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 1. Introduction 

Tribology has many applications in the field of dentistry as the oral biomechanical functions lead to 

tribological movement of teeth, restorations and implants occurring in the mouth [1]. Hence, 

tribology plays an important role in the assessment of the performance of foreign fixed materials in 

the oral cavity and their longevity whether the material is a conventional metal or a more complex 

ceramic. Also, chemical reactions with food, interactions with the food particles, resulting forces of 

chewing itself, all combine to act on such materials [2]. Therefore, it is important to evaluate how a 

material would react to these processes to ensure the longevity of the material and to avoid adverse 

reactions within the mouth causing decay.  

The corrosion resistance and mechanical properties of stainless steels make them a suitable material 

for use in medical applications, including dental purposes and orthopaedic treatments. The main 

quality of stainless steel is its resistance to corrosion, which can vary depending on the grade of 

stainless steel used but the formation of a passive chromium oxide film (passivation) can protect the 

material [3], [4]. The addition of chromium and nickel to steel (generally 18 and 8 wt% respectively) 

creates an austenitic structure. Ultimate tensile strength of austenitic steel is a desirable property for 

medical purposes. 316L grade stainless steel, using the American Iron and Steel Institute (AISI) 

classification system, is a common bio-compatible austenitic stainless steel. The designation of 316L 

indicates a lower carbon content, less than 0.03%, compared to 316 grade which contains 0.08% 

carbon. 316L stainless steel is protected from grain boundary carbide precipitation, known as 

sensitisation. Applications of 316L stainless steel include food preparation equipment, 

pharmaceuticals, marine, architectural and medical applications including dental implants. The most 

common usage of 316L grade stainless steel is as a material for orthopaedic brackets. Although 

duplex steels are increasingly being used instead of austenitic steels, the use of austenitic steels is 
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still widespread [5]–[7]. In dentistry, selection of the dental materials generally comes down to the 

personal preference of the dentist. However, factors such as ease of handling, availability and cost 

are important factors in the selection process [8]. The durability and low cost of stainless steel makes 

it an appropriate choice for use in dental crowns, especially where the use of other materials is not 

economically viable. As of 2005, the British Society of Paediatric Dentistry (BSPD) recommended the 

use of stainless steel (pre-formed) crowns for the restoration of primary molars with multi-surface 

lesions, extensive caries (cavities) and those where pulpal treatment has been performed [9]. Steel 

alloys have also been used for the construction of orthodontic instruments, wires and denture bases 

and dental implants. The reported issue with alloy dental implants is the release of elements to the 

adjacent tissues as the alloys that are subject to abrasion due to opposing occlusion or restorations 

may release higher levels of elements. Also, in rare cases it may result in allergic reactions in the 

body. This problem has reduced the use of stainless steel as implants in developed countries 

although it can be addressed by deposition of a noble metal coating. However, the element release 

of non-implanted dental alloys is little even over long periods of time [8], [10]. Of course, such 

phenomenon depends of the surrounding medium properties and the present solution, too. A study 

by Karimi [11] showed that in bovine serum albumin (BSA) the material loss rate of 316L under tribo-

corrosive conditions is higher compared to CoCrMo and Ti-6Al-4V; however, it was due to presence 

of a sort of protein in the environment and cannot be generalised to oral cavity. Generally, the 

material loss rate of 316L due to mechanical wear under tribo-corrosive conditions is significantly 

higher than the corrosive wear [3]. 

In the oral cavity, saliva, produced by the salivary glands, acts as a lubricant and aids mastication by 

helping food transportation and provides the necessary lubrication required between the hard and 

soft tooth tissue. Saliva reduces the amount of wear that takes place in the oral cavity, which extends 

the lifespan of both teeth and dental implants and reduces the need for intervention [12].  There are 

many components of real saliva that serve various complex biological processes, and hence it is 

difficult to completely produce artificial saliva that matches the composition of saliva fully. However 

for experimental purposes, the artificial saliva produced is adequate if it interacts with the metal 

sample in a similar way to which real saliva would [13]. Wang et al. looked at the friction and wear 

behaviours of dental ceramics against natural tooth enamel using Fusayama solution [14]. Li et al. 

explored wear behaviour of human teeth in dry and artificial saliva conditions which explored the 

frictional behaviour of human teeth and titanium [15]. Ziskind et al. studied amalgam type, adhesive 

system, and storage period as influencing factors on micro-leakage of amalgam restorations [16]. 

