed layer-adapted mesh, our estimator is quite efficient independently
of e.

Remark 9.8. Consider the ingredient ||g. — I7 g«||co.0 in the spatial estimator 7/
of Corollary 9.6 for Cases A and B of (8.2). In Case A, one has 52‘u§1 — I,{ [5;%{1] =0
hence Hg*—I,]L'g*Hoo?Q simplifies to || f(-, ¢;, ui)—[if(-, tj, ufl)HmQ In Case B, the final

3By plugging the elliptic estimators of [15, 4] into (8.3), one can extend this corollary to (1.3) in
two and three dimensions.
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term in (8.3) vanishes. However, g. — Ih-g* again involves f(-,tj,u;l) - IZf(-,tj,ui)
and, furthermore, 0;uj, — I3 [§;u)] = —i(uh — L M).

Interestingly, Case A and Case B with I7 := I; J are identical but, in view of the
above, yield different error estimators. Note that one seems to get a sharper estimator
when this method is interpreted as Case A with I7 := IJ

Remark 9.9. The backward Euler method for (1. 3) with e < 1 is a particular
case of a singularly perturbed convection-reaction-diffusion equation considered in
[3]; however, the a posteriori estimate for this equation in [3] is not robust as, e.g., it
involves the term e~ max; [|u], — ) '||so.q (rather than max; |[u} — @) "||s.0, which
appears in our estimator).

Similarly, the a posteriori error estimates [2] for a singularly perturbed Allen—
Cahn equation (given in the weaker Lo (L2) norm) involve negative powers of ¢ in
various terms. Note that the analysis in [2] invokes elliptic reconstructions for a
semilinear parabolic equation, but in contrast to our definition (8.7), they are defined
as solutions to linear Laplace equations. It should also be noted that the results of this
paper do not directly apply to the Allen—-Cahn equation because of the monotonicity
assumption (1.2), which is essential in our estimation of the Green’s function. If (1.2)
is replaced with |0, f(z,t,2)| < 42, then in some cases, our results can be extended
(see [16, Remark 2.2]), only the error estimate will involve additional factors of type
e tm (which, however, become unbounded if long-term computations are required).

10. Fully discrete Crank—Nicolson method. Consider a fully discrete Crank—
Nicolson method for (1.3), obtained by applying the spatial discretization (7.5) to the
semidiscrete problem (5.1): Find u] € V;/ such that

(10.1)
52< %V( Ty uh) th> < ;[f(-,tj_l,dffl) + f(~,tj,u§;)] + 5,’fu§;, wh>h =0

for all wy, € V}f, j=1,...,M, where (-, )} is either exactly the inner product (-,-) in
L5(2) or some quadrature formula for (-, -). Here a computed solution v} € V;/ := VN
H} () and an auxiliary computed solution Agl '€ H}(Q) are respectively associated
with the time levels ¢; and t;r_l (the latter is reflected in the hat notation).
The term §;uj approximates dyu and is identical with (9.2a):
(10.2a) Sjul = —h " where 4 = u).
7j
The operator d; is identical with d; of (5.1b) for j = 1, while for j > 1 it involves

ﬁfl ' e H}(Q), for which we note possible choices (8.2).

Note that the full discretization (10.1) can be represented as
(10.2b) Pf[67uf] + 5 (L3 gt 4+ £ ud) + S PLf(tjoa, g ) + F(ty,ul)] =0

with /f;l_l = Eh(tj,l), /3?1 = L, (t;) and P,Jl subject to (8.1). For some particular
cases of (-,-), the operators E{I and 77,{ are defined as in Remarks 7.3 and 7.4 only
using th instead of V},. Furthermore, (10.2) can be considered a full discretization for
the abstract parabolic problem (1.1) obtained by applying a spatial discretization of
type (7.2) to the semidiscrete problem (5.1). o ‘

Note that by virtue of (8.1), £ 'al " € Vi — I,[f (- t;_1,0)] and £J u} € V// —
I4[f (-, t4,0)], while for any w € H}(£2) one has V,.f In[f (-, tg,0)] = vg—fh[f(-,tk,w)].
As we also have 5;‘u§l € HL(Q), the definition (10.2b) is consistent.
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10.1. A posteriori error estimate using piecewise-linear elliptic recon-
structions. To estimate the error of the fully discrete Crank-Nicolson method (10.2),
set A = {0, 1} and recall the elliptic reconstructions k=1 and R’ defined for

j= ;M by (8.7). These definitions involve 771 and ¢7, defined in (8.5c¢),
which in thelr turn involve wi_l and v that we now define by
(10.3) = =200, = Lalty) u, + PGty ).
Note that the first relation here yields
(10.4) Suj, + 3 (7 + ) =0.

