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Abstract. The semilinear reaction-diffusion equation −ε24u+b(x, u) = 0 with Dirichlet bound-
ary conditions is considered in a convex polygonal domain. The singular perturbation parameter ε
is arbitrarily small, and the “reduced equation” b(x, u0(x)) = 0 may have multiple solutions. An
asymptotic expansion for u is constructed that involves boundary and corner layer functions. By
perturbing this asymptotic expansion, we obtain certain sub- and super-solutions and thus show
the existence of a solution u that is close to the constructed asymptotic expansion. The polygonal
boundary forces the study of the nonlinear autonomous elliptic equation −4z + f(z) = 0 posed in
an infinite sector, and then well-posedness of the corresponding linearized problem.

1. Introduction. Consider the singularly perturbed semilinear reaction-diffusion
boundary-value problem

Fu ≡ −ε24u + b(x, u) = 0, x = (x1, x2) ∈ Ω ⊂ R2, (1.1a)
u(x) = g(x), x ∈ ∂Ω. (1.1b)

Here Ω is a convex polygonal domain, 4 = ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace operator,
and ε is a small positive parameter.

The “reduced problem” associated with (1.1) is defined by formally setting ε = 0
in (1.1a), i.e.

b(x, u0(x)) = 0 for x ∈ Ω̄. (1.2)

It is assumed that (1.2) has a smooth solution u0 that is stable in a sense to be
described below. The hypotheses on b are such as to include the possibility of multiple
solutions to (1.2) and therefore to (1.1). Since it may happen that u0 6= g on ∂Ω,
the solutions may exhibit boundary layer behavior near ∂Ω. Problems such as (1.1)
have been considered in 1 dimension [4] and in 2 dimensions in the case that the
boundary ∂Ω is smooth [3, 6, 9]. In these papers it is shown that for ε sufficiently
small, there is a solution of (1.1) that is close to u0 in the interior of Ω. In addition,
robust numerical methods for the solution of (1.1) have been presented and analysed
in [7, and references therein] in dimension 1, and in [6] in dimension 2 in the case
when ∂Ω is smooth.

In this paper we consider the problem (1.1) in a plane convex polygonal domain.
The presence of vertices in ∂Ω causes some complications in the analysis. In addition
to the boundary layer functions, some “corner layer functions” must be used in the
construction of an asymptotic expansion. These corner layer functions are solutions
to certain nonlinear boundary value problems in a convex sector, and the added
complications come in studying these problems, for which mere solution existence
is not straightforward. The construction exhibits the boundary and corner layer
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behavior of the solution, which will be used in a forthcoming numerical analysis of
the problem.

We denote vertices of Ω by {Pj}M
1 and the sides by {Γj}M

1 . The vertices are
arranged in counterclockwise order with the vertex Pj−1 being at the intersection of
Γj−1 and Γj , under the notation ΓM+1 = Γ1. We assume that the function b is smooth
and that g is smooth on each Γj and continuous at each vertex Pj . In addition we
make the following assumptions.
A1 (stable reduced solution) There is a number γ > 0 such that

bu(x, u0(x)) > γ2 > 0 for all x ∈ Ω.

A2 (boundary condition) The boundary data g(x) from (1.1b) satisfy
∫ v

u0(x)

b(x, s) ds > 0 for all v ∈ (
u0(x), g(x)

]′
, x ∈ ∂Ω.

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when a > b,
while (a, b]′ = ∅ when a = b.

A3 (corner condition) For each vertex Pj , if g(Pj) 6= u0(Pj), then

b(Pj , g(Pj))
g(Pj)− u0(Pj)

> 0.

A4 Only to simplify our presentation, we make a further assumption that

u0(x) < g(x) for all x ∈ ∂Ω.

Using A4, we can simplify A3 to b(Pj , g(Pj)) > 0.
Note that if g(x) ≈ u0(x), then A2 follows from A1 combined with (1.2), while if
g(x) = u0(x) at some point x ∈ ∂Ω, then A2 does not impose any restriction on g at
this point. Similarly, if g(Pj) ≈ u0(Pj), then A3 follows from A1 combined with (1.2),
while if g(Pj) = u0(Pj) at some vertex Pj , then A3 does not impose any restriction
on g at this point.

Assumption A1 is local and permits the construction of multiple solutions to
(1.2) and therefore to (1.1). Assumption A2 is standardly made along the smooth
boundaries [3, 6, 9]; it yields existence of boundary-layer ingredients of the asymptotic
expansion.

We shall now discuss the corner assumption A3, which is necessitated by the
presence of vertices in ∂Ω. A key ingredient of our analysis is a study of certain
solutions of the semilinear equation

−4z + f(z) = 0 (1.3)

posed in an unbounded sector. Our interest in (1.3) is induced by the observation
that corner layer functions associated with the vertex Pj are related to a solution
of equation (1.3) with f(z) = b(Pj , z) subject to the boundary condition z = g(Pj)
(compare with problem (2.9)). Assumption A3 is not only sufficient for existence of
a solution z. A result of [11] implies that A3 is necessary for existence of z if we
want to exclude spike-type phenomena in the solution u of (1.1) at the corners of Ω
(see Remark 3.5 below for details). Furthermore, invoking A3, we establish stability
of solutions of (1.3) in the sense that the principal eigenvalue of the linearization of
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(1.3) about its solution z is bounded away from zero (see Section 3.4). This analysis
lies at the heart of the paper and may be of independent interest.

The main outcome of this paper is a construction of a first-order asymptotic
expansion uas to the problem (1.1) and the proof that there exists a solution u(x) such
that |u−uas| ≤ Cε2. Furthermore, pointwise estimates of the derivatives of particular
components of the asymptotic expansion are given. We shall use these estimates in
a forthcoming paper to derive a robust numerical method and establish its ε-uniform
accuracy. Similar results have been obtained by Fife [3] and, more recently, Nefedov [9]
for smooth domains. Our result seems the first for a nonlinear problem in a polygonal
domain. Furthermore, our analysis can be extended to piecewise smooth convex
domains and higher-order asymptotic expansions. Following [4, 9], we invoke the
theory of sub- and super-solutions to establish existence. The desired sub- and super-
solutions are obtained by perturbing a formal asymptotic expansion and therefore
give tight control on the solution.

The paper is organized as follows. Section 2 defines some boundary layer functions
associated with each side of the polygon ∂Ω and some corner layer functions associated
with each vertex of ∂Ω. The boundary layer functions are defined as solutions of
some ordinary differential equations in a stretched independent variable. The corner
layer functions are solutions of some elliptic partial differential equations in stretched
independent variables. The existence and properties of the corner layer functions are
established in Section 3, and this section should probably be considered the main
contribution of the paper. In Section 4 these boundary and corner functions are
assembled into a super- and sub-solution to the problem. Using these functions the
existence and properties of a solution to (1.1) are established. To shorten the paper
we have placed some proofs that involve much computation in [5].

Notation. Throughout the paper we let C, C̄, c, c′ denote generic positive constants
that may take different values in different formulas, but are always independent of
ε (C̄ is usually used for a sufficiently large constant). A subscripted C (e.g., C1)
denotes a positive constant that is independent of ε and takes a fixed value. For any
two quantities w1 and w2, the notation w1 = O(w2) means |w1| ≤ C|w2|.

2. Boundary and corner layer functions. This section defines some bound-
ary layer functions associated with each side of the polygon ∂Ω and some corner layer
functions associated with each vertex of ∂Ω. The boundary layer functions are de-
fined as solutions of some ordinary differential equations in a stretched independent
variable. The corner layer functions are solutions of some elliptic partial differential
equations in stretched independent variables. The existence and properties of the
corner layer functions are established in Section 3.

We use the functions

B(x, t) = b(x, u0(x) + t), B̃(x, t; p) = b(x, u0(x) + t)− p t. (2.1)

The perturbed version B̃ of the function B is used, with |p| sufficiently small, in the
construction of sub- and super-solutions. In the constructions that follow, a tilde will
always denote a perturbed function. The perturbed functions always depend on the
parameter p, but we will sometimes not show the explicit dependence. Thus, we will
sometimes write B̃(x, t) for B̃(x, t; p). We need a notation for the derivatives of B̃.
For derivatives with respect to the first argument, we write ∇xB̃, ∇2

xB̃, etc., for the
vector, matrix of second derivatives, etc., with respect to x. We write B̃t, B̃tt, etc.,
for derivatives with respect to t. Note also that B̃(x, 0) = 0, so ∇k

xB̃(x, 0) = 0 for
3



k = 1, 2, · · · , so

|∇k
xB̃(x, t)| ≤ C|t| for k = 0, 1, 2, · · · . (2.2)

We will also use, for any function f , the notations

f
∣∣b
a

= f(b)− f(a), f
∣∣c
a; b

= f(c)− f(b)− f(a). (2.3)

Since f
∣∣a+b

a; b
+ f(0) = abf ′′(t), we see that f(0) = 0 implies f

∣∣a+b

a; b
= O(|ab|) and

therefore f
∣∣a+b+c

a; b
= O(|c|+ |ab|). In view of (2.2), we thus have

∇k
xB̃(x, ·)

∣∣∣
c+a+b

a; b
= O(|c|+ |ab|). (2.4)

In the following 2 subsections we define functions needed to assemble a perturbed
first order asymptotic expansion for our problem. The 2 subsections deal respectively
with a side of Ω, and with a vertex of Ω. The perturbed asymptotic expansions are
defined in Section 4, where they are then used to obtain the existence of a solution to
(1.1).

2.1. Solution near a side. In this subsection we construct boundary layer
functions associated with a particular side Γj of ∂Ω. Throughout the subsection, let
Γ denote the line that extends Γj . Extend u0 and b to smooth functions, also denoted
u0 and b, on R2 and R2×R, respectively, so that (1.2) and A1 hold true for all x ∈ R2.
Furthermore, extend g|Γj to a smooth function, also denoted g, on Γ, which satisfies
the extended form of A2 and A4 for all x ∈ Γ.

