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The quantum relativistic Buneman instability is investigated theoretically using a collective Klein-Gordon
model for the electrons and a cold fluid model for the ions. The growth rate and unstable wave spectrum is
investigated in different parameter regimes corresponding to various degrees of relativistic and quantum effects.
The results may be important for streaming instabilities involving ion dynamics in very dense plasmas.
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I. INTRODUCTION

The problem of the stability of electron beams propagating
through a plasma is important in the context of laboratory
beam-plasma experiments [1], inertial fusion schemes [2], in
the solar corona [3], astrophysical objects [4,5], etc. It has
been suggested that pulsar glitches are due to a streaming
instability [6,7], where superfluid neutrons and superconduct-
ing protons co-exist with relativistic electrons [8]. It was
early recognized that electron beams propagating through
the plasma can give rise to high-frequency electron plasma
waves, or low-frequency ion-acoustic waves. The ion motion
becomes important if the electrons drift as a whole through
the plasma and typically becomes unstable if the relative drift
speed between the electrons and ions is larger than the ion
acoustic speed, as in the original Buneman instability [9] in
an unmagnetized plasma (or electrons streaming along the
magnetic field lines) and the Farley-Buneman instability in
magnetized plasmas [10].

The physics of the linear Buneman instability is fairly well
understood [11] in the nonquantum (h̄ = 0) and nonrelativistic
(1/c = 0) cases (h̄ is Planck’s constant divided by 2π and c

is the speed of light in vacuum). In other situations, relatively
thin beams of electrons penetrate a plasma consisting of both
electrons and ions, giving rise to electron two-stream and
ion Buneman instabilities in different parameter regimes in
the nonrelativistic [12] and relativistic [13–15] regimes. An
electron beam propagating through a plasma can give rise
to electrostatic two-stream instabilities when the wave vector
and electric field are aligned, and electromagnetic instabilities
obliquely to the beam direction. A typical condition for
the ion motion to become important in a current-neutral
plasma is γ � αM/(mZi), with γ being the electron beam
γ factor, α the beam to plasma density ratio, Zi the ion
charge state, and M and m the ion and electron masses
[12], respectively. To incorporate quantum effects, collective
multistream Schrödinger [16] and Klein-Gordon [17] models
have been used to investigate the electron quantum two-stream
instability for nonrelativistic and relativistic cases. In the non-
relativistic regime, the quantum two-stream instability can be
physically understood in terms of a free energy available due to
negative energy modes [18]. In addition, low-frequency linear
and nonlinear waves in collisional, nonrelativistic quantum

plasmas can be derived using multistream, carrier-envelope
methods [19].

In this paper, we consider the quantum relativistic Buneman
instability, in which the bulk electrons stream against the ions,
initially at rest. We compare the classical relativistic case
with the nonrelativistic and quantum case, as well as with
the combined quantum relativistic case. As a model, we use
a collective Klein-Gordon model [20] for the electrons and a
cold plasma model for the ions. The main advantage of the
collective Klein-Gordon model over the Schrödinger-Poisson
model is that it takes into account the relativistic effects, in
addition to the quantum diffraction effects. For the sake of
simplicity, we shall neglect the electron thermal and Landau
damping effects, which can be included using a relativistic
Wigner model [21].

The paper is organized in the following fashion. In
Sec. II, the pertinent dielectric function and the dispersion
relation are deduced, starting from the basic hydrodynamic
equations for the two-species plasma. In Sec. III, assuming
the low-frequency and a beam-plasma resonance condition,
the corresponding Buneman instability is studied, in the case
of negligible quantum effects. Moreover, the instability is
intuitively understood in terms of positive and negative energy
modes. Sections IV and V extend the treatment to the quantum
nonrelativistic and quantum relativistic cases, respectively.
Section VI discusses the validity conditions of the model, as
well as the observability of the predictions found, for certain
densities and beam speeds. Section VII contains the final
remarks.