Other studies have examined corrosion effects of materials in this substance [17]–[21], however 

there appears to be few micro-abrasion-corrosion tests have been carried out with artificial saliva. 

The purpose of this work is to study the wear mechanisms of 316L grade stainless steel as an 

orthodontic material in artificial saliva using a micro-abrasion-corrosion apparatus. Also, micro-

abrasion maps are generated based on the results the effects of exposure time and applied load.  

 

2. Materials and methodology 

Micro-abrasion-corrosion tests on the effects of applied load and exposure time were carried out.  

The results produced were in the form of the amount of wear that has taken place, found from the 

wear scar volume. These results were represented as wear maps, showing the conditions of the 

highest and lowest amounts of wear occur. 
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2.1 Test samples 

The composition of 316L grade stainless steel can be seen in table 1 [22]. The samples were made 

from a purchased standard 316L AISI stainless steel square bar in the Department of Mechanical and 

Aerospace Engineering, University of Strathclyde, by cutting them to 30 mm in length and breadth 

and the thickness after machining and surface finish was 3 mm. This specific size was in order to fit 

the samples securely into the test rig. The surface finish (Ra) was 3 µm and cleaned with diluted 

methanol. It should be noted that no surface coating was applied to the material and the samples 

were tested as a bulk material. The mechanical properties of the test samples are shown in table 2. 

 

Chemical compositions of the test samples (wt. %) 

C Mn Si P S Cr Mo Ni N Fe 

0.03 max 2.00 max 0.75 max 0.03 max 0.03 max 17 - 20 2 - 4 12 - 14 0.1 Bal. 

Table 1- Chemical composition of the test samples 

 

Material Property 316L UHMWPE Alumina 

Density(kg/m³) 8000 931-935 3800 

Young’s Modulus (GPa) 192 0.689 351 

Hardness (Vickers) 195 541 2035 

Fracture Toughness 
(MPa/m

1/2
) 

100 3.5-6 3.5 

Table 2 – The mechanical properties of the test materials [23]–[27] 

 

2.2 Test slurry 

The abrasive slurry was formed using artificial saliva mixed with abrasive particles. The produced 

artificial saliva for this set of experiments is known as Fusayama solution. This solution was selected 

for use in these tests because of its established use within dental material testing. The reactions of 

different alloys to the electrolytes found within this solution are considered resembling those in 

natural saliva [14], [28]. The pH of this solution can range approximately between values of 5 and 7 

[20]. The pH of the slurry used in this work was 5.7. The chemical composition of the produced 

artificial saliva can be seen in table 3. 

Artificial saliva composition (g/l) 

NaCl KCl CaCl2.2H2O NaH2PO4.2H2O Na2S.9H2O Urea Distilled water 

0.4 0.4 0.795 0.78 0.005 1 1000 

Table 3 – The artificial saliva composition 
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Slurries containing abrasive particles can be used in order to simulate food bolus within the mouth 

during mastication [2]. For these experiments calcined alumina particles (Logitech, UK), with the 

concentration of 30gl-1, were used. A range of particles have been used to simulate food bolus [29]. 

In the above case, the hardness of the alumina particles (9 in Moh’s scale) is much higher than that of 

316L stainless steel. If the sample and abrasive particle are closer in terms of hardness value, the 

situation is known as soft abrasion, the alterations of the hardness value of the abrasive particles 

used can significantly affect the wear rate [30]. Also, softer particles degrade in such conditions 

which are not suitable for the current study. The hardness of alumina makes them an appropriate 

choice to create severe conditions and assess the longevity of the test materials [31]. The flatness of 

the alumina particles can also spread the load effectively at the interface [32]. The particles had an 

average size of 9 µm. The mechanical properties of the particles are presented in Table 2. In order to 

avoid particles flocculation, the slurry supplied to the apparatus was kept agitated using a small 

magnetic stirrer at the bottom of the reservoir. 

2.3 Test apparatus 

A ball cratering wear test apparatus, TE-66 

Micro-Scale Abrasion Tester (Plint TE-66, 

Phoenix Tribology, Reading, UK), was used to 

provide the abrasion system. In this apparatus a 

rotating ball is clamped in split drive shaft which 

allows the ball to be removed and replaced 

conveniently. The ball rotates against the test 

samples and the slurry is dripped into the 

contact between the ball and the sample [33]. 

The sample to be examined is held on a platform 

against the rotating ball on a pivoted L-shaped 

arm. The desired normal force is provided using 

dead weights hanging from the horizontal lever 

[34]. A diagram of the test rig used is shown in 

Figure 1.  