Let es denote the unit vector pointing in the direction of Γ and oriented so as to
point from Pj−1 to Pj . Let er be the unit vector perpendicular to es and oriented
to point into Ω. Let s denote the signed distance along Γ with s = 0 at Pj−1. For
x ∈ R2 write x = Pj−1 + ses + rer. Then x̄ = Pj−1 + ses is the point on Γ which is
closest to x and r is the signed distance from x̄ to x, with r > 0 if x ∈ Ω (es, er, x
and x̄ are shown in Figure 2.1).

Let ṽ0(ξ, s; p) be the solution to the nonlinear autonomous two point boundary
value problem

−∂2ṽ0

∂ξ2
+ B̃(x̄, ṽ0; p) = 0,

ṽ0(0, s; p) = g(x̄)− u0(x̄), ṽ0(∞, s; p) = 0.
(2.5)

The geometric meaning of the variable ξ is given by the formula ξ = r/ε. The variables
p and s appear as parameters in the problem (2.5). The parameter p satisfies |p| < γ2

and in general will be close to zero. We sometimes omit the explicit dependence of ṽ0

on p and write ṽ0(ξ, s) = ṽ0(ξ, s; p).
We set v0(ξ, s) = ṽ0(ξ, s; 0). The function v0 appears in the asymptotic expansion

of the solution near the side Γj . With v0 defined, we define a function v1(ξ, s) to be
the solution to the linear two point boundary value problem

−∂2v1

∂ξ2
+ v1Bt(x̄, v0) = −ξ er · ∇xB(x̄, v0),

v1(0, s) = v1(∞, s) = 0.
(2.6)
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Note that v1 is not a perturbed function as it does not depend on p. We also define

˚̃v0(ξ; p) = ṽ0(ξ, 0; p), v̊0(ξ) = v0(ξ, 0), v̊1(ξ) = v1(ξ, 0),
ṽ = ṽ0 + εv1, v = v0 + εv1, ˚̃v = ˚̃v0 + ε̊v1, v̊ = v̊0 + ε̊v1.

(2.7)

In our notation, a small circle above a function name indicates that in the argument
of the function we have set s = 0.

For the solvability and properties of problems (2.5) and (2.6) we have
Lemma 2.1. There is p0 ∈ (0, γ2) such that for all |p| ≤ p0 there exist functions

ṽ0 and v1 that satisfy (2.5), (2.6). For the function ṽ0 = ṽ0(ξ, s; p) we have

ṽ0 ≥ 0,
∂ṽ0

∂p
≥ 0. (2.8)

Furthermore, for any k ≥ 0 and arbitrarily small but fixed δ, there is a C > 0 such
that for 0 ≤ ξ < ∞, s ∈ R and k = 0, 1, · · · ,

∣∣∣∂
kṽ0

∂ξk

∣∣∣ +
∣∣∣∂

kṽ0

∂sk

∣∣∣ +
∣∣∣∂

kv1

∂ξk

∣∣∣ +
∣∣∣∂

kv1

∂sk

∣∣∣ +
∣∣∣∂ṽ0

∂p

∣∣∣ +
∣∣∣ ∂2ṽ0

∂p ∂s

∣∣∣ ≤ Ce−(γ−
√
|p|−δ)ξ.

Proof. The existence and properties of ṽ0 follow from [7, Lemmas 2.2 and 2.3].
For v1, we use a result presented in [3, Lemma 2.2] and [12, §2.3.1].

2.2. Solution near a vertex. In this subsection we construct corner layer func-
tions associated with a particular vertex Pj−1. These corner layer functions will be
used in the asymptotic expansion of the solution as well as the construction of a sub-
and super-solution.

Some notation is required for the constructions. We place the vertex Pj−1 at the
origin O. Let Sj , or, when there is no ambiguity, simply S, be the infinite sector
with angle ω at the apex, obtained by extending the two sides Γj and Γj−1 in the
direction away from O. The ray that extends the side Γj is denoted Γ, while the ray
that extends the side Γj−1 is denoted Γ−. We extend g|Γj to a function on Γ; in this
section the extended function is denoted g. Similarly, we extend g|Γj−1 to a function
on Γ− that in this section is denoted g−. These extensions are made in such a way
that A2 and A4 hold. Let s denote the distance along Γ, measured from O, and let
r denote the perpendicular distance to a point x ∈ S. Thus, x → (s, r) is a linear
orthogonal map. We also let es and er denote the unit vectors along Γ and orthogonal
to Γ respectively, so x = rer +ses. We denote by x̄ = ses the point of Γ that is closest
to x. In a similar manner, we define variables (s−, r−), so x = r−er− + s−es− , and
x̄− = s−es− associated with the side Γ−. The variable s− denotes the distance along
Γ−, measured from O. We will also need the stretched variables η = x/ε, ξ = r/ε,
σ = s/ε, ξ− = r−/ε, σ− = s−/ε. These variables are shown in Figure 2.1.

Using these notations Section 2.1 gives functions ṽ0(ξ, s; p) and v1(ξ, s) associated
with the side Γ and functions ṽ−0 (ξ−, s−; p) and v−1 (ξ−, s−) associated with the side Γ−.
We also recall the notations in (2.7) and use corresponding notations for the side Γ−.
The function ṽ matches the disparity between the boundary conditions of (1.1b) and
the value of u0 on Γ, but leaves a rapidly decaying boundary value on Γ−. The
function ṽ− has a similar behavior, with a rapidly decaying boundary value on Γ. To
deal with these rapidly decaying boundary values we construct functions z̃0(η; p) and
z1(η), defined in terms of the stretched variable η.
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Fig. 2.1. Geometry of a sector Sj = S

The function z̃0 is defined to be a bounded solution of the autonomous nonlinear
elliptic boundary value problem

−4η z̃0 + B̃(O, z̃0; p) = 0 in S,
z̃0 = A := g(O)− u0(O) on ∂S.

(2.9)

Here we have A > 0, by our assumption A4 at the point Pj−1 = O. We also set
z0(η) = z̃0(η; 0). The existence and properties of z̃0 are given in the following theorem;
the proof is deferred to Section 3.

Theorem 2.2. There is a positive constant p∗ such that if |p| ≤ p∗, the problem
(2.9) has, for each p, a solution z̃0 which satisfies z̃0 ≤ A and

0 < max{̊ṽ0,˚̃v−0 } ≤ z̃0(η; p) ≤ max{̊ṽ0,˚̃v−0 }+ C|η|−1, (2.10)

and which is an increasing function of p. Also, |∇z̃0| is bounded in S. Finally there
is a constant C > 0 such that

z̃0(η) ≤ C
(
e−γξ + e−γξ−

)
. (2.11)

We also consider a function z1(η) which satisfies the linear elliptic boundary value
problem

−4ηz1 + z1Bt(O, z0) = −η · ∇xB(O, z0) in S,
z1 = σ ∂

∂s (g − u0)
∣∣
x=O

on Γ, z1 = σ− ∂
∂s−(g− − u0)

∣∣
x=O

on Γ−,
(2.12)

The functions z̃0 and z1 form a correction z̃0 + εz1 to the reduced solution u0 in
close proximity of the vertex O. To extend it further away from O, the corrections
ṽ0 + εv1 and ṽ−0 + εv−1 to u0 near the sides Γ and Γ− are to be invoked as follows.
We use the corner functions z̃0 and z1 together with the boundary functions ṽ0, v1,
ṽ−0 , v−1 to define a related pair of corner functions q̃0 and q1, which, rather than z̃0

and z1, will appear in a formal asymptotic expansion of the solution of (1.1) within
an O(1) distance to the vertex O = Pj−1; see Section 4.
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We shall use the following notation. Pick a point η ∈ S. Having chosen η, the
formulas

η = ξer + σes = ξ−er− + σ−es− (2.13)

determine numbers ξ, σ, ξ−, σ−; see Figure 1. With this notation, and using the
functions z̃0, z1 and ˚̃v0, ˚̃v−0 , v̊1, v̊−1 of (2.5), (2.6),(2.7), we define

q̃0(η; p) = z̃0(η; p)− ˚̃v0(ξ; p)− ˚̃v−0 (ξ−; p), (2.14a)

q1(η) = z1(η)− [̊v1(ξ) + σv̊0,s(ξ)]− [̊v−1 (ξ−) + σ−v̊−0,s−(ξ−)], (2.14b)

and furthermore,

q̃(η; p) = q̃0(η; p) + εq1(η), q0(η) = q̃0(η; 0), q(η) = q0(η) + εq1(η). (2.14c)

In these formulas, following the notational conventions of (2.7), we mean

v̊0,s(ξ) = ∂
∂sv0(ξ, s)

∣∣
s=0

, v̊−0,s− = ∂
∂s−v−0 (ξ−, s−)

∣∣
s−=0

. (2.14d)

Under this notation, the boundary conditions in (2.12) become z1 = σ v̊0,s on Γ, and
z1 = σ−v̊−0,s− on Γ−.