Remark 10.1. The definition of ¢ in (10.3) implies ¢J € Vj SO Ph¢J = 1/)h
so 1) satisfies (8.4b). Next, ¢/~ of (10.3) satisfies PJ¢) " —z/JJ 2P)

(67w
for any @' € H}(Q), which, in view of (10.2b), yields Pjdy " = La(t] )@} ' +
Plf(-tj—1, @ )], ie., )" satisfies (8.4a). Therefore R~! and R/ satisfy (8.9).
Remark 10.2. Theorem 10.3 and further results of this section remain valid
for any pair w{l_l, Y] that satisfy (8.4) and (10.4). For example, alternatively to
the definition of ¢/ in (10.3), one can use ¥ := Ly (t;)u) + f(-,t;,ul), but this
modification does not seem to improve the computability of z/JJ
To formulate our a posteriori error estimate for u, —u, we generalize the piecewise-
linear interpolation I ¢ of (5.2) to any left-continuous function w = w(t) by setting

(10.5) I w(t) = L w(t] ) + ==L w(ty) fort € (t5-1,ty], j=1,..., M.

T
In a similar manner, we apply the piecewise-linear interpolation I7, to the elliptic
reconstructions R7~! and R/ associated with the time levels £}, and t; and define
(10.6) R(t) = L R4 2= R fort € (t-1,15], j=1,...,M, R(-0) =R’

Note that we impose that both R and I 11w are right-continuous at ¢ = 0.
THEOREM 10.3. Let u solve problem (1.1),(1.2) with a parabolic operator M
satisfying Condition 2.1, and let u), solve the discrete problem (10.2). Then for m =

., M, one has (8.3) with xfl =7Tj (z/J,JI — z/}i_l) using ¥’ and 1&{1_1 from (10.3), o’
Jrom (8.5) with A={0T,1}, C1 = 5, Co = 5, Cf =2, C5 =3, and ¥}, defined by

(10.7) Op = Yr — I} R, Vr = LR+ (1, R)

for t € [0,T] with I7, and R from (10.5) and (10.6).

Proof. As Remark 10.1 gives || RY —u] ||so.0 < 77, 50 to get the desired bound (8.3)
for u}® — u(-,t,), it suffices to obtain a bound of type (8.3) for R™ — u(-,tm) =
[R — u](-, tm), with (C§ro + 1) replaced by Cjko = 3ko, and then apply the triangle
inequality. So we consider R —  only.

We partially imitate the proof of Theorem 5.1. For ¢ € (¢ i1, ], one has Up =

Il t¢R+19h = —( fl ! +’lf/)h) +8t,uh+19h, where Hh = ft [Il t’[r/)R_ —( ;L ! —I—’l,/)h)}
Note that with our definition of R, the functions in (10.7) are identical with those in
(8.10) (usmg p= 2) so we also enjoy the observation (8.11), which can be rewritten
as Yr(-t i )= wj and g (- t;) = z/Jh Consequently, we get a version of (5.4):

t
(10.8) pup, :ijlxi/(t—tj_l/g)dt: —(tj—t)(t—t;1)-7; %X}, for t € [t;_1,t5].

tj
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Combining our findings with (10.4) yields
(10.9) 5wl + g = Opn + 9 for t € (tj_1,t].

Next, we invoke I3 ,up defined by (9.11), for which we have (9.12) and (9.13). As
MR = 3;R + ¢r and Mu = 0, so (10.9) implies that

(10.10) MR — Mu = 0y(R — I} yup,) + Oy, + [0, +95]  in Q.

Note that here 9;uy, is a regular function as uy, of (10.8) is continuous for ¢ € [0, 7.

Now the desired bound of type (8.3) for R™ — u(-,t,,) = [R — u](-, t,,), only with
(C3ko + 1) replaced by C5ko = 3k, is obtained by an application of Lemma 2.3 to
(10.10) with p := pr+ pup := (R—Iituh)+uh and ¥ := ¥y, + 0., using (9.13) and the
following two observations. First, [R—u—(-,0) = RO — @ —[(R® —u))+0] = ud — ¢.
Second, for t € (tj_1,t;], we have

IO o , .
lur| < |R7™'—a) |+ |R) —ug| < 217, ln] < 1l
i [Oupr| < RN — )+ |RD— )| < 27, 75 10| < 5 X3,

where we used pp = R — If yup, = If (R — up) combined with Remark 10.1, and also
(10.8). Finally note that |u(-, ¢ )| = |ur(- £} )] <n™ and so n™ is multiplied by
1+ 2 =3 = (5. This completes the proof. O

10.2. Model problem (1.3): Regular regime. Let u solve problem (1.3)
with € = 1, v > 0, posed in a bounded polyhedral spatial domain {2 C R", n = 2,3,
and uj solve the discrete problem (10.1) with V;/ and (-,-);, defined, for each time
level t;, as in section 9.2.