One of the co-axial shafts is driven by a variable speed DC motor which rotates the ball using friction.  

In turn, the ball rotates the second co-axial shaft which is connected to a peristaltic pump which 

supplies the slurry to the interface through a syringe. The cratering balls used for these experiments 

were ultrahigh molecular weight polyethylene (UHMWPE), (K-mac Plastics, Michigan, USA), which 

possess high chemical resistance, smooth molecular profile, high mechanical toughness and wear 

resistance [35], [36]. Also, this material can provide the coefficient of friction of 0.05 to 0.08 in wet 

conditions [26]. This can create a condition where the counter-face body only provides a form of 

foundation for the particles to see the effects of the abrasive particles on the test samples. The 

diameter of the balls was 31.75 mm.  

The electrochemical tests were conducted in a corrosion cell where a potentiostat was set up which 

created a circuit with the rig via a Working Electrode (WE) an Auxiliary Electrode (AE) and a 

Reference Electrode (RE). The potentiostat, ACM Instruments UK, was connected to Core 

Running/Sequencer software on a computer allowing polarisation curves to be created. The WE was 

connected to the back of the sample. A saturated calomel electrode (SCE) was used as the RE making 

Figure 1 – The test rig 
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contact with the circuit via a capillary tube. For the AE a Platinised-Titanium (Pt-Ti) mesh was located 

within the non-metallic (non-conductive) slurry collection tray underneath the contact point. The 

platform which held the sample was also made from a non-conductive polymer to ensure that the 

sample was insulated away from at the point of contact (A = 1 cm2). The point of contact (and 

therefore the wear scar) was immersed throughout the experiment as the peristaltic pump coated 

the sample in the corrosive slurry which was collected underneath. The slurry itself was part of a 

circuit as it constantly flowed between the non-conductive collection tray and an external container 

via flexible tubing. After the initial stabilisation, DC polarisation scans were performed at a sweep 

rate of 50 mV min-1 from -1 to 0.5 V. It should be noted that the experiments were conducted in a 

non-de-aerated condition. 

2.4 Test method 

Various parameters of the test can be altered such as exposure time, loading force and the sliding 

velocity. In this case sliding velocity was kept constant at 150 rpm. Tests were carried out with loads 

ranging from 0.5 N to 4 N and test durations of between 0.5 hour and 3 hours. The effects of altering 

these parameters on the wear mechanisms produced have been examined in previous work [37], 

[38].   Table 4 shows the list of parameters. 

Test parameters 

Test duration (hrs) 0.5, 1, 2 and 3 

Applied load (N) 0.5, 1, 2 and 4 

Sliding velocity (m/s) 0.3 (897.75 mh
-1

) 

Table 4 – Test parameters 

After conducting the experiments, scanning electron microscopy (SEM), S-3700N Tungsten Filament 

SEM (Hitachi High-Technologies, Europe), was used to examine the wear scars. The detailed pictures 

of the wear scars were produced showing the different wear regimes that have taken place and the 

size of the wear scars were measured through the SEM. 

 

3. Results 

3.1 Volume loss 

As the test samples are monolithic (no 

perforation takes place) and the shapes of the 

craters are conformal to the shape of the ball, 

the volume loss can be calculated using 

Equation 1: 

R

b
V

64

4
   (1) 

where V is the scar volume, b is the scar 

diameter and R is the cratering ball radius 

where b<<R. The diameter of each wear scar 

was measured during the SEM analysis. 
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Figure 2 – Volume loss results 
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Figure 2 shows the volume loss results for different loads over the test durations. The final 

magnitude of the volume loss for each load has increased comparing to the initial value, although a 

linear approach cannot be clearly seen. In order to consider the effects of the particles on the wear 

mechanisms, especially corrosive wear, the tests were conducted for 0.5 h for each load without 

particles. Figure 3 compares the volume loss results of 0.5 h test with particles to the tests without 

particles. 