From the above formulas and (2.5), (2.9), we derive a nonlinear boundary value
problem satisfied by q̃0:

4η q̃0 = B̃(O, q̃0 +˚̃v0 +˚̃v−0 )− B̃(O,˚̃v0)− B̃(O,˚̃v−0 ), (2.15a)

q̃0 = −˚̃v−0 on Γ, q̃0 = −˚̃v0 on Γ−. (2.15b)

Similarly, using (2.5), (2.6) and (2.12), in [5, Lemma 2.4] we also formally derive a
linear boundary value problem satisfied by q1:

−4ηq1 + q1Bt(O, z0) = −η · ∇xB(O, ·)
∣∣∣
z0

v̊0; v̊−0

−(̊v1 + σv̊0,s) Bt(O, ·)
∣∣∣
z0

v̊0

− (̊v−1 + σ−v̊−0,s−) Bt(O, ·)
∣∣∣
z0

v̊−0
,

q1 = −(̊v−1 + σ−v̊−0,s−) on Γ, q1 = −(̊v1 + σv̊0,s) on Γ−,

(2.16)

where we used the notation (2.3). Finally, by formally differentiating relation (2.14a)
and problem (2.9) (or the equivalent problem (2.15)) with respect to p and invoking
(2.1), we formally derive a boundary value problem that is satisfied by q̃0,p:

−4η q̃0,p + q̃0,pB̃t(O, z̃0) = q̃0 − ˚̃v0,p B̃t(O, ·)
∣∣∣
z̃0

˚̃v0

− ˚̃v−0,p B̃t(O, ·)
∣∣∣
z̃0

˚̃v−0
,

q̃0,p = −˚̃v−0,p on Γ, q̃0,p = −˚̃v0,p on Γ−.
(2.17)

The problem (2.15) will be used in Section 3.3 to show that the function q̃0

is exponentially decaying as |η| → ∞. Also, it will be seen that the data in the
linear problems (2.16) and (2.17) are exponentially decaying. This will be used in
Section 3.5 to show that each of these linear problems is well-posed and so has a
solution depending continuously on the data and exponentially decaying. In view of
(2.14b), the existence of q1 immediately implies existence of z1. Similarly, having
proved the existence of the solution to (2.17), an integration is used to show that this
solution is in fact the derivative of q̃0 with respect to p.
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3. Existence and properties of the corner layer functions . In this section
the existence and properties of the functions z̃0 and z1 are established. The existence
of a solution to (2.9) comes from the theory of sub- and super-solutions which is
presented in Section 3.1. This theory is also used in Section 4 to show the existence
of a solution to (1.1). The existence of a solution z̃0 to (2.9) and its decay properties
that are asserted in Theorem 2.2, are established in Section 3.2. Because (2.9) may
have many solutions, we first construct specific sub- and super-solutions to (2.9); the
function z̃0 is then defined as the unique minimal solution that lies between these two
constructed functions. In Section 3.3 we analyze the exponential-decay properties of
the component q̃0 of z̃0.

To prepare for the existence and properties of z1 and ∂z̃0/∂p, the linearization
of (2.9) around the function z̃0 must be analyzed. This is done in Section 3.4. It is
shown there that the eigenvalue of the linearized problem is bounded away from zero,
and as a consequence the linearized operator is invertible. The analysis in this section
lies at the heart of the paper, and may have an independent interest. The existence
and properties of z1 and ∂z̃0/∂p are then obtained in Section 3.5.

3.1. Sub- and super-solutions. The theory of sub- and super-solutions (also
called lower and upper solutions) is presented, for example, in [1, 2, 10]. We state
here the definitions and some important facts in this theory. These are stated for
the problem (1.1), which was posed on the polygon Ω. In fact the theory of sub-
and super-solutions is more generally applicable, in particular, when problem (1.1) is
posed on the sector S. This observation enables us to use the results below both in
the analysis of problems (1.1) and (2.9), the latter clearly being of type (1.1) with
ε = 1.

A function β is a super-solution of the problem (1.1) if β is continuous and
bounded in Ω̄, if β ≥ g on ∂Ω, and if for each χ ∈ C∞0 (Ω) with χ ≥ 0,

∫∫

Ω

[− βε24χ + b(x, β)χ
]
dx ≥ 0. (3.1)

Here C∞0 (Ω) denotes the set of infinitely differentiable functions with compact support
in Ω. Similarly, α is a sub-solution of (1.1) if α is continuous and bounded in Ω̄, if
α ≤ g on ∂Ω, and if the reverse inequality in (3.1) holds, with β replaced by α. The
following lemma may be found in [1, 10].

Lemma 3.1. If β1 and β2 are 2 super-solutions of (1.1), which are in C2(Ω),
then min{β1, β2} is a super-solution of (1.1). If α1 and α2 are 2 sub-solutions of
(1.1), which are in C2(Ω), then max{α1, α2} is a sub-solution of (1.1).

The next lemma shows the reason for considering sub- and super-solutions; they
provide a way of proving the existence of a solution. This result is stated in [2] and
[10] with the assumption that the domain is bounded and has a smooth boundary,
and in [1] with the nature of the boundary unspecified.

Lemma 3.2. Let α and β be respectively a sub-solution and a super-solution
of (1.1) with α ≤ β in Ω. Then (1.1) has a solution u satisfying α ≤ u ≤ β in Ω.
Furthermore (1.1) has a minimal solution um in the sense that if u is another solution
with α ≤ u ≤ β in Ω, then um ≤ u in Ω.

The following lemma will be useful in several places.
Lemma 3.3. Let um be the unique minimal solution of (1.1) corresponding to a

sub-solution α. Let Ω̂ ⊂ Ω. Let ûm be the unique minimal solution of the problem
consisting of (1.1) in Ω̂ with the boundary condition ûm|∂Ω̂ = um|∂Ω̂ corresponding
to the same sub-solution α restricted to Ω̂. Then ûm = um in Ω̂.
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Proof. Since um ≥ α is a solution of the problem satisfied by ûm ≥ α and ûm is
the minimal solution of this problem, ûm ≤ um in Ω̂. Define β in Ω by β = ûm in Ω̂,
β = um in Ω \ Ω̂. We claim that β is a super-solution of (1.1). For, letting Γ be the
portion of ∂Ω̂ that lies inside Ω with n the unit normal on ∂Ω̂ pointing out of Ω̂, if
χ ∈ C∞0 (Ω) with χ ≥ 0, then since ε24ûm = b(x, ûm) in Ω̂ and ε24um = b(x, um) in
Ω \ Ω̂,

∫∫

Ω

[− βε24χ + b(x, β)χ
]
dx =

∫∫

Ω̂

[− ûmε24χ + b(x, ûm)χ
]
dx

+
∫∫

Ω\Ω̂

[− umε24χ + b(x, um)χ
]
dx

=
∫

Γ

ε2χ
(∂ûm

∂nΓ
− ∂um

∂nΓ

) ≥ 0.

Here the final assertion follows from ûm ≤ um in Ω̂. Now β being a super-solution
implies that um ≤ β in Ω. Therefore um ≤ ûm in Ω̂, so um = ûm in Ω̂.

Lemma 3.4. Let um be the unique minimal solution of (1.1) corresponding to a
sub-solution α. Let Ω̂ ⊂ Ω. Let ūm be the unique minimal solution of the problem
consisting of (1.1) in Ω̂ with a boundary condition ūm|∂Ω̂ ≥ um|∂Ω̂ corresponding to
the same sub-solution α restricted to Ω̂. Then ūm ≥ um in Ω̂.

Proof. Clearly ûm ≤ ūm, where ûm is from Lemma 3.3. Combine this with
ûm = um in Ω̂.

3.2. Existence of z̃0. In this section we prove Theorem 2.2. Let S be a convex
sector with apex at O and with boundary Γ ∪ Γ−. Let z = z̃0 and f(z) = B̃(O, z).
We are concerned with the boundary value problem (2.9), which in terms of z and f
is

−4z + f(z) = 0 in S, z = A on ∂S. (3.2)

Here A > 0, by A4, and for sufficiently small |p|, by (2.1) combined with (1.2) and
A1–A3, the function f satisfies

f(0) = 0, f(A) > 0, f ′(0) > γ2,

∫ s

0

f(t)dt > 0 for s ∈ (0, A]. (3.3)

Note that (3.3) implies that 0 and A are sub- and super-solutions for (3.2). There-
fore, there exists at least one solution z ∈ [0, A] of problem (3.2). However, to establish
the desired solution bounds, we shall invoke more precise sub- and super-solutions.
By Lemma 3.1, the function α = max{̊ṽ0,˚̃v−0 } gives a sub-solution of (3.2) such that
0 ≤ α ≤ A. We define z̃0 to be the unique minimal solution corresponding to the
sub-solution α and the super-solution A. Thus, z̃0 ≤ A and, more generally, z̃0 ≤ β
for any super-solution β such that β ≥ α. In the following proof of Theorem 2.2 we
construct a more precise upper bound for z̃0.

Proof of Theorem 2.2:
Let η0 = ξ0er + σ0es be a point in S which is closer to Γ than to Γ− (as the

other case is similar). Let η̄∗ = σ0es, η̄−∗ = σ0es− and let O denote the disc lying in
S, tangent to Γ at η̄∗, and tangent to Γ− at η̄−∗ . The radius of O is ρ = σ0 tan(ω/2)
and is large if η0 is far from O (thus O is centered at ρer + σ0es, while η0 lies on the
segment joining the center and η̄∗). Consider problem (3.2) in O instead of S and
denote its solution zO:

−4zO + f(zO) = 0 in O, zO = A on ∂O. (3.4)
9



Make the change of variable η̂ = η/ρ, which transforms O into the unit disc Ô. The
problem (3.4) transforms into the problem for ẑO(η̂) := zO(η):

−ρ−24η̂ ẑO + f(ẑO) = 0 in Ô, ẑO = A on ∂Ô, (3.5)

where ρ−1 is a small parameter for sufficiently large σ0, i.e. we have a singularly
perturbed problem of type (1.1) in a smooth unit-circle domain. Such problems were
studied, e.g., in [6]; in particular, we invoke [6, Corollary 2.9]. From this result
and some changes in notation, one concludes that there is a constant C such that
χ(d̂)˚̃v0(ρd̂; p+ p̂)+ b−1

2 p̂ with p̂ = Cρ−1 is a super-solution of the problem (3.5). Here
a constant b2 ≥ |buu(O, t)| for t ∈ [u0(O), g(O)], d̂ = d̂(η̂) denotes the distance from a
point η̂ ∈ Ô to ∂Ô, and χ(d̂) is a smooth cut-off function equal to 1 for d̂ > 1/2 and
0 for d̂ < 1/4. (Note that ˚̃v0(ρd̂; p + p̂) replaces v(ρd̂, l; p + p̂) in the notation of [6],
which in the present situation, does not depend on l.)