II. DIELECTRIC FUNCTION

The mathematical model is based on a collective Klein-
Gordon equation for the electrons that is cast into a set
of fluidlike equations, and a cold fluid model for the
ions. The electrons are described by a Klein-Gordon field
ψ = R exp(iS/h̄), so that R = R(x,t) and S = S(x,t) can
be viewed as, respectively, the amplitude and phase of
the collective electron wave function. For simplicity, we
consider electrostatic waves in 1 + 1 dimensions, so that
all quantities depend only on (x,t). From the Klein-Gordon
equation, the evolution equations for R and S are obtained
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where e is the magnitude of the electron charge. Equation (1)
plays the role of a quantum relativistic electron continuity
equation, while Eq. (2) is a relativistic Hamilton-Jacobi
equation with a quantum Bohm-like ∝ h̄2 correction term, for
the electrons. The ion continuity and momentum equations for
the ion fluid density ni and velocity vi are

∂ni

∂t
+ ∂

∂x
(niui) = 0, (3)

∂ui

∂t
+ ui

∂ui

∂x
= − e

M

∂φ

∂x
, (4)

respectively. Due to their larger mass, the ions are taken as
nonrelativistic and nonquantum. Also, as a first approximation,
no thermal effects are included for either the electrons and
ions. The electrostatic potential φ is obtained from Poisson’s
equation,

∂2φ

∂x2
= − e

ε0

[
R2

mc2

(
∂S

∂t
− eφ

)
+ ni

]
. (5)

where ε0 is the vacuum electric permittivity, in terms of the
appropriate electron charge density, as discussed in more detail
in Ref. [17].

Assuming that the electron fluid is streaming as a whole
through the ionic fluid, we have an equilibrium solution,

R =
√

n0

γ
, S = −γmc2t + p x,

(6)
ni = n0, ui = 0, φ = 0,

in the reference frame where the ions are at rest, with the
relativistic γ factor γ = [1 + p2/(m2c2)]1/2 together with n0

as a the equilibrium density. Notice the modified equilibrium
electron fluid density, due to the spatial contraction (γ > 1).

Linearizing the model equations around the equilibrium (6)
with plane wave perturbations ∝ exp[i(kx − ωt)], we obtain
the dielectric function,

ε = 1−ω2
i

ω2

− ω2
e

γ

[1−h̄2(ω2 − c2k2)/(4m2c4)]

[γ 2(ω − kv)2 − h̄2(ω2 − c2k2)2/(4m2c4)]
, (7)

with the dispersion relation being ε = 0. In Eq. (7), ωe =
[n0e

2/(mε0)]1/2 and ωi = [n0e
2/(Mε0)]1/2 are the electron

and ion plasma frequencies, respectively, and v = p/(γm) is
the beam velocity.

It is instructive to consider the consequences of the
dielectric function (7) for three separate cases: (a) relativistic
nonquantum; (b) nonrelativistic quantum, and (c) joint rela-
tivistic and quantum.

kv

1

F

FIG. 1. (Color online) Characteristic function F = F (ω,k) from
Eq. (8) in the nonquantum case, showing a generic unstable
equilibrium when Fmin > 1.

III. RELATIVISTIC NONQUANTUM CASE

Setting formally h̄ = 0 in Eq. (7), we have

ε = 1 − ω2
i

ω2
− ω2

e

γ 3(ω − kv)2
= 1 − F (ω,k), (8)

which also defines a nonquantum characteristic function F =
F (ω,k). The dispersion relation F = 1 is a fourth degree
polynomial in the wave frequency ω. From the graphics of
the characteristic function, it follows that stability (four real
solutions) is obtained when the minimum value Fmin < 1.
When Fmin > 1 one has two real and two complex conjugate
roots, one of them an unstable mode. Finally, Fmin = 1 is
marginally stable. In Fig. 1 an unstable case is depicted.