 

 

 

 

 

 

 

 

 

 

 

3.2 Polarisation tests 

The potentiodynamic polarisation scans were performed to investigate the in vitro corrosion 

behaviour of 316L stainless steel in the artificial saliva with and without abrasive particles. Figure 4 

illustrates the difference that the presence of particles can make to the performance of 316L under 

similar applied loads. It indicates that for conditions without particles, Fig. 4(a), the corrosion 

potential was approximately similar for all applied loads and there was little evidence of an increase 

in corrosion current with altering load. The presence of the particles reduces the corrosion potential 

for all the applied loads. Also, the amplitude of the corrosion currents increases for the range of the 

loads tested. Although 316L stainless steel should be ideally immune to sensitisation, the 

irregularities in the in the anodic polarisation scan in Fig. 4(b) can suggest that abrasive particles (an 

aggressive environment) can cause the precipitation of the chromium carbides at the grain 

boundaries. As the chromium depleted zones are as corrosion resistant as the bulk 316L, preferential 

corrosion along the grain boundaries may occur. Plastic deformation is significant factor in 

determining the extent of the occurrence of sensitisation and clearly, the presence of the abrasive 

particles inclines the amount of the volume loss according to the results of the previous section [39]. 
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3.4 SEM results 

The SEM was used to identify the wear mechanisms occurred in the experiments. The terminology 

describing the wear mechanisms will be explained using common definitions; however, the main 

terms used (two-body and three-body wear) have been described as ambiguous and contradictory 

and there have been various proposals to redefine these terms [37], [40]. Despite this, the use of the 

terms is still widespread and the definitions described here are the generally accepted definitions.  

Figure 5 shows how the change in applied load can affect the type of wear that is produced and how 

at some intermediate load a transition must take place between two-body and three-body wear. 

Figure 5a is the very smooth wear scar produced after 3 hours with 0.5 N of applied load. Despite the 

low load, the wear volume is relatively high compared to the other 3 hour tests. This wear scar has 

no clear directional deformation suggesting the presence of three body wear; this is consistent with 

what is expected in low load situations [37]. In figure 5b, the 0.5 N wear scars are contrasted by the 

wear scar produced by the 3 hour, 4 N applied load test which produced a heavily deformed wear 

scar with clear directional grooving. This indicates that two-body wear has taken place. Figure 5c, 3 

hours under 2 N applied load, exhibits a magnification of how the mechanism transitions have begun 

by increasing the load as the higher loads tend to cause two-body grooving. Figure 5d also shows a 

higher magnification of 3 hour, 4N applied load wear scar where the entrainment of the abrasive 

particles have taken place. Particle entrainments can cause an increase of the wear rate as more 

particles become entrained further entrainment happens more quickly, resulting in higher wear rates 

[31]. However, the rate of entrainment can vary under different applied loads depending on the 

possibility of ridge formations [41]. 

 

 

 

 

 

Figure 4 – Polarisation test results for 0.5 h tests a) without and b) with particles for different loads 
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3.5 Wear maps 

Wear maps have been constructed for dental materials and can be useful in order to compare the 

results in a visual manner. From the result of the wear scar measurements, wear maps were 

produced. Wear maps allow the amount of wear that has occurred under the various conditions to 

be expressed in a more qualitative manner.  

In order to produce these wear maps, values for 

wear volume had to be defined as belong to 

three categories; low, medium and high wear. 

Based on previous work [42],the categories were 

defined as follows based the maximum wear 

volume produced (0.2505 mm3): 

- High wear > 80% of maximum wear 

(0.2004 mm3) 

- 30% of maximum < Medium wear < 80% 

of maximum 

- Low wear > 30% of maximum (0.07515 

mm3) 
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Figure 5 – SEM analysis results a) 3h test with 0.5N, b) 3h test with 4N, c) 3h test with 2N, d) 3h test with 4N 
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From this, boundaries were created, the results were interpolated between these points and the 

maps were produced as seen figure 6.  

 

4. Discussion 

In oral environments, the average tooth sliding distance has been shown to be approximately 1 m 

per day based on an average amount of chewing each day [31]. If the 316L was used as a dental 

crown (which receives the highest sliding distance in tooth structure), a one hour test (897.75 m 

sliding distance) corresponds to nearly two and half years of use. This means that the tests simulates 

a significant period of time in the lifetime of this material and can give a good indication of the 

amount of wear that could potentially be experienced over this time.  

Generally in metals, the predicted volume loss can be calculated using the Archard’s equation for 

homogenous materials [43]: 

H

WL
V


   (2) 

where W is the total load applied, H is the hardness of the softest contacting surface, κ is a 

dimensionless coefficient (wear coefficient) and L is the sliding distance. In micro-abrasion tests, 

linear relationships between the wear volume and sliding distance have been generally reported for 

a large range of loads and slurry concentrations [31]. Therefore, wherever the results did not follow 

this pattern or were not as they were expected, the test has been repeated to minimise the errors 

which was the case for 2 and 4N in this work. Since the results were reproducible, only the main 

results were reported for this work. According to the Archard’s equation, increasing the applied load 

should result in a linear increase in the amount of wear produced. For steel samples, this has been 

shown to be true [44], up to a certain load and only under three-body conditions. Trezona et al. 