Interpreting this for the original variable η with the distance d = d(η) = ρd̂ from
a point η ∈ O to ∂O, we see that χ(d/ρ)˚̃v0(d; p + p̂) + b−1

2 p̂ with p̂ = Cρ−1 gives a
super-solution for the problem (3.4). We also have the pair α = max{̊ṽ0,˚̃v−0 } and A
of sub- and super-solutions for the problem (3.4). Combining the two super-solutions
by Lemma 3.1, we get a more precise super-solution: βO := min{χ(d/ρ)˚̃v0(d; p+ p̂)+
b−1
2 p̂, A}, where p̂ = Cρ−1.

To have a solution zO(η) of (3.4) between α and βO, it is crucial to check that
α ≤ βO, which follows from α ≤ χ(d/ρ)˚̃v0(d; p + p̂) + b−1

2 p̂. If a point η is closer to Γ,
the latter assertion is equivalent to ˚̃v0(ξ; p) ≤ χ(d/ρ)˚̃v0(d; p+ p̂)+ b−1

2 p̂. In the region
where χ = 1, this follows from the inequalities ˚̃v0(ξ; p) ≤ ˚̃v0(ξ; p + p̂) ≤ ˚̃v0(d; p + p̂),
where we used the monotonicity of ˚̃v in both of its arguments and the fact that
ξ ≥ d(η) for any η = (ξ, σ). Otherwise, if χ < 1, then ξ ≥ d(η) ≥ ρ/2 and p̂ = Cρ−1

imply ˚̃v0(ξ; p) ≤ Ce−Cξ ≤ b−1
2 p̂ provided that ρ is sufficiently large. Thus we showed

that α ≤ βO if ρ is sufficiently large.
Let zO(η) be the minimal solution of (3.4) between α and βO. By Lemma 3.4

applied to problems (3.2) and (3.4), we get z̃0(η) ≤ zO(η) ≤ βO inO and, in particular,
z̃0(η0) ≤ βO(η0). Note that at η = η0 we have d = ξ0 and therefore βO(η0) ≤
˚̃v0(ξ0; p+ p̂)+b−1

2 p̂ ≤ ˚̃v0(ξ0; p)+Cp̂. Finally recall that p̂ = Cρ−1 = Cσ−1
0 ≤ C|η0|−1.

This proves the upper bound for z̃0 in (2.10) for η = η0 closer to Γ than to Γ−. Thus
(2.10) is established.

By (2.10) and (3.3), there is a sufficiently large number Ξ > 0 such that, setting

SΞ = {η ∈ S : min{ξ, ξ−} > Ξ}, (3.6)

if η ∈ SΞ, then z̃0(η; p) is so small that f ′(z̃0) > γ2. From the mean value theorem,
z̃0 satisfies the linear equation −4η z̃0 + a(η)z̃0 = 0 on SΞ with a(η) > γ2. Let
W (η) = e−γξ + e−γξ− . Then we have 4ηW = γ2W and hence

[ −4η + a(η)
]
W =[

a(η)−γ2
]
W > 0. The boundary ∂SΞ consists of a straight line segment at distance Ξ

from Γ and a straight line segment at distance Ξ from Γ−, where we have W ≥ e−γΞ.
Hence there is a constant C > 0 such that CW ≥ A ≥ z̃0 on ∂SΞ. From the maximum
principle, z̃0(η) ≤ CW (η) in SΞ. This proves (2.11).

If p < p′, then z̃0(·, p′) is a super-solution for the problem satisfied by z̃0(·, p), so
z̃0(η, p) ≤ z̃0(η, p′), which gives the monotonicity assertion of the theorem. Finally,
since z̃0 satisfies the linear equation 4η z̃0 = F with the bounded function F (η) =
B̃(O, z̃0), standard first derivative bounds show that |∇η z̃0| ≤ C in S. This finishes
the proof of Theorem 2.2.
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Remark 3.5. In the context of problem (3.2), we have seen that that assumption
A3 is equivalent to f(A) > 0, which appears in (3.3) and is used above to establish
existence of a solution z such that 0 ≤ z ≤ A. Furthermore, A3 is necessary for
existence of such a solution in the following sense. A result of [11] implies that if in
(3.3) we replace f(A) > 0 by f(A) < 0, then there is θf ∈ (π/2, π) such that for a
sector S with the angle at the apex being less than θf , there exists no solution z to
problem (3.2) such that 0 ≤ z ≤ A. (Note that [11] deals with bounded domains,
but an inspection of the arguments shows that similar results apply to the unbounded
sector S.) Thus if we violate A3 and instead impose f(A) < 0, then problem (3.2)
has no solution 0 ≤ z ≤ A even if it is posed in a quarter-plane.

It should be noted that imposing 0 ≤ z ≤ A, we exclude spike-type phenomena
in the solution u of (1.1) at the corners of Ω. Indeed, recalling that z = z̃0 is a corner
layer function to be used in an asymptotic expansion, we observe that z should be
negligible away from Γ ∪ Γ− and should also satisfy z ≈ ˚̃v0(ξ) and z ≈ ˚̃v−0 (ξ−) near
the boundaries Γ and Γ−, respectively, away for the vertex. As ˚̃v,˚̃v− ∈ [0, A], then
0 ≤ z ≤ A can be violated only for |x−Pj−1| ¿ 1, and therefore will result in a spike
in u ≈ z(η) + u0(Pj−1) in very close proximity of Pj−1.

3.3. Exponential decay of q̃0. The function q̃0 is defined by (2.14a), and it has
been shown that this function satisfies the nonlinear boundary value problem (2.15).
In this subsection we use an equivalent variant of this boundary value problem to
establish the exponential decay of q̃0.

Lemma 3.6. There are constants C1 and c1 such that

|q̃0|+ |∇q̃0| ≤ C1e
−c1|η| in S.

Proof. The boundary conditions (2.15b) are exponentially decaying, but it seems
difficult to analyze the behavior of the right hand side of (2.15a). Instead, it is
convenient to study the function q̃0 +˚̃v−. Define operators N and L by

N [W ] = −4W + B̃(O, ·)∣∣W+˚̃v0
˚̃v0

, LW = −4W + WB̃t(O,˚̃v0).

One has

B̃(O, ·)∣∣W+˚̃v0
˚̃v0

= WB̃t(O,˚̃v0) + W 2R,

where |R| ≤ CR = 1
2 sup |B̃tt|. Hence

N [W ] = LW + W 2R. (3.7)

The operator N will be used to obtain a boundary value problem for the function
q̃0 +˚̃v−0 . From (2.15a) and (2.5) we obtain

N [q̃0 +˚̃v−0 ] = 0 in S. (3.8a)

Next, from (2.15b), we immediately get

q̃0 +˚̃v−0 = 0 on Γ. (3.8b)

Because q̃0 + ˚̃v−0 does not decay exponentially on the entire S, our boundary value
problem is formulated on a subdomain of S. Let ω1 ≤ ω/2, let Γω1 be the ray in
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S which makes angle ω1 with Γ, and let Sω1 ⊂ S be the sector with sides Γ and
Γω1 . One can see that ˚̃v−0 ≤ ˚̃v0 in Sω1 . Hence, from (2.10), 0 < ˚̃v0 ≤ z̃0 in Sω1 so
0 ≤ z̃0 − ˚̃v0 = q0 +˚̃v−0 < z̃0 in Sω1 . Therefore, using (2.11), one finds that given any
c2 > 0, no matter how small, there is a sufficiently large ρ̄ = ρ̄(c2) > 0 such that

|q̃0 +˚̃v−0 | ≤ Ce−γξ = Ce−γ(tan ω1)σ ≤ c2e
−γ(tan ω1)σ/2 on Γω1 , for σ > ρ̄. (3.8c)

Let S′ω1
= {η ∈ Sω1 : σ > ρ̄}, let Γ′ω1

denote the portion of the ray Γω1 that lies along
S′ω1

, and let Γρ̄ denote the portion of ∂S′ω1
with σ = ρ̄. Finally, by (2.10), one can

make

|q̃0 +˚̃v−0 | = |z̃0 − ˚̃v0| ≤ C|η|−1 ≤ C/ρ̄ ≤ c2 on Γρ̄, (3.8d)

by making ρ̄ sufficiently large.
Consider the nonlinear problem

N [W ] = 0 in S′ω1
, W = q̃0 +˚̃v−0 on ∂S′ω1

. (3.9)

We construct an exponentially decaying super-solution W̄ to (3.9). The super-solution
has the form W̄ = w(ξ)φ(σ) where φ(σ) = cφe−aσ with a and cφ chosen sufficiently
small, and where w is a particular solution to the equation

−w′′ + wB̃t(O,˚̃v0) = 1.

To construct w recall that function ˚̃v0(ξ) ≥ 0 is monotonically decreasing, exponen-
tially decaying and satisfies −˚̃v′′0 + B̃(O,˚̃v0) = 0. Setting χ(ξ) = −˚̃v0,ξ ≥ 0 we have
(see [3, proof of Lemma 2.2])

w(ξ) = χ(ξ)
∫ ξ

0

χ(η)−2 ˚̃v0(η)dη + χ(ξ). (3.10)

Since γ˚̃v0 ≤ χ ≤ γ̄v̊0 (see, e.g. [7, estimate (A.2)]), a calculation shows that for some
cw and Cw we have

0 < cw ≤ w(ξ) ≤ Cw.

We now show that with a proper choice of a and cφ, W̄ is the desired super-
solution. One has

L[W̄ ] = −w′′φ− wφ′′ + [wφ]B̃t(O,˚̃v0) =
[− w′′ + wB̃t(O,˚̃v0)

]
φ− wφ′′

= φ− wφ′′ = φ(1− a2w).

Thus L[W̄ ] ≥ 1
2φ if a2 ≤ 1

2C−1
w . Also, using (3.7), we get

N [W̄ ] = LW̄ + w2φ2R

≥ 1
2φ− C2

wφ2CR = φ [ 12 − C2
wCRφ] = φ [ 12 − C2

wCRcφe−aσ]

≥ 0 = N [q̃0 +˚̃v−0 ] if cφ =
1
2
C−2

w C−1
R .