Setting ∂F/∂ω = 0 and solving for ω, we obtain

ωmin =
(

m

M

)1/3

γ kv

[
1 + γ

(
m

M

)1/3]−1

, (9)

as the wave frequency for the minimum of the characteristic
function. Correspondingly, we have

Fmin = ω2
e

γ 3k2v2

[
1 + γ

(
m

M

)1/3]3

> 1, (10)

for instability. Hence, relativistic effects (γ > 1) tend to shrink
the range of unstable wave numbers.

For the interpretation of the stability analysis, we first
rewrite the dispersion relation as

(ω − ωn) ω2 = ω2
i (ω − kv)2

ω − ωp

, (11)

where

ωp = kv + ωe

γ 3/2
, ωn = kv − ωe

γ 3/2
(12)

are the relativistic version of the usual Doppler-shifted beam
modes. Notice that when the ions are taken as immobile (M →
∞), one has ωp,n as exact normal modes.

It is interesting to focus on resonant wave numbers and
low-frequency modes such that

kv � ωe

γ 3/2
, ω � kv, (13)
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implying that ωn � 0. One then immediately obtains the
estimates

ω − ωp � −2kv, (ω − kv)2 � k2v2, ω − ωn � ω, (14)

so that Eq. (11) becomes

ω3 = − m

2M

ω3
e

γ 3/2
. (15)

The reason why the dispersion relation (a fourth degree
polynomial equation) can be converted into Eq. (15), which is
of the third degree, is the assumption (13). Far from resonant
or the high-frequency normal modes, one cannot detect this
limiting case in this manner.

Equation (15) has one real root,

ω = −
(

m

2M

)1/3
ωe√
γ

, (16)

and two complex conjugate roots,

ω =
(

m

16M

)1/3
ωe√
γ

(1 ± i
√

3). (17)

The plus sign in Eq. (17) corresponds to an exponentially
growing mode. Note that the growth rate becomes smaller
due to relativistic effects. In addition, for all three modes one
obtains

ω

kv
∼ γ

(
m

M

)1/3

, (18)

apart from numerical factors of order unity, so that the
low-frequency assumption is acceptable with the exception of
extremely relativistic beams (in the case of a hydrogen plasma
where m/M = 1/1867). Moreover, the instability condition
(10) is also fulfilled by the resonant wave numbers in Eq. (13).

The time-averaged energy density 〈W 〉 in a dielectric
medium can be shown [22] to be given by

〈W 〉 = ε0|δE|2
4

d

dω
[ωεr (ω)]ωr

, (19)

where δE is the electric field perturbation and εr ,ωr are the real
parts of the dielectric function and the wave frequency. In the
present dissipation-free problem, we have ε = εr . In Eq. (19),
both field and particle energy contributions are already taken
into account.

From the above well-known result, it is found that the
energy content of the different modes depends on the sign
of the quantity,

ω
∂ε

∂ω
= 2

ω2
i

ω2
+ 2ω2

eω

γ 3(ω − kv)3
, (20)

calculated from Eq. (8) by considering ω = ωr . By inspection,
the ion contribution has always a positive energy. Concerning
electrons, if the wave velocity is larger than the beam’s mode
the energy is positive. From Eq. (12) one has that ω = ωp is a
positive energy mode, while ω = ωn is a negative energy mode
(without loss of generality, we use in this work the convention
ω > 0,k > 0). One can understand the result as follows. When
the Doppler-shifted frequency of the beam mode is negative,
its energy is also negative. Moving through the plasma, the

1

F

FIG. 2. (Color online) Characteristic function F = F (ω,k) from
Eq. (21) in the nonrelativistic case, showing a generic stable
equilibrium when Fmin < 1. In the graphic, ω± = kv ± h̄k2/(2m).

beam is then slowed down, losing energy which is the seed for
the growing amplitude of the wave.

Concluding the results in this section, we investigated the
low-frequency instability due to a negative energy relativistic
beam mode in an oscillating ionic background. Relativistic
effects tend to produce a smaller range of unstable wave
numbers, as well as a smaller growth rate, in comparison to
the γ � 1 case.