COROLLARY 10.4. Let the above numerical method be applied to problem (1.3)
with e = 1, v > 0. Then the a posteriori error estimate of Theorem 10.3 is valid
with 9y, simplified to (8.12), where p = 2. The definition (8.5b) of BT uses n := no,
where ng is from (A.1).

10.3. Model problem (1.3): Singularly perturbed regime in one dimen-
sion. Now consider the regime of ¢ < 1. Let u solve the problem (1.3) with ¢ € (0, 1],
v > 0, posed in the domain € := (0, 1), and wy, solve the discrete problem (10.1) with
V! and (-,-);, defined, for each time level ¢;, as in section 9.3.

COROLLARY 10.5. Let the above numerical method be applied to problem (1.3)
with e € (0,1], v > 0, Q := (0,1). Then the a posteriori error estimate of Theo-
rem 10.3 is valid with ¥y, simplified to (8.12) for p = 2. The definition (8.5b) of n?*1

uses 1 := 1. with n. defined in (A.4), in which I, is now replaced by I3 .

11. Fully discrete discontinuous Galerkin method dG(1). To simplify
the presentation, in this section we mainly focus on dG(r) with r = 1; for r > 1 see
Remark 11.5. Consider a fully discrete discontinuous Galerkin method dG(1) for (1.3),
obtained by applying the spatial discretization (7.5) to the semidiscrete problem (6.7):

For j=0,...,M —1, find uffl/g,uiﬂ € f/}fH such that

(11.1)

W gl ) ) ) )
< %, wp ) + 82< %V(Bufflm—l— qu’Ll), th> + i< 3f,i+1/3—|— f,jLH, wh>h =0,
Jj+1 h

JH+1/3 g
U — , : ; ,
< b h . h wh> + 82< %V(uiﬂ/g— u{lﬂ), th> + 1—12<5f,z+1/3— ,{H, wh>h: 0
1
h
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for all wy, € V7, with the notation f{™* := f(-,tjya,ul™). Here (-,-), is either
exactly the inner product (-,-) in L(€2) or some quadrature formula for (-,-). Note
possible choices (8.2) for .

Note that the full discretization (11.1) can be represented as

(11.2a) PP Tl — ] + Ly (30T 4wt =,
(aL2h) P = i)y (W - W) o,
where

(11.2¢) pite .- L (tjra)u), gty 73]+1 [f(',tj-m,uﬁo‘)} for a € {%, 1}

with £y, (t) and P! subject to (8.1). For some particular cases of (-, )5, the operators
Ly (t) and PZH are defined as in Remarks 7.3 and 7.4 except using V,f 1 instead of
Vh. Furthermore, (11.2) gives a full discretization of dG(1) type for the abstract
parabolic problem (1.1) obtained by applying a spatial discretization of type (7.2) to
the semidiscrete problem (7.5).

Note that w] ™ vanishes on 99, 50 In[f(-,tj+a,0)] = In[f (-, tjra, uit™)] on 99,
so Wite € V7*! for a € {1, 1}, and hence (11.2) is consistent.

11.1. A posteriori error estimate using piecewise-quadratic elliptic re-
constructions. To estimate the error of the fully discrete dG(1) method (11.2), we
partially imitate the arguments of section 6 for the related semidiscrete method. First,
set A := {0F, 2,1} and recall the elliptic reconstructions RI, RT3 and RIT! de-
fined by (8.7). These definitions involve §7, g?+1/3 and ¢!, defined in (8.5¢), which

in their turn involve 1&,31, wffl/ 3, and wffl that we now define by

(11.3a)
iH1 g i+1/3 ) i1 . i+1/3  .j
piH3 ::_ui —ufl_?)uil / — h gt e ui _ui_yguil / —
h 27‘j+1 27'J+1 2Tj+1 27’j+1 ’
(11.3b) = L (t]7) @, + P oty a7))-
Note that (11.3a) implies a version of (11.2):
(11.4a) wp ™ =g+ d e (307 ) =0,
(11.4b) w4 Lo (et ity =

In fact, if ﬁfl € ‘zgﬂ (Case A of (8.2a)), then (11.4) and (11.2) are equivalent (and
one has Wi+e = /¥ for o € {3, 1}).

Remark 11.1. A comparison of (11.4) and (11.2) implies ‘\Ilj+°‘ = P,J;Lll Y1+ for
o € {%,1}. So, by virtue of (11.2¢), one concludes that ¢i+1/3 and 1/)%“ satisfy
(8.4b). Next,lz/;i of (11.3b) is in V™!, so ¢/ satisfies (8.4a). Consequently, R,
RIHL/3 and R+ satisfy (8.9) with A := {07, 1,1} and 5"+ of (8.5b).