Since W̄ > 0 on Γ, from (3.8b) we have W̄ ≥ q̃0 +˚̃v−0 on Γ. We now show that
W̄ ≥ q̃0 +˚̃v−0 on ∂S′ω1

. Using (3.8c), we have

|q̃0 +˚̃v−0 | ≤ c2e
−γ(tan ω1)σ/2 ≤ cw · cφe−aσ ≤ wφ on Γ′ω1
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if c2 < cwcφ and a ≤ γ(tan ω1)/2. Using (3.8c) we can pick c2 small enough to satisfy
this inequality by picking ρ̄ sufficiently large. Finally, on Γρ̄, using (3.8d) we have

|q̃0 +˚̃v−0 | ≤ c2 ≤ cw · cφe−aρ̄ ≤ wφ on Γρ̄

provided c2 < cwcφ and a is sufficiently small. Again, this is achieved by making
ρ̄ = ρ̄(c2) sufficiently large independently of a and then choosing a = a(ρ̄) sufficiently
small. In summary, if ρ̄ is sufficiently large and a is sufficiently close to 0, the function
W̄ is a super-solution to the problem (3.9).

As z̃0 is the unique minimal solution corresponding to the sub-solution max{̊ṽ0,˚̃v−0},
then, by Lemma 3.3, the function W = q̃0+˚̃v−0 = z̃0−˚̃v0 restricted to S′ω1

is the unique
minimal solution to (3.9) corresponding to the sub-solutionW = max{̊ṽ0,˚̃v−0}−˚̃v0 = 0.
Since clearlyW ≤ W̄ , we conclude that 0 =W ≤ W = q̃0 +˚̃v−0 ≤ W̄ ≤ Ce−a|η| in Sω1 .

Combining this with |̊ṽ−0 | ≤ Ce−a|η| in Sω1 , yields |q̃0| ≤ Ce−a|η| in Sω1 . A similar
argument shows that |q̃0| ≤ Ce−a|η| in the sector S−ω1

of angle ω1 and adjacent to the
side Γ− of S. The inequality (2.11) implies |q̃0| ≤ C1e

−c1|η| in S \ (Sω1 ∪ S−ω1
), so

|q̃0| ≤ C1e
−c1|η| in S.

To bound first derivatives of q̃0, let ω2 ∈ (1
2ω, ω), let Γω2 be the ray in S which

makes an angle ω2 with Γ, and let Sω2 ⊂ S be the sector with sides Γ and Γω2 .
Using (3.7), (3.8a) and the exponential decay of q̃0 and ˚̃v−0 in Sω2 , we find that
|4(q̃0 +˚̃v−0 )| ≤ C|q̃0 +˚̃v−0 | ≤ Ce−c|η| in Sω2 . Now, applying the local Schauder-type
estimate for first derivatives to pairs of concentric discs of radii 1 and 2, which can
possibly intersect Γ, but not Γω2 , one finds that |∇(q̃0 +˚̃v−0 )| ≤ Ce−c|η| and therefore
|∇q̃0| ≤ Ce−c|η| inside any admissible interior unit disc. Since such unit discs cover
S̄ω/2 ∩ {|η| ≥ C̄}, in view of Theorem 2.2 the desired exponential decay in the entire
sector S̄ω/2 follows.

3.4. Well-posedness of the linearized problem in a sector. Let z̃0 be the
solution of (2.9) given by Theorem 2.2. Let ã(η) = B̃t(O, z̃0(η)). In this section we
establish the well-posedness of the linearized problem

MW := −4W + ãW = F in S, W = 0 on ∂S. (3.11)

As a consequence we obtain the existence of the functions z1 and z̃0,p and exponential
decay of their components q1 and q̃0,p.

Let SR denote the truncated sector of radius R. We denote the 2 straight sides
of SR by ΓR and Γ−R. We study the eigenvalue problem

MΦR = λRΦR in SR, ΦR = 0 on ∂SR. (3.12)

Applying the general eigenvalues/eigenfunctions theory [2, §6.5.1] to the operator
M + Ca, where Ca > max |ã|, we conclude that the problem (3.12) has a countable
set of real eigenvalues λR,1 < λR,2 ≤ · · · and associated eigenfunctions. The principal
eigenvalue λR,1 has only one eigenfunction, which we denote by φ. The eigenfunction
φ > 0 in SR. Although ã is not necessarily non-negative, we will be able to show,
see Theorem 3.13 below, that λR,1 is positive and bounded away from 0 uniformly in
R. This implies, see Lemma 3.14 below, that the problem (3.11), but posed on the
truncated sector, is well-posed and with a solution that is uniformly bounded in R.
Taking the limit as R →∞ then gives the desired result, Theorem 3.15.

Let the direction of the ξ̄-axis coincide with the ray ω/2 and set

Z(η) := −∂z̃0

∂ξ̄
. (3.13)
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Clearly, MZ = 0 and Z ≥ 0 on ∂S, since z̃0 = A on ∂S and z̃0 ≤ A in S. We also
note that since z̃0 is constant on Γ, then Z = −(sin 1

2ω)z̃0,ξ on Γ.
Lemma 3.7. We have 0 ≤ Z ≤ C in S. Furthermore, for each R′ > 0 there is a

C1 = C1(R′) > 0 such that if η ∈ Γ ∪ Γ− and |η| > R′, then Z(η) ≥ C1.
Proof. The boundedness of Z follows from Theorem 2.2. To show that Z ≥ 0,

recall that z̃0 was defined in Section 3.2 as the unique minimal solution of (2.9)
corresponding to the sub-solution α = max{̊ṽ0,˚̃v−0 }. An inspection of the proof of
[10, Theorem 7.1] shows that z̃0 can be generated as the limit of an increasing sequence
of sub-solutions {α(k)}, i.e. z̃0 = limk→∞ α(k), where α(0) := α and further α(k) are
defined inductively by

−4α(k) + C̄α(k) = C̄α(k−1) − B̃(O, α(k−1)), α(k)
∣∣∣
∂S

= A.

Here C̄ ≥ B̃t(O, t) for all t ∈ [0, A]. Now a calculation shows that

[−4+ C̄ ] α(k)

ξ̄
= [C̄ − B̃t(O, α(k−1))] α(k−1)

ξ̄
, α

(k)

ξ̄

∣∣∣
∂S
≤ 0,

where the relation on the boundary for each k follows from α(k) ≤ A in S. Note also
that for α(0) = max{̊ṽ0,˚̃v−0 } we get

α
(0)

ξ̄
≤ 0 in S.

By the maximum principle and induction, these imply that

−α
(k)

ξ̄
≥ 0 in S,

and hence, taking the limit as k →∞, we get the non-negativity of Z.
Now we shall show that for any R′ > 0, there is a C1 > 0 such that Z ≥ C1 > 0

for η ∈ Γ ∪ Γ− and |η| ≥ R′. Recall that Z = −∂z̃0/∂ξ̄ = −[̊ṽ0(ξ) + ˚̃v−0 (ξ−)]ξ̄ − q̃0,ξ̄.
Since the first term satisfies the desired estimate, and from Lemma 3.6, the term q̃0,ξ̄

can be made arbitrarily small by making |η| large enough, there are positive constants
R′′ and C ′′ such that if |η| > R′′ and η ∈ Γ ∪ Γ− then Z(η) > C ′′.

It remains to show that for any R′ > 0, there is a C ′ > 0 such that Z ≥ C ′ for
η ∈ Γ ∪ Γ− and R′ ≤ |η| ≤ R′′. This property immediately follows from Z > 0 on
∂S\O. To show this, recall that z̃0 ≤ A is a solution of problem (2.9), where A > 0
and B̃(O,A) > 0. Now, a calculation shows that

[−4+ C̄](z̃0 −A) < (C̄t− B̃(O, t))
∣∣∣
z̃0

A
≤ 0 in S

Combining this with z̃0 − A = 0 on ∂S and applying the maximum principle, yields
z̃0−A < 0 in S. Furthermore, by Hopf’s Lemma [2, §6.4.2], we have ∂(z̃0−A)/∂n > 0
on ∂S\O (where O is excluded since it does not satisfy the interior ball condition).
Finally, Z = (sin 1

2ω)∂z̃0/∂n > 0 on ∂S\O.
As the pair (λR,1, φ) solves (3.12), we get the equation

λR,1φZ = −(4φ)Z + ãφZ = −(4φ)Z + φ(4Z),

integrating which over SR and using the fact that φ = 0 on ∂SR we obtain

λR,1

∫∫

SR

φZ = −
∫

∂SR

Z
∂φ

∂n
> 0. (3.14)
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Since φ and Z are positive in SR, it follows that λR,1 > 0. We now seek a lower bound
for λR,1 that is independent of R.

In what follows we set ρ(η) = ã(η) − λR,1, so −4φ + ρφ = 0. Recall that
ã(η) = B̃t(O, z̃0(η)) and, in view of (2.1), by the assumption A1, we have B̃t(O, 0) > 0.
Using (2.11) pick a number Ξ > 0 such that ã(η) ≥ 3

4 B̃t(O, 0) if min{ξ, ξ−} ≥ Ξ. Set
S(Ξ) = {η ∈ SR : min{ξ, ξ−} ≥ Ξ}. Thus,

ρ(η) ≥ 1
4 B̃t(O, 0) if λR,1 ≤ 1

2 B̃t(O, 0) and η ∈ S(Ξ). (3.15)

Finally, for R′ < R let ΓR′,R be the set of points η ∈ ΓR such that |η| > R′.
Lemma 3.8. If λR,1 < 1

2 B̃t(O, 0) then for each R′ ∈ (0, R) there is a positive
constant C2(R′), independent of R, such that

λR,1 ≥ C2

∫
ΓR′,R

∂φ/∂ξ

‖φ‖L1(SR∩{ξ≤Ξ})
. (3.16)

Proof. Since ∂φ/∂n ≤ 0 on ∂SR and −∂φ/∂n = ∂φ/∂ξ on ΓR, relation (3.14) and
Lemma 3.7 imply

λR,1 =

∫
∂SR

|∂φ/∂n|Z∫∫
SR

φZ
≥ 2C1

∫
ΓR′,R

φξ

‖Z‖L∞(SR)‖φ‖L1(SR)
,

where C1 = C1(R′) is from Lemma 3.7. Using the bounds for Z given by Lemma 3.7,
it remains to show that

‖φ‖L1(SR) ≤ C‖φ‖L1(SR∩{ξ≤Ξ}) (3.17)

From (3.15), we have

0 ≥
∫

∂SR

∂φ

∂n
=

∫∫

SR

4φ =
∫∫

SR

ρφ =
∫∫

S(Ξ)

ρφ +
∫∫

SR\S(Ξ)

ρφ

≥ 1
4 B̃t(O, 0)‖φ‖L1(S(Ξ)) − (max

S
|ρ|) ‖φ‖L1(SR\S(Ξ)).