IV. NONRELATIVISTIC QUANTUM CASE

Setting formally 1/c = 0 in Eq. (7), we have

ε = 1 − ω2
i

ω2
− ω2

e

(ω − kv)2 − h̄2k4/(4m2)
= 1 − F (ω,k),

(21)

which also defines a nonrelativistic characteristic function
F = F (ω,k). The dispersion relation F = 1 is again a fourth
degree polynomial in the wave frequency ω. However, there
are qualitative changes in comparison with the nonquantum
case, as apparent in Fig. 2 drawn for v > h̄k/(2m). It can
be verified that the maximum of the characteristic function
for the frequencies kv − h̄k2/(2m) < ω < kv + h̄k2/(2m) is
always negative. Hence one needs Fmin > 1 for instability,
where the corresponding wave frequency ωmin satisfy 0 <

ωmin < kv − h̄k2/(2m). In passing, the case v � h̄k/(2m) can
be shown to produce only linearly stable oscillations, and will
be not considered.

The dispersion relation F = 1 can be rewritten as

(ω − ωn) ω2 = ω2
i [(ω − kv)2 − h̄2k4/(4m2)]

ω − ωp

, (22)

where

ωp = kv +
(

ω2
e + h̄2k4

4m2

)1/2

, ωn = kv −
(

ω2
e + h̄2k4

4m2

)1/2

(23)

are the quantum versions of the usual Doppler-shifted beam
modes. Notice that when ions are taken as immobile (M →
∞), one has ωp,n as exact normal modes.

In an analogy with the previous section, it is interesting
to focus on the wave numbers such that ωn � 0 and on low
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frequencies, or

kv �
(

ω2
e + h̄2k4

4m2

)1/2

, ω � kv. (24)

Proceeding as before, the result is

ω3 = −mω3
e

2M
θ±(H ), (25)

where

H = h̄ωe

mv2
(26)

measures the strength of quantum effects, and where it was
defined that

θ±(H ) = H√
2

[1 ± (1 − H 2)1/2]−1/2. (27)

One should compare the relativistic and quantum expressions
for the low-frequency beam modes in Eqs. (15) and (25),
respectively. In addition, H is bigger for dense plasmas, since
ωe ∝ n

1/2
0 .

The resonance condition can be explicitly solved, yielding

kv = ωe

θ±(H )
, (28)

which gives real wave numbers provided that H 2 � 1. In
particular, the previous resonant wave number is now split
in two, due to the quantum recoil term h̄2k4/(4m2) in Eq. (21).
Moreover, one has

θ+(H ) = H

2

(
1 + H 2

8

)
+ O(H 5),

(29)

θ−(H ) = 1 − H 2

8
+ O(H 4),

so that θ± have, respectively, a purely quantum and a
semiclassic nature. In Fig. 3 the behavior of θ±(H ) is shown.
The two modes coalesce when H = 1.

Similar to the nonquantum case, Eq. (25) can be solved,
yielding a purely oscillatory mode

ω = −
(

m θ±(H )

2M

)1/3

ωe, (30)

0 0.5 1
H

0.5

1

FIG. 3. (Color online) Functions θ± from Eq. (27). Bottom, line:
θ+. Upper, dashed: θ−.

a damped mode

ω =
(

m θ±(H )

16M

)1/3

ωe(1 − i
√

3), (31)

and an exponentially growing mode

ω =
(

m θ±(H )

16M

)1/3

ωe(1 + i
√

3). (32)

Now one has not only one, but two unstable low-frequency
modes, according to the plus or minus sign chosen in θ±.
However, since θ±(H ) � 1, it is apparent from Eq. (32) that
the quantum effects are stabilizing.