)3
Remark 11.2. Theorem 11.4 and further results of this section remain valid
for any trlple ¢ ¢J+1/3, fL'H that satisfy (8.4) and (11.4). For example, one can

veplace P} f (- t;,4])] in (11.3b) by f(-,t;, 3 ), but this modification does not seem
to improve the computability of 1/)7

Remark 11.3 (Case B). In case (8.2b) with @ uh = uh, it is more natural to replace
(11.3b) by z/AJ : wj (and this makes z/JJ easily explicitly computable). Then (8.4a) is
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no longer true, but we still enjoy (8.9) provided that we replace n(V/*', 4}, ¢/ (-, )
in the definition (8.5b) of "1 by n(th,uh,gJ( J)) Consequently, Theorem 11.4
and further results of this section remain valid for these modifications.

To formulate our a posteriori error estimate for up —u, we generalize the piecewise-
quadratic interpolation I of (6.8) to any left-continuous function w = w(t) by using
the interpolation nodes ¢}, t;,1/3 and t;11, so

I3 w(0) == w’, I3,w(t) = I ew(t) + 3[207 — 3w/ T3 4 ™). L2 G (E2),

Tj+1
(11.5)
o ; ; ; tio1—t
where 1) qw(t) := w'*! — {w/ 1 — I T1/3}. %(%)
for t € (tj,tj41], j = 0,. — 1, with the notation @7 := w(t]) and w*® :=

w(tj4a). By applying I3, to the elhptlc reconstructions RJ RJH/B, and R7t! asso-
ciated with the time levels tJ tit1/3, and t;41, we now define

(11.6)  R(-,0):=R° =R’ R(.t):=1I3 {R, RT3 RIT'} forte (0,7T).

Similarly, define a piecewise-quadratic computed solution in time by

(L.7)  an(0):=a) =u),  an(-t) = I {a],u) % ud) fort € (0,7).
We are now prepared to formulate our main result for the dG(1) method.

THEOREM 11.4. Let u solve problem (1.1),(1.2) satisfying Condition 2.1, u{l
solve the discrete problem (11.2) with any @] € H}(Y). Then one has (8.3) with

(11.8) Xitt =3 (200 — 30l TR 4l

using 1/;j ¢j+1/3, and ¢,{+1 of (11.3), ’ from (8.5) with A = {0%, L 1}, the constants

33
Cy = 81, Cy = , Cy = g, C5 =10, and 9}, defined by

(11.9) O =vr — I3 bR, Yr=LER+ (1, R)

fort €10,T], with I3, and R from (11.5) and (11.6).

Proof. As Remark 11.1 gives || R/ —u} ||oo,0 < 77, to get the desired bound (8.3) for
u*—u(-, t,y) it suffices to obtain a bound of type (8.3) for R —u(-,t) = [R—u](- tm),
with (C5 ko + 1) replaced by C3ko = 10k¢, and then apply the trlangle inequality. So
we consider R — u only.

We partially imitate the proof of Theorem 6.1. On each (¢;,t;41], the function s
is quadratic in time and satisfies 9yt + jl,twh = 0 (where th is specified in (11.5)).
This relation is a version of 8t0+fr7t1/)h = 0 used in the proof of Theorem 6.1 and can
be obtained similarly. Alternatively, it can be checked by a direct calculation using
(11.7), (11.5), and (11.3a).

It is convenient to treat the left-continuous function 4y, of (11.7) as being discon-
tinuous at t;r rather than at ¢;. Now, letting ¢ € (0,T], one gets

(11.10) Ot + I op =9, in Q.

Here the discontinuity of u;, at L‘J-r yielded the term

(11.11) Duleyt) o= [, — u))] 6(t — t7)  fort e (tj,til,
which is identical to ¥, of (9.12) and so satisfies (9.13).
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Next, note that with our definition of R, the functions in (11.9) are identical with
those in (8.10) (ubing p = 3), so we also enjoy the observation (8.11), which can be

rewritten as (-t ) W and Vg (- tjra) = wj’Lo‘ for o € {3, 1}. Furthermore,

a comparlson of xh in (11.8) with the definition (11.5) of I3, implies that XJH =

J+1 32(12 twR) fort € (t;,tj41]. Consequently, I3 twR =1 ﬂﬁh"’Xﬁl é J+1 G (trﬁ:)
Combining this with (11.10) yields

et + I3 0r = Oupn + 0, where =" E7Y f) G(ER).