Recalling that B̃t(O, 0) > 0, we get

‖φ‖L1(S(Ξ)) ≤ C‖φ‖L1(SR\S(Ξ)) ≤ 2C‖φ‖L1(S:ξ≤Ξ)

where in the final assertion we used the symmetry of φ with respect to ξ and ξ−.
Adding ‖φ‖L1(SR\S(Ξ)) to both sides gives (3.17).

Now we present an auxiliary lemma, which will enable us to get a lower bound
for

∫
ΓR′,R

∂φ/∂ξ in the forthcoming Lemma 3.11.

Lemma 3.9. Let positive numbers ρ0, δ̄ and a be given. Let 0 < δ ≤ δ̄. Let Ψ be
a bounded positive function on R with Ψ(x) = 0 for |x| > a. Let a bounded function
ψ(x, y) be defined for (x, y) ∈ (−∞,∞)× [0, δ] by

−4ψ + ρ0ψ = 0, ψ(x, 0) = 0, ψ(x, δ) = Ψ(x)

Then ψ ≥ 0 and there exist positive numbers ā = ā(δ̄) and C0(δ̄) such that, setting
I =

∫ a

−a
Ψ(x)dx, we have

∫ (a+ā)

−(a+ā)

ψy(x, 0)dx ≥ C0(δ̄)
δ

I,

∫

|x|>|a+ā|
ψy(x, 0)dx ≤ C0(δ̄)

2δ
I.
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Proof. We apply the Fourier transform in the variable x to ψ to obtain the solution
formula ψ(x, y) =

∫ a

−a
G(x− t, y)Ψ(t)dt, where

G(x, y) =
1
π

∫ ∞

0

cos(xs)
sinh(y

√
s2 + ρ0)

sinh(δ
√

s2 + ρ0)
ds.

By the maximum principle, G(x, y) ≥ 0, while G(x, 0) = 0, and hence

Gy(x, 0) =
1
π

∫ ∞

0

cos(xs)

√
s2 + ρ0

sinh(δ
√

s2 + ρ0)
ds ≥ 0.

Since ψy(x, 0) =
∫ a

−a
Gy(x− t, 0)Ψ(t) dt, we obtain

∫ a+ā

−a−ā

ψy(x, 0) dx =
∫ a

−a

I1(t)Ψ(t)dt, I1(t) :=
∫ a+ā−t

−a−ā−t

Gy(x, 0) dx.

If t ∈ [−a, a], then [−a− ā− t, a+ ā− t] ⊃ [−ā, ā] ⊃ [−δã, δã], where ã is any positive
number ≤ ā/δ̄ and δ ≤ δ̄. Combining this with Gy(x, 0) ≥ 0, we get

I1(t) ≥ 1
π

∫ δã

−δã

dx

∫ ∞

0

cos(xs)

√
s2 + ρ0

sinh(δ
√

s2 + ρ0)
ds.

Changing variables to x̂ = x/δ and ŝ = sδ so that xs = x̂ŝ and dx ds = dx̂ dŝ we
arrive at

I1(t) ≥ 1
δ π

∫ ã

−ã

dx̂

∫ ∞

0

cos(x̂ŝ)

√
ŝ2 + δ2ρ0

sinh(
√

ŝ2 + δ2ρ0)
dŝ.

Note that here δ2ρ0 ∈ (0, δ̄2ρ0], while e−s ≤ s/ sinh s ≤ 2e−s/2 for any positive s.
Therefore

e−δ̄
√

ρ0e−ŝ ≤
√

ŝ2 + δ2ρ0

sinh(
√

ŝ2 + δ2ρ0)
≤ 2e−ŝ/2.

Combining this with cos(x̂ŝ) > 1
2 for ŝ ≤ 1/|x̂| and | cos(x̂ŝ)| ≤ 1 otherwise, we get

I1(t) ≥ 1
δ π

∫ ã

−ã

dx̂
[

1
2 e−δ̄

√
ρ0

∫ 1/|x̂|

0

e−ŝdŝ− 2
∫ ∞

1/|x̂|
e−ŝ/2dŝ

]

=
C

δ

∫ ã

−ã

dx̂
[
1− e−1/|x̂| − C ′e−1/(2|x̂|)

]
,

where C = C(δ̄) and C ′ = C ′(δ̄). If ã > 0 is chosen sufficiently small, depending only
on δ̄, the integrand is ≥ C > 0 and hence I1(t) ≥ C0(δ̄)/δ.

Now consider
∫ ∞

a+ā

ψy(x, 0) dx =
∫ a

−a

I2(t)Ψ(t)dt, I2(t) :=
∫ ∞

a+ā−t

Gy(x, 0) dx.

Since t ∈ [−a, a], we see that a + ā− t ≥ ā ≥ δā/δ̄. Combining this with Gy(x, 0) ≥ 0
we get

0 ≤ I2(t) ≤
∫ ∞

δā/δ̄

Gy(x, 0) dx =
1
2π

∫ ∞

δā/δ̄

dx

∫ ∞

−∞
eixs

√
s2 + ρ0

sinh(δ
√

s2 + ρ0)
ds.
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Again using x̂ = x/δ and ŝ = sδ, we get

I2(t) ≤ δ−1

2π

∫ ∞

ā/δ̄

dx̂

∫ ∞

−∞
eix̂ŝ g(ŝ)dŝ =

δ−1

2π

∫ ∞

ā/δ̄

dx̂

(ix̂)2

∫ ∞

−∞
eix̂ŝ g′′(ŝ)d ŝ,

where

g(ŝ) =

√
ŝ2 + δ2ρ0

sinh(
√

ŝ2 + δ2ρ0)

and we used integration by parts twice. A calculation shows that g(ŝ) and its deriva-
tives are well-defined (e.g. they are bounded at 0) and

|g(ŝ)|+ |g′(ŝ)|+ |g′′(ŝ)| ≤ Ce−C|ŝ|

Taking absolute values,

I2(t) ≤ C

δ

∫ ∞

ā/δ̄

dx̂

x̂2
=

C

δā/δ̄
=

C0(δ̄)
4δ

if ā = ā(δ̄) is chosen sufficiently large. The integral over (−∞,−(a + ā)) is estimated
in the same way.

Corollary 3.10. Under the conditions of Lemma 3.9, there exists a function ψ̃
that satisfies

−4ψ̃ + ρ0ψ̃ = 0, ψ̃(x, 0) = 0, ψ̃(x, δ) = Ψ(x), ψ̃(x,±(a + ā)) ≤ 0

in the domain [−(a + ā), a + ā]× [0, δ], and

∫ (a+ā)

−(a+ā)

ψ̃y(x, 0)dx ≥ C ′0(δ̄)
∫ a

−a

Ψ(x)dx.

Proof. Let ψ be the function given by Lemma 3.9 and let

ψ̃(x, y) := ψ(x, y)− ψ(2(a + ā)− x, y)− ψ(−2(a + ā)− x, y).

Then ψ̃(±(a + ā)) = −ψ(∓3(a + ā)) ≤ 0; and ψ̃ satisfies the same equation as ψ. We
obtain the asserted inequality with C ′0(δ̄) = 1

2 δ̄−1C0(δ̄).
Lemma 3.11. There are positive numbers ā and C̄, independent of R, such that

for any σ1, σ2 with 0 < σ1 < σ2, if [0, Ξ]× [σ1− ā, σ2 + ā] ⊂ SR, where η is interpreted
as η = (ξ, σ), then

∫ σ2+ā

σ1−ā

φξ(0, σ)dσ ≥ C̄‖φ‖L1([0,Ξ]×[σ1,σ2]).

Proof. Since φ ≥ 0, the mean value theorem applied to the positive function
Φ(ξ) :=

∫ σ2

σ1
φ(ξ, σ)dσ gives

‖φ‖L1([0,Ξ]×[σ1,σ2]) = Ξ
∫ σ2

σ1

φ(δ, σ)dσ

for some δ ∈ (0, Ξ).
17



We apply Corollary 3.10 with ρ0 > 0 such that ρ0 > maxS ρ(η), δ̄ = Ξ and the
function Ψ defined by Ψ(σ) = φ(δ, σ) for σ ∈ [σ1, σ2], Ψ(σ) = 0 otherwise. Thus there
exists a function ψ̃ such that −4ψ̃ + ρ0ψ̃ = 0 and

∫ σ2+ā

σ1−ā

ψ̃ξ(0, σ)dσ ≥ C ′0(Ξ)
∫ σ2

σ1

φ(δ, σ)dσ

Note that the choice of ρ0 implies −4φ + ρ0φ ≥ 0. Now by the maximum principle,
φ ≥ ψ̃(ξ, σ) and hence φξ(0, σ) ≥ ψ̃ξ(0, σ), which yields

∫ σ2+ā

σ1−ā

φξ(0, σ)dσ ≥ C ′0(Ξ)
∫ σ2

σ1

φ(δ, σ)dσ = Ξ−1C ′0(Ξ)‖φ‖L1([0,Ξ]×[σ1,σ2]).