showed that the Archard’s equation was valid for three-body rolling conditions, where wear did 

increase linearly with load. Also, it has been shown that when slurries with a high concentration of 

abrasive particles are used, wear rate is independent of applied load [37]. The results of this work 

exhibited the same pattern as the volume loss amounts for 0.5N load showed a linear approach with 

increasing the sliding distance whereas for higher loads the linearity was not as clear. This can also be 

due to the transitions from 3-body rolling to two-body grooving as higher loads are expected to 

produce two-body wear which results in higher wear volumes. Another factor that can affect the 

effects of the applied loads is ridge formation. This is due to the contact of the ridge the rotating ball, 

which supports the load and results in less abrasive damage [41]. As wear rate continues to increase; 

particles can become trapped in ridges, causing the amount of wear to decrease. These low wear 

volume regions at high load can be seen in the wear map above, Fig. 6. The instance of higher loads 

producing lower wear volumes suggests that ridge dominated 2-body wear has occurred. With 

continuing increases in applied load, it can be assumed that the ridges would be worn away, freeing 

the particles, resulting in a sudden increase in the wear again. 

According to Archard’s equation, a sliding distance should have a linear relationship with volume loss 

[5]. It means that increasing sliding distance should increase the volume loss. Stack and Mathew [38] 

has pointed out that this relationship can be more complicated than a linear relationship. This 

contradiction is because increasing sliding distance generally leads to an increase in the real area of 
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contact and a reduction of the applied load at the interface and on the particles present at the 

interface. Therefore, the slope of the linear relationship may decrease due to longer sliding distances 

[45]. This seemed to true in the current study where the applied loads were 1N or exceeded this 

value. It has also been reported that after long sliding times, average friction coefficient, magnitude 

of friction fluctuations, surface roughness, depth of deformed layer and the composition and micro-

structure of near surface material tend to become constant. This situation has been named as the 

‘steady state’ [46]. 

One of the most important outcomes of the Archard’s equation is the wear coefficient (κ) which is a 

valuable means of comparing the severity of wear processes. It should be noted that the wear 

coefficient does not describe the mechanisms occurred during the wear process [47].  

 

 

 

 

 

 

 

 

 

 

Figure 7 indicates that by increasing the load, the severity of the wear has been decreased. This can 

be due to transitions from three-body to two-body grooving and ridge formations. Another reason 

for such conditions can be the formation of the tribo-films. The presence of the abrasive particles can 

alter the rate of the passivation-depassivation-repassivation at the surface of the test samples. As at 

higher loads the concentration of the abrasive slurry reduces at the interface due to the increased 

load, it is possible for the tribo-films to protect the surface and last for a longer period on time. It can 

also be observed in Figure 4 that the presence of the particles at the interface can increase the 

‘aggressivity’ of the surrounding medium. Also, the differences between the corrosion potentials 

with and without particles indicate that the stability of the film is critically dependent on the 

tribological conditions in such environments.   

The elements of an abrasive wear can be divided into six groups: first body, second body, interfacial 

elements, surrounding medium (environment), relative motion and the contact forces [40]. Although 

the Archard’s equation is a very useful scale to examine wear incidents, additional approaches to 

consider the other elements such as the interfacial elements and the surrounding medium should be 

established to achieve more accurate wear rate predictions. The results of this work show that wear 

maps can be a very useful tool to provide a reference for wear predictions. This is an appropriate 

approach to address a worn surface qualitatively, as quantification of a wear is not always the best 
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way to describe it. Quantitative reference points are also often arbitrary. The significant advantage of 

wear mechanism maps is that there are no limits for combining different influential factors on wear 

mechanisms and it can be generated regardless of the units of the factors. 

Further work will be to investigate the tribo-corrosion behaviour of other relevant materials to 

dentistry to determine the potential of improved materials based on bio-compatibility and corrosion 

performance.    

 

5. Conclusions 

(i) A study of the effect of applied load on the micro-abrasion of stainless steel in artificial saliva has 

been carried out. 

(ii) The results indicated that the corrosion current densities increased significantly in environments 

with particles. 

(iii) The micro-abrasion rate showed a peak in the wear rate with increasing load; this was not found 

when the tests were carried out in the absence of particles. 

(iv) Micro-abrasion maps have been generated based on the results showing that the severity of 

wear is highest in environments of high loads and exposure times, with a low wear regime identified 

at intermediate loads and exposure times. 
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