For this function g, (similar to p in section 6.1), a calculation yields

1 1
(11.12) nl < EATH, T Oupn] < 2T for t € (1, t4]

As MR = 8,R + ¢p and Mu = 0, while 1/N)R = I§’t1/~)R + YIp, SO
MR — Mu = R — ap, + pp] + 9, +9.  in Q.

Now the desired bound of type (8.3) for R™ — u(-,t,,) = [R — u](-,t,), only with
(C3ko + 1) replaced by C3ko = 10kg, is obtained by an application of Lemma 2.3
with p := (R—1ip)+ pup and 9 := 9, +9.,, for which we make a few observations. First,
note that [R —u — p(-,0) = R® — ¢ — (R® — ) = u) — ¢. For uy, we recall (11.12)
and also note that p(-, j;l 1) =0. For the piecewise-quadratic function R — iy, by
virtue of Remark 11.1 |[R — @] (-, ;5 ;)| < 7™, and a calculation yields

(11.13)  |R—dp| < 207, 741|0:(R—an)| < 9Pt for t € (t;,t41],

so n™ is multiplied by 1+9 = 10 = C;. Finally, for 9., we invoke (11.11). Combining
these observations in the application of Lemma 2.3 completes the proof. O

Remark 11.5 (dG(r) for r > 1). The results of the section, including the a
posteriori error estimate of Theorem 11.4, can be generalized to a fully discrete dG(r)
method with Radau quadrature for » > 1 (in lines with the analysis of section 6 for a
semidiscrete dG(r) method). In fact, then the error estimate (8.3) will involve yJ, 1
defined by (6.5) with ¢+ replaced by 7" and the same constants C; and Cy as
in Theorem 6.1.

11.2. Model problem (1.3): Regular regime. Let u solve problem (1.3) with
€ =1, >0, posed in a bounded polyhedral spatial domain Q C R", n = 2,3, and
let u), solve the discrete problem (10.1) with V}/ and (-,-); defined as in section 9.2.

COROLLARY 11.6. Let the above numerical method be applied to problem (1.3)
with e =1, v > 0. Then the a posteriori error estimate of Theorem 11.4 is valid with
Iy, simplified to (8.12), where p =3, and (8.5b) using n := no, where ny from (A.1).

Remark 11.7. A discontinuous Galerkin method dG(1) for a linear version of (1.3)
with ¢ = 1 was considered in [9, 3]. In this opartlcular case, f = f(z,t) implies
that (11.8) can be rewritten as x5 = 6741 £, [a), — I tuh(t N+ 7808 f (1)
for some intermediate t' € [t;,t;11]. Here we use the p1ecew1se-hnear Radau inter-
polant 17 ; described in (11.5), and the discrete operator liffl is similar to ,C;IH only
liffl c HY Q) — f@f“. With this simplification, the a posteriori error estimate of
Corollary 11.6 resembles (but is not identical to) the one of [9, (1.14)] in that it in-
volves terms of type TJ+1H£j Yl — I tun(t] Moo and 7 7311107 flloo.2. (Note also
that [9, (1.14)] is given without proof and does not appear to be proved elsewhere.)
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The a posteriori estimate in [3] is of the lower order 2 in time as it involves the terms
of type ||a], — Il,tuh(tj)Hooﬂ = O(77,,). We also note the paper [23], which gives a
posteriori estimates for discontinuous Galerkin time discretizations in other norms.

11.3. Model problem (1.3): Singularly perturbed regime in one dimen-
sion. Now consider the regime of ¢ < 1. Let u solve the problem (1.3) with e € (0, 1],
v > 0, posed in the domain €2 := (0, 1), and let uy solve the discrete problem (10.1)
with V7 and (-,-);, defined, for each time level ¢;, as in section 9.3. We consider the
two choices (A.2) of (-,-),, using nodal piecewise-linear interpolation I, := Ij onto
V7.

" COROLLARY 11.8. Let the above numerical method be applied to problem (1.3)
with € € (0,1], v > 0, Q := (0,1). Then the a posteriori error estimate of Theo-
rem 11.4 is valid ¥y, simplified to (8.12), where p = 3. The definition (8.5b) of ni™!
uses 1 = n. with n. defined in (A.4), in which I}, is now replaced by I3 .

12. Proof of Lemma 2.2. First, note that the Green’s function G associated
with our problem (1.3) in the spatial domain € and the Green’s function G for the
related problem M := dyit — At + f(x/e,t, 1) = 0 in the spatial domain Q := Q/e
satisfy [|05G(x,t; -, 8)||1.0 = |0¥G(x/e, t; -, s)|l, o for k= 0,1. Consequently, it suffices
to prove Condition 2.1 for the case of ¢ = 1 with kg, K1, and k2 independent of |9,
so throughout the proof we set £* = —A in (2.2a).