The result is therefore obtained with C̄ = Ξ−1C ′0(Ξ).
The next lemma gives another lower bound for

∫
ΓR′,R

φξ in (3.16).
Lemma 3.12. There exist positive numbers R′ and C∗, independent of R, such

that if λR,1 < 1
2 B̃t(O, 0), we have R > 2R′ and

∫

ΓR′,R

φξ ≥ C∗max
SR

φ.

Proof. It suffices to prove the desired estimate for φ scaled so that maxSR φ = 1.
Let the maximum be attained at (ξ∗, σ∗); clearly ξ∗ = ξ∗(R) and σ∗ = σ∗(R). Since
φ is symmetric with respect to ΓR and Γ−R, there is such a point (ξ∗, σ∗) closer to Γ.
Note that for this point we have ξ∗ ≤ Ξ; indeed, by the maximum principle, φ cannot
attain its positive maximum in S(Ξ), since in this subdomain −4φ + ρφ = 0 with
ρ > 0. Next, combining 4φ = ρφ with φ ≤ 1 in SR, we get |∇φ| ≤ C in ΩR, where C
is independent of R. Hence with δ = 1/(4C) we have φ(ξ∗, σ) ≥ 1

2 for σ ∈ [σ∗, σ∗+2δ].
Therefore R > σ∗ + 2δ ≥ 2δ, the rectangle (0, ξ∗)× (σ∗, σ∗ + 2δ) is in SR and on its
boundary φ(ξ, σ) satisfies

φ(ξ∗, σ) ≥ 1
4
[
cos

(
[σ − (σ∗ + δ)]π/δ

)
+ 1

]
, φ(ξ, (σ∗ + δ)± δ) ≥ 0, φ(0, σ) = 0

We claim that this implies
∫ R

δ

φξ(0, σ)dσ ≥
∫ σ∗+2δ

σ∗+δ

φξ(0, σ)dσ ≥ C∗, (3.18)

which yields the assertion of the lemma with R′ = δ.
To prove (3.18) set σ′ = σ − (σ∗ + δ), let ρ0 > 0 satisfy ρ0 > maxS ρ(η), and set

κ =
√

ρ0 + (π/δ)2. Consider the barrier function

ψ(ξ, σ′) := [cos(σ′π/δ) + 1]
sinh(κξ)
sinh(κξ∗)

for (ξ, σ′) ∈ [0, ξ∗]× [−δ, δ].

Clearly

ψ ≥ 0, ψ(ξ,±δ) = ψ(0, σ′) = 0, ψ(ξ∗, σ′) = cos(σ′π/δ) + 1,

and furthermore

−4ψ + ρ0ψ = −(π/δ)2
sinh(κξ)
sinh(κξ∗)

≤ 0.

18



Finally note that since ξ∗ ≤ Ξ,

∂ψ

∂ξ

∣∣∣
ξ=0

= [cos(σ′π/δ) + 1]
κ

sinh(κξ∗)
≥ [cos(σ′π/δ) + 1]

κ

sinh(κΞ)
,

so

∂ψ

∂ξ

∣∣∣
ξ=0,|σ′|≤δ/2

≥ κ

sinh(κΞ)
.

Now for (ξ, σ′) ∈ [0, ξ∗] × [−δ, δ] we have φ ≥ 1
4κψ. This indeed follows from

−4φ + ρ0φ ≥ −4φ + ρφ = 0, the boundary conditions on φ, and the maximum
principle applied in the domain (ξ, σ′) ∈ [0, ξ∗]× [−δ, δ]. Thus we arrive at the bound
φξ

∣∣
ξ=0,|σ′|≤δ/2

≥ 1
4κ/ sinh(κΞ), which yields

∫ σ∗+2δ

σ∗+δ

φξ(0, σ)dσ ≥
∫ δ/2

0

φξ(0, σ′)dσ′ ≥ κδ

8 sinh(κΞ)
= C∗ > 0,

i.e. we have obtained (3.18).
Theorem 3.13. The principal eigenvalue of SR satisfies λR,1 ≥ C > 0, where C

is independent of R.
Proof. If λ1,R ≥ 1

2 B̃t(O, 0), our assertion follows. Therefore we suppose that
λ1,R < 1

2 B̃t(O, 0) and let R′ be given by Lemma 3.12. Consider the largest domain
Ω0 = {(ξ, σ) ∈ [0, Ξ] × [σ1, σ2]} such that Ω′0 = {(ξ, σ) ∈ [0,Ξ] × [σ1 − ā, σ2 + ā]} ⊂
SR \ SR′ . Then by Lemma 3.11, we have

∫

ΓR′,R

φξ ≥
∫ σ2+ā

σ1−ā

φξ(0, σ)dσ ≥ C̄‖φ‖L1(Ω0).

Combining this with Lemma 3.12, we get
∫

ΓR′,R

φξ ≥ C
[‖φ‖L1(Ω0) + max

SR

φ
]
. (3.19)

Note also that SR ∩ {ξ ≤ Ξ}\Ω0 is of size O(1) and therefore

‖φ‖L1,SR∩{ξ≤Ξ} ≤ ‖φ‖L1(Ω0) + C max
SR

φ. (3.20)

Combining (3.16), (3.19) and (3.20), we get the assertion of the theorem.
Lemma 3.14. There is a constant C > 0, independent of R, such that if R > 0

and F ∈ L2(SR) then the problem

MW = F in SR, W = 0 on ∂SR (3.21)

has a solution W which satisfies

‖W‖L∞(SR) + ‖W‖H2(SR) ≤ C‖F‖L2(SR). (3.22)

If |F (η)| ≤ Ce−c|η|, then |W (η)| ≤ C ′e−c′|η|.
Proof. Since M is a self-adjoint operator on L2(SR), the well-posedness of the

boundary value problem and the inequality ‖W‖L2(SR) ≤ C‖F‖L2(SR) follows from
Theorem 3.13 and an eigenfunction expansion. Write the differential equation as
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−4W = F1 := −ãW+F . Then F1 ∈ L2(R) and has L2 norm bounded uniformly in R.
From the “second fundamental inequality” of Ladyzhenskaya ([8], Lemma 8.1) and the
convexity of the sector SR, one obtains the inequality ‖W‖H2(SR) ≤ C‖F1‖L2(SR) ≤
C‖F‖L2(SR), where C is independent of R, which is one of the inequalities in (3.22).
Sobolev’s inequality implies the other inequality in (3.22).

For the exponential decay, note first that the expansion of W into the eigenfunc-
tions of M gives

λR,1‖W‖2L2(SR) ≤ (MW,W ),

‖∇W‖2L2(SR) = (MW,W )− (ãW,W ) ≤ C(MW,W ).

Therefore we get the “strict Garding inequality”

‖W‖2H1(SR) ≤ C∗(MW,W ) for W ∈ H1
0 (SR) (3.23)

with a constant C∗ that is independent of R.
Note that |η| cos(ω/2) ≤ ξ̄ ≤ |η|, where the variable ξ̄ has the same meaning as in

(3.13). Therefore, it suffices to establish the final exponential-decay assertion of the
lemma with |η| replaced by ξ̄. Now suppose F satisfies |F (η)| ≤ Ce−cξ̄. Let κ ∈ (0, c)
and set W̃ = eκξ̄W , F̃ = eκξ̄F . Thus |F̃ (η)| ≤ Ce−c′ξ̄ with c′ = c − κ > 0. The
function W̃ satisfies

MW̃ + 2κW̃ξ̄ − κ2W̃ = F̃ . (3.24)

Applying (3.23) we get

C−1
∗ ‖W̃‖2H1(SR) ≤ (F̃ − 2κW̃ξ̄ + κ2W̃ , W̃ ) ≤ ‖W̃‖L2(SR)‖F̃‖L2(SR) + κ2‖W̃‖2L2(SR),

where we used (W̃ , W̃ξ̄) = 0. Choosing κ sufficiently small and using the arithmetic-
geometric mean inequality we get

‖W̃‖H1(SR) ≤ C‖F̃‖L2(SR).

Setting F̃1 = F̃ − 2κW̃ξ̄ + κ2W̃ , this implies ‖F̃1‖L2(SR) ≤ C‖F̃‖L2(SR). Equation
(3.24) becomes MW̃ = F̃1 and the inequality (3.22) applied to this equation gives
|W̃ (η)| ≤ C‖F̃‖L2(SR) for η ∈ SR. Therefore |W (η)| ≤ Ce−κξ̄‖F̃‖L2(SR) ≤ Ce−κξ̄ for
η ∈ Sr. The constants in these inequalities are all independent of η.

Theorem 3.15. There is a constant C > 0 such that if F ∈ L2(S) then the
problem (3.11) has a solution W which satisfies

‖W‖L∞(S) + ‖W‖H2(S) ≤ C‖F‖L2(S). (3.25)

If |F (η)| ≤ Ce−c|η|, then |W (η)| ≤ C ′e−c′|η| for c′ < c.
Proof. Pick a sequence Rj → ∞ and let Wj be the corresponding solution of

(3.21). Using compactness and a diagonalization argument one obtains a subsequence
of the Wj , which we again call Wj , and a function W ∈ H2(S), such that for each
R > 0, Wj → W in H1(SR) and Wj converges weakly to W in H2(S). Letting
χ ∈ C∞0 (S) and taking the limit in the equation

∫∫

SRj

∇Wj · ∇χ + ãWjχ =
∫∫

SRj

Fχ,
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we conclude that W solves (3.11). For each R > 0 one has

‖W‖H2(SR) ≤ lim inf ‖Wj‖H2(SR) ≤ C‖F‖L2(S).

Letting R →∞ we therefore get the second inequality of (3.25). The first inequality
follows from Sobolev’s inequality. The assertion regarding exponential decay is proved
in the same way as in the proof of Lemma 3.14.