For consistency, it remains to check the low-frequency
assumption. From Eqs. (30)–(32) it follows that

ω

kv
∼

(
m

M

)1/3

θ
4/3
± � 1. (33)

Besides, after some algebra one finds from Eq. (21)

ωmin =
[

m

M
θ±(H )

]1/3

⇒ Fmin � 1 + 3

[
m

Mθ2±(H )

]1/3

> 1 (34)

in accordance with the general instability condition.
Concerning the total energy, one should analyze the

quantity

ω
∂ε

∂ω
= 2ω2

i

ω2
+ 2ω2

eω(ω − kv)

[(ω − kv)2 − h̄2k4/(4m2)]2
. (35)

By using Eq. (23) one concludes that ω = ωp and ω = ωn are
positive and negative energy modes, respectively.

V. RELATIVISTIC QUANTUM CASE

Having in mind the fruitful results following from the low-
frequency assumption, in this work the full relativistic and
quantum dispersion relation (7) will not be investigated in
detail. Rather, it is interesting to restrict to slow waves such
that

ω2 � c2k2, (36)

which implies

ε = 1 − ω2
i

ω2
− ω2

e

γ

[1 + h̄2k2/(4m2c2)]

[γ 2(ω − kv)2 − h̄2k4/(4m2)]
. (37)

The qualitative form of the characteristic function derived from
Eq. (37) is similar to the nonrelativistic quantum characteristic
function from Sec. IV, with quantitative changes due to 1/c �=
0,γ > 1.

Notice that fast wave propagation not satisfying Eq. (36)
can be relevant in some instances, but is outside the scope of
the present work. For example, the usual Bohm correction is
not valid for waves with phase speed greater than the speed
of light [23]. Moreover, the simplified dielectric function (37)
does not produce the high-frequency pair modes [24], admitted
by the fully relativistic dispersion relation.
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Once again, the dispersion relation F = 1 is a fourth degree
polynomial in the wave frequency ω, which can be written as

(ω − ωn) ω2 = ω2
i [(ω − kv)2 − h̄2k4/(4γ 2m2)]

ω − ωp

, (38)

where

ωp = kv +
[
ω2

e

γ 3

(
1 + h̄2k2

4m2c2

)
+ h̄2k4

4γ 2m2

]1/2

, (39)

ωn = kv −
[
ω2

e

γ 3

(
1 + h̄2k2

4m2c2

)
+ h̄2k4

4γ 2m2

]1/2

. (40)

Neglecting the ion correction, these are exact beam modes
for the dielectric function (37). They correspond to Doppler-
shifted relativistic modifications of the usual Bohm-Pines
dispersion relation [25].

Similarly to the nonquantum or nonrelativistic cases, it is
useful to focus on the wave numbers such that ωn � 0 and on
low frequencies, or

kv �
[
ω2

e

γ 3

(
1 + h̄2k2

4m2c2

)
+ h̄2k4

4γ 2m2

]1/2

, ω � kv. (41)

The resonance condition gives

kv

γ
= ωe

ϕ±(H,γ )
, (42)

where

ϕ±(H,γ )

= H√
2

{
1 − β2H 2

4γ 3
±

[(
1 − β2H 2

4γ 3

)2

− H 2

γ 5

]1/2 }−1/2

,

(43)

with β = v/c and H �= 0 given by Eq. (26).
Proceeding as before, we obtain the result

ω3 = − mω3
e

2γ 4M
ϕ±(H,γ )

(
1 + β2γ 2H 2

4ϕ2±(H,γ )

)
. (44)

For γ → 1,β → 0, one has ϕ±(H,γ ) → θ±(H ). Moreover,
the ∝ β2 term in Eq. (44) vanishes, so that the quantum
nonrelativistic results in Eqs. (25) and (28) are recovered. On
the other hand, choosing ϕ−(H,γ ) (the semiclassical branch)
and then letting H → 0 it is easy to verify that the relativistic,
nonquantum results from Sec. III are recovered, considering
ϕ−(H,γ ) = γ 5/2 + O(H 2).