(i) We start by proving the first bound in Condition 2.1. The Green’s function
G associated with M := 0; — A +~+? in the domain ) := R" can be easily obtained
from the fundamental solution of the heat equation. (The latter can be found, e.g.,
in [26, section I11.3], [11, section 2.3.1].) One gets

. e’ |z
(12.1) Gz, t:€,8) = g(x — &t —s), where g(x,t) = )72 exp(—?).

Next, note that by (1.2), the coefficient a in (2.2a) satisfies a > 4%, so an application
of the maximum principle to problem (2.2) yields 0 < G < G. Finally, note that

) —[¢I? —
(122) G(x’t;g’ S) dé‘ —e 7 (t—s) ’lr/)(C) dCa where ¢(<) = eﬂ_an ) C = 2%

As [pn ¥(¢)d¢ = 1, we immediately get [|G(z,t;-,5)|[1,0 < 1, which yields the first
bound in Condition 2.1 with kg = 1.

(ii) Next, we prove the second bound in Condition 2.1 in the linear case of
flx,t,2) = a(x)z + b(x,t) with ko = 0. In this case, the differential operator in
(2.2) does not involve s, so one can invoke [5, Corollary 5]. (In using this result,
we imitate the proof of [6, Lemma 2.1].) In view of the above bound 0 < G < G, an

2
application of [5, Corollary 5] with 8 =2,y =1,c; = 1, ¢ = %cl, and a(t) = W

yields |06 (x,t; €, 5)| < 18ciea (t — s) " (L[t — s]) e~ 2/l \here ¢ is chosen as
in part (i) of this proof. Now an observation similar to (12.2) leads to the estimate
105G (. t: -, s)|1.0 < Ki(t — s)"te 27" (=9 which immediately implies the second
bound in Condition 2.1 with ko = 0.

(iil) It remains to establish the second bound in Condition 2.1 in the general case
of f(x,t,z) satisfying (1.2), which implies that for the coefficient a in (2.2a) one has
7?2 < a(&,s) < 42 For any fixed (z,t) € Q x (0,T], consider the Green’s function
G(x,t; €, 5) =: ['(€,s) associated with the operator d; — A +~2 in the domain  so
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(¢, s) satisfies a version of (2.2) with a replaced by 2. Comparing this problem with
the problem (2.2) for I' and noting that £ = £* = A, we find that for any fixed (z,1),
the function v(§, s) :=1'(§, s) — I'(, s) solves the terminal-value problem

(12.3a) [<0s — AN+ 72 w(E,s) = F(&,5) for (&) € Qx[0,t),
(12.3b) v(t) =0 for €€ Q,
(12.3¢) v(&,s)=0 for (€,s) € 90 x [0,¢],

where F(€,5) := [a(§, s) —¥?] (€, ) so, using I' < G and (12.1),

Note that in part (ii) we have shown that T satisfies the second bound in Condition 2.1
with ko = 0. It remains to show that v satisfies the second bound in Condition 2.1
with x1 = 0 and ko = (5% — 7?)ks. This latter bound is immediately obtained by an
application of Lemma 12.1 below to the terminal-value problem (12.3). a

The next lemma is applied to the terminal-value problem (12.3), but it is conve-
nient to formulate it in the context of an initial-value problem.

LEMMA 12.1. Let v satisfy [0y — A +~%|v = F in Q and vanish for t = 0 and
x € 0, where 0 < F(x,t) < g(x — xo,t) with g from (12.1) and some zo € Q2. Then
fOT |0 (-, t)]l1,0dt < Re, where ke is independent of |2, and ko = Ra(7y) if v > 0,
while ko = ko(T) if v = 0.

Proof. Without loss of generality, assume that 2o = 0 € Q so F(z,t) < g(x,t).
Recall that Mg = 0 with M = 9, — A + ~+?; this implies that M[tg] = g, so an
application of the maximum principle yields

(12.4) 0 <wv(x,t) <tg(x,t).