3.5. The existence and exponential decay of q1 and q̃0,p. The formula
(2.14b) presumes to give a definition of the function q1, the presumption being that
the boundary value problem (2.12) has a solution. In fact, we will turn the matter
around: from (2.14b) we have already obtained the boundary value problem (2.16)
for the function q1. The data of this problem is exponentially decaying. This allows
us to establish the existence of q1 and then, from (2.14b), to define z1.

Lemma 3.16. The solution to the problem (2.16) exists and defines a function q1

which is exponentially decaying in S, i.e. |q1| ≤ Ce−c|η| for some C, c > 0.
Proof. We apply Theorem 3.15 to a version of the problem (2.16) for an auxiliary

function q̂1, which is obtained from q1 by subtracting a smooth exponentially decaying
function that satisfies the boundary conditions in (2.16) so that q̂1

∣∣
∂S

= 0. For this we
must show that q1 is exponentially decaying on Γ and Γ−, and Mq1 is exponentially
decaying on S. The exponential decay of the boundary conditions in (2.16) and their
derivatives follows from the inequalities in Lemma 2.1 combined with the observation
that ξ = |η| sin ω on Γ− and ξ− = |η| sin ω on Γ. We now show that there are positive
constants c1 and C1 such that

|Mq1| ≤ C1e
−c1|η|. (3.26)

Using (2.16), denote the 3 terms on the right-hand side of Mq1 by I, II, and II−.
Recalling that z0 = q0 + v̊0 + v̊−0 and then applying (2.4) to I yields the bound
|I| ≤ C|η|(|q0|+ v̊0v̊

−
0 ). For II and II− we readily get |II| ≤ |̊v1 +σv̊0,s|(|q0|+ v̊−0 ) and

|II−| ≤ |̊v−1 + σ−v̊−0,s− |(|q0| + v̊0). Combining these three estimates with Lemma 3.6
and Lemma 2.1, we get the exponential decay of each of the terms I, II, and II− and
therefore the desired estimate (3.26).

By formally differentiating both sides of (2.9) with respect to p and invoking (2.1),
one obtains a linear boundary value problem satisfied by z̃0,p. However the data for
this equation are not square integrable and so Theorem 3.15 cannot be used. It is
better to instead to work with q̃0. The boundary value problem satisfied by q̃0,p is
given by (2.17).

Lemma 3.17. The function q̃0,p exists and is exponentially decaying in S.
Proof. We apply Theorem 3.15 to the problem (2.17). For this we must show that

q̃0,p is exponentially decaying on Γ and Γ−, and we must show that the right-hand
side is exponentially decaying on S. The proof of this exponential decay of the data
is similar to that given in the preceding lemma.

4. The perturbed asymptotic expansion; sub- and super-solutions; ex-
istence proof. In Section 2.1 we have defined boundary layer functions ṽ = ṽ0 + εv1

associated with a side Γ of Ω, and in Section 2.2 we have defined corner layer func-
tions q̃ = q̃0 + εq̃1 associated with a vertex Pj−1 on Ω. We now define perturbed
asymptotic expansions βSj associated with a vertex Pj−1 of the polygon Ω. These
functions are then assembled into a perturbed asymptotic expansion βΩ of the original
problem (1.1). When the perturbation parameter p vanishes, we obtain an asymptotic
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expansion associated with the problem that is eventually shown to be of second order.
The perturbed asymptotic expansions are used to construct sub- and super-solutions
for the problem, and these sub- and super-solutions are then used to establish the
existence of a solution to (1.1).

Recalling the formulas (2.7) and (2.14), we define a perturbed asymptotic ex-
pansion βSj and an asymptotic expansion uas,Sj associated with the vertex Pj−1 as
follows:

βSj
(x; p) = u0(x) + ṽ(ξ, s; p) + ṽ−(ξ−, s−; p) + q̃(η; p) + θp,

uas,Sj
(x) = βSj

(x; 0) = u0(x) + v(ξ, s) + v−(ξ−, s−) + q(η),
(4.1)

where x ∈ Sj , and the variables ξ, ξ−, s, s−, η are all associated with the sector Sj

having apex at Pj−1 (see Figure 2.1). A value for the positive parameter θ and a
range of values for p will be chosen shortly. The functions uas,Sj will be used to build
an asymptotic approximation to the solution. The proof of the following lemma is
given in [5, Lemma 3.1].

Lemma 4.1. We have Fuas,Sj
= O(ε2) for all x ∈ Sj. Furthermore, we have

uas,Sj
(x) = g(x) + O(ε2) on ∂Sj, where g(x) is extended from Γj−1 ∪ Γj onto ∂Sj as

described in Section 2.2.
Lemma 4.2. There are positive numbers θ, ε∗, p∗, c1 and c2 such that for ε ≤ ε∗

and |p| ≤ p∗ one has |βSj (x; p)− uas,Sj | ≤ C|p|, and

βSj (x;−p) ≤ βSj (x; p) for p > 0, (4.2a)

FβSj ≥ 1
2θγ2 p − c1ε

2 for p > 0, (4.2b)

FβSj ≤ − 1
2θγ2|p|+ c1ε

2 for p < 0, (4.2c)

(sgnp)βSj ≥ (sgnp) g + 1
2θ|p| − c2ε

2 on ∂Sj for p 6= 0. (4.2d)

Proof. The inequalities (4.2b), (4.2c) are established in [5, Lemma 4.4]. Note that
it is crucial in the proof that the positive parameter θ in the definition (4.1) of βSj is
chosen sufficiently small so that 0 < θ ≤ |λ(x)|−1, where for some ϑ = ϑ(x) ∈ (0, 1)
we have λ(x) = buu(x, u0(x) + ϑ[v0 + v−0 + q0]).

Next, we invoke [5, Lemma 4.1], which gives another desired assertion βSj =
uas,Sj + O(p), and also states that for some sufficiently small ε∗ > 0, if ε ≤ ε∗ and
p ≥ 0, then

βSj (x;−p) ≤ uas,Sj (x)− 1
2θp ≤ uas,Sj (x) + 1

2θp ≤ βSj (x; p). (4.3)

This immediately implies (4.2a). Furthermore, for x ∈ ∂Sj , combining (4.3) with the
estimate uas,Sj (x) = g(x)+O(ε2) of Lemma 4.1, we get βSj (x; p) ≥ g(x)− c2ε

2 + 1
2θp

for p > 0, and βSj (x; p) ≤ g(x) + c2ε
2 − 1

2θ|p| for p < 0. Thus we have obtained the
remaining assertion (4.2d).

To define corresponding perturbed asymptotic expansions for the whole domain
Ω we require a suitable partition of unity. Let functions {χj}M

j=1 be non-negative
smooth functions Ω̄ → [0, 1] which satisfy

χj(Pj−1) = 1, χj(x) + χj+1(x) = 1 on Γ̄j ,

M∑

j=1

χj(x) = 1 on Ω̄.
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We define the perturbed asymptotic expansion βΩ associated with the problem (1.1)
by

βΩ(x; p) =
M∑

j=1

χj(x)βSj
(x; p),

uas,Ω(x) = βΩ(x; 0).

One has
Lemma 4.3. There are positive numbers θ, ε∗, p∗, c1 and c2 such that for ε ≤ ε∗

and |p| ≤ p∗ one has |βΩ(x; p)− uas,Ω| ≤ C|p|, and

βΩ(x;−p) ≤ βΩ(x; p) for p > 0, (4.4a)
FβΩ ≥ 1

2θγ2 p − c1ε
2 for p > 0, (4.4b)

FβΩ ≤ − 1
2θγ2|p|+ c1ε

2 for p < 0, (4.4c)

(sgnp) βΩ ≥ (sgnp) g + 1
2θ|p| − c2ε

2 on ∂Ω for p 6= 0. (4.4d)

Proof. The proof of each inequality follows from the non-negativity of the partition
of unity and the corresponding inequality in Lemma 4.2.

We shall dwell on getting (4.4b) and (4.4c) bearing in mind that F is nonlinear. If
χj(x) = 1 for some j, then βΩ(x, p) = βSj (x, p) and (4.4b), (4.4c) are straightforward.
Otherwise, x has to be a positive distance away from any vertex of Ω. Now, if we
have χj(x) + χj+1(x) = 1 for some j, then the exponential decay of q̃ implies that
βSj+1(x, p) = βSj (x, p) + O(e−c/ε); thus we have βΩ(x, p) = βSj (x, p) + O(e−c/ε) and
FβΩ(x, p) = FβSj (x, p) + O(e−c/ε), i.e. (4.4b), (4.4c) hold true in this case with
possibly a larger constant c1 than in (4.2b), (4.2c). Finally if χj(x) + χj+1(x) 6= 1
for all j, then x is a positive distance away from ∂Ω, and now the exponential decay
of q̃ and ṽ implies that βSj (x, p) = u0(x) + θp + O(e−c/ε) for all j; hence we have
βΩ(x, p) = βS1(x, p) + O(e−c/ε), and we again get (4.4b), (4.4c).

We now present our main result.
Theorem 4.4. Let b satisfy assumptions A1–A4. Then there is a positive con-

stant ε∗ such that for all ε ∈ (0, ε∗] the problem (1.1) has a solution u(x) such that
|u(x)− uas,Ω(x)| ≤ Cε2.

Proof. First set ε∗ in Lemma 4.3 sufficiently small so that c1(ε∗)2 ≤ 1
2θγ2p∗ and

c2(ε∗)2 ≤ 1
2θp∗. For any ε ≤ ε∗, choose p̄ = max{c1ε

2/( 1
2θγ2), c2ε

2/(1
2θ)}. Now,

by Lemma 4.3, the functions βΩ(x; p̄) and βΩ(x;−p̄) are ordered super- and sub-
solutions, respectively, of problem (1.1). Applying Lemma 3.2 we obtain a solution
u of (1.1) lying between βΩ(x; p̄) and βΩ(x;−p̄). Since, by Lemma 4.3, we have
|βΩ(x;±p̄)− uas,Ω(x)| ≤ Cp̄ ≤ Cε2, the desired estimate follows.
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