(i) First we establish the desired estimate with &3 that depends on [Q2]. Let
w(z,t) := o(t) v with the weight g :=t3 27t s0 o/ = (3t71 + 14?) 0. Note that

||atUH1,QX[O,T] < HQ_1||2,Q><[O.,T] ”Qat'UHZ,QX[O,T]

(12.5) < # |90% (IOl 0x0m) + 10 vllo.0xi0.m )

where we used ¢ dyv = dyw — ¢’ v and
T 2 2
le™ B oo =101 | e ar =0l
0

(so #3 < 3T/ for v > 0, and [t~ % et dt ~ 2.7 implies 43 < 2.7972/% for v > 0).
To estimate dyw in (12.5), we note that Mw = o F + o'v < pg + ¢ v and so apply
an a priori estimate [18, (6.6) of Chapter IIIJ:

(12.6) |0y

2,0x0,7] < [Mwllz,0x0,77-
(In fact, the cited estimate is given for a slightly different differential operator, but

the argument also applies to M.) In view of ¢’ v < (5 + 24 t) 0 g (which follows from
(12.4)), one gets

N PR, .
(12.7)  |0w|l1,0xj0,7) < 243 |22 [[09l2,0x[0,17, where ¢ := (% + 39%t) 0.
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Finally, a calculation using ( := ﬁ and () from (12.2) yields

T 22 (4 o272t T4 4 1.20%42/3 7t
. 12 o°(t)e ™ _ (3 +37°1) t°77e _. 22
1091 o < /0 Tsm [ v acat= | o dt = it

(This integral is convergent as § — % < 1 for n < 3.) Combining this with (12.7), we
arrive at the desired bound with &y := 2 Asky |Q]2.

(ii) Now we shall show the desired result with 4o independent of || (which
requires a more subtle estimation). Divide R™ into the nonoverlapping subdomains
Qo := {|z| < 2} and Q; := {27 < |z| < 27F!} for j = 1,...; furthermore let Qf :=
and Q= {2771 < [z| < 2772} D Q;. Note that

(12.8) Q]2 < ¢, 237
Now we partially imitate the proof in part (i). First, note that one has the bound
(12.5) with Q replaced by QN Q; for j = 0,1,.... Hence for j = 0, using the results

of part (i), one immediately gets

(12.9)

1,0n00) x[0,7] < 2 Azka [Qo]2. 2
(Compare with ko from part (i).)

For j > 1, we combine the local version of (12.5) with a local version of the global
estimate (12.6) from

19sw||2,c0n0;)x[0,1] < é{|\/\;lw||2,(m93.)x[o,ﬂ + Hw||2,(9m;.)x[o,ﬂ}
with the constant C' independent of Q and T. (This estimate is obtained similarly
o [18, (6.6), (6.11) of Chapter III].) Here Muw is estimated as in part (i), while
w=pv <tog by (12.4). This yields a local version of (12.7):

(12.10)

J(ne,)x[0,1] < 2/3]Q; 2 C||(9+t9)9||29' x[0,7] for j > 1.

Next, we use ¢ := 5% and ¥(¢) from (12.2) and also the observation that as j > 1 so

(exp(—2L))2 < o=

41*

eI <o (£)" eI, So for j > 1 a calculation shows that

R i Q"’tQQ —2’y ttn "
10+ 1000l i < e [T [ yigyacar=cpa

Combining this with (12.10) and then with (12.9) and (12.8), we arrive at

N R4 for j =0,
< )
HatU”l,(QﬁQj)x[O,T] < 2Rk3cn { o 9—1inj for j > 1.

This immediately yields the desired bound with &y := 2 &g cnlis + /7 (22" — 1))
independent of |€]. 0

Appendix A. Elliptic estimators. We now cite error estimators of type (7.3)
for particular cases of the elliptic model problem (7.4) and its discretizations (7.5).
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A.1. Elliptic model problem: Regular regime. We first consider the steady-
state version (7.4) of our model problem (1.3) in the regular regime of ¢ := 1.

Let v solve the problem (7.4) with ¢ = 1, v > 0, posed in a bounded poly-
hedral domain Q@ C R™, n = 2,3, and vy solve the discrete problem (7.5) with V},
and (-, ), defined as follows. Given a conforming and shape-regular triangulation
T of Q made of elements T, we let V}, be the space of continuous piecewise poly-
nomial finite element functions of degree [ > 1, and Vi, = Vu N H} (). We employ
(p,w)n =3 per, @r(pw), where Qr is a quadrature formula for the integral over T
with positive weights, and quadrature points contained in 7', such that Q7 is exact
for the polynomials of degree ¢ with ¢ > max{2l —2,1}.

In [24, Theorem 4.2], an a posteriori error estimate of type (7.3) is given with
n = no defined by

o (Vi on, g 0n)) = e o {3 (o = 9o o+ o [9ond | o}

(A1) +a HV:JL/ZT

o [ vi 2L, | X 10 i,

ln/2
where hpin is the smallest mesh size, hy is the diameter of T, [0,vp] is the jump
of the normal derivatives across an interelement side, || - [z, is the [, norm, and the
quantity

v = [TV |lgCon) = T oo on)]

is defined using the Lagrange interpolation operator Ij, ,» onto the space of piecewise
polynomials of degree < ¢'.*

A.2. Elliptic model problem: Singularly perturbed regime in one di-
mension.® We now consider the steady-state version (7.4) of our model problem (1.3)
in the singularly perturbed regime of ¢ < 1.

Let v solve the problem (7.4) with ¢ € (0,1] and v > 0, posed in the domain
2 :=(0,1), and v, solve the discrete problem (7.5) using the space V}, of continuous
piecewise-linear finite element functions on an arbitrary nonuniform mesh {xi}fil with
O=20<z1<---<ay=1and h; :=x; —x;—1. Note that here we make absolutely
no mesh regularity assumptions (as solutions of our problem typically exhibit sharp
layers, so a suitable mesh is expected to be highly nonuniform; see, e.g., [21]).

Consider two choices of (-,-)p, which are defined using the standard piecewise-
linear nodal interpolation operator Ij:

(A.2a) (@, wn)n = (Inp, wh) (quadrature),
(A.2b) (o, wp)n = (In[ews], 1) (lumped-mass quadrature).

Remark A.1. To illustrate Remarks 7.3 and 7.4, note that the described two
discretizations using either (A.2a) or (A.2b) are of type (7.2). In particular, for
(A.2a), we get Ly, := —e?[02], and Pj, := I,. Here the operator [02], : H}(2) —

41t is noted in [6] that if the domain © has cracks, it is not entirely clear whether (A.1) of [24]
still holds. We refer the reader to [6, Remark 2,4] for a further discussion of (A.1) in this case and
related literature.

5Similar elliptic estimators for two- and three-dimensional steady-state versions of (1.3) in the
singularly perturbed regime ¢ < 1 are given in [15, 4].
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Vi, +e 21, [g(-,0)] is defined by (—[02],0, wn) = (¢, w}) for all p € HF (), wy € Vi.
Consequently, the discrete problem using (A.2a) may be represented as

(A.3a) —2[02], v + Inlg(-,vn)] = 0.

By contrast, (A.2b) can be rewritten as a difference scheme: —£262vy, ;+g(xi, vp.i) = 0,
fori=1,...,N — 1, where 62vy,; := #h“ [ﬁ(vhﬂ'ﬂ — V) — h%(v;m' — vh7i,1)]
is the standard finite-difference operator. Letting 6ivh7i =2 g(as, vp,i) for i =0, N
and applying the linear interpolation I, to {62vy;}Y o, we can represent the discrete

problem using (A.2b) as
(A.3b) —e? I [59261)}1] + Ih[g(-, Uh)] =0,

where the values §2vy, ; are easily explicitly computable.
We cite a posteriori estimates [14, 20, 21] of type (7.3) with n := 7. (Vh,g(-, vh)),
where 7. = 7). (A.2) for (A.2a) and 7. = 7. (a.21) for (A.2b) are given by

h? —
(Ada) ne (a20) (Vs 9s) o= i:qléxN{él—gz I\Ihg*lloo,m_l,zi)} +9729x = Ingalloc,0,1);

h?
(A4b) e, (A.2b) (Vhag*) = T, (A.2a) + i:I{laXN{G’Y_ZE ”aﬂC(Ihg*)HOO,(ri—hEi)}7

where g == g(-,vp).

Remark A.2. The error estimators (A.4a) and (A.4b) are robust although they
involve negative powers of the small parameter . Indeed, an inspection of repre-
sentations (A.3a) and (A.3b) for the two considered numerical methods shows that
e 2h2 |19+ = e 2hZ|In[g(-,vp)]| becomes h?|[02],vr| or h?|62vs], so it approximates
h2|02v|, where v is the exact solution of our equation —202v + g(-,v) = 0. Simi-
larly, the term e~ 1h?|0, (Ing.)| approximates £ |93v|, which has similar magnitude to
h2|02v| in the layer regions.

By contrast, if (-,-)p := (-,-) (i.e. no quadrature is used), then one can obtain a
simpler-looking error estimate of type (7.3) with n := i:qlaXN{% 19 |0, (s 1,20) } -

However, this estimate is not robust. To see this, split g, = Prgs« + (g« — Prgs«) using
the standard Lo projection P,. Then, instead of (A.3a), we have the representation
—2[02],vn + Pulgs] = 0 for our numerical method. The component &~ 2hZ|Pyg.|
approximates h?|02v| so it yields a robust part of the estimator. But the other com-
ponent e~ 2h2|g. — Png.| may be as large as O(e~2h$), which may become quite large
if € is small compared to the local mesh size. For this numerical method one can, in
fact, obtain a robust error estimator, which is almost identical to (A.4a), only I in
7 should be replaced by P, (but this latter estimator is less practical, as it requires
the Lo projection Pp,g. to be explicitly computed).
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