It will be assumed that ϕ±(H,γ ) is not complex, which is
true either for

H <
2γ

β2

(√
γ − 1√

γ

)
= 1 + β2 + 31β4

32
+ O(β6) (45)

or for

H >
2γ

β2

(√
γ + 1√

γ

)

= 4

β2
+ 2 + 13β2

8
+ 23β4

16
+ O(β6). (46)

Equation (45) extends the condition H < 1 from the preceding
section to the relativistic domain, while Eq. (46) seemingly

0.0 0.2 0.4 0.6 0.8 1.0
β

0.5
1.0
1.5
2.0
2.5
3.0
3.5

H

FIG. 4. (Color online) The filled area shows the allowable values
of the quantum parameter H in terms of β = v/c, as found from
Eq. (45).

provides a new parameter regime not existent in the nonrela-
tivistic approximation. However, in practice it can be verified
that the inequality (46) can be attained only for nonrealistic
values of H (at least H > 10.8). Hence, Eq. (45) gives the
only important constraint, as shown in Fig. 4 below. We note
that the relativistic effects allows bigger H values.

From Eq. (44) it is obvious that the instability analysis from
the preceding section applies, once the replacement θ±(H ) →
ζ±(H,γ ) is made, where

ζ±(H,γ ) ≡ ϕ±(H,γ )

γ 4

[
1 + β2γ 2H 2

4ϕ2±(H,γ )

]
. (47)

Moreover, generalizing Eq. (29) one has

ζ+(H,γ ) = H

2γ 2

[
1 + (2 − γ 2)H 2

8γ 5

]
+ O(H 5),

(48)

ζ−(H,γ ) = 1

γ 3/2

[
1 − (2 − γ 2)H 2

8γ 5

]
+ O(H 4),

so that ζ±(H,γ ) have, respectively, a purely quantum and a
semiclassic nature. In Fig. 5 the behavior of ζ±(H,γ ) is shown
for different values of the relativistic parameter γ . The two
modes coalesce at the maximal quantum parameter found from
Eq. (45). Overall, the relativistic effects produce a smaller
value of ζ±(H,γ ), and hence a smaller instability growth rate
that is proportional to [ζ±(H,γ )]1/3. Finally, we note that ω =
ωp [Eq. (39)] can be shown to be a positive energy mode, while
ω = ωn [Eq. (40)] is a negative energy mode.

VI. OBSERVABILITY ISSUES

Here we discuss the validity of our model. We focus on the
results of Sec. V, since they are the most general in the present
investigation. In other words, the semirelativistic situation
ω � ck is treated. We remark that the particles can still be
relativistic, with beam velocities of the order of the speed of
light. Considering the Buneman unstable modes and separating
the real and imaginary parts according to ω = ωR + iωI , the
conclusion was that

ωR =
(

mζ±(H,γ )

16M

)1/3

ωe, (49)

with ωI = √
3 ωR and the wave numbers satisfying the

resonance condition (42). The functions ζ±(H,γ ) are defined
in Eq. (47), which involves ϕ±(H,γ ), given by Eq. (43). The
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FIG. 5. (Color online) Functions ζ±(H,γ ) from Eq. (47). In all plots, the dashed curve is ζ−(H,γ ), while ζ+(H,γ ) is the other one.
Parameters are (a) upper left, γ = 1.5; (b) upper right, γ = 2.0; (c) bottom left, γ = 2.5; (d) bottom right, γ = 3.0.

basic parameters of the wave, therefore, are the density n0

and the beam velocity v, from which ωR and k are obtained.
Moreover, there are, in principle, two modes, corresponding
to the positive or negative sign in ζ±,ϕ±.

After numerically exploring the relevant parameter regimes
allowed by the structural condition (45), which poses a limit on
the density n0 once the beam speed is chosen, it can be verified
that the low-frequency condition ωR � ck is always safely
fulfilled. The same applies to the no-pair creation condition
h̄ωR � 2mc2, which is necessary since otherwise one would
have to consider quantized fields in a QED formalism.

The Bohm-like term in the right hand side of the quantum
relativistic Hamilton-Jacobi equation (2) follows directly
from the Madelung transform of the Klein-Gordon equation
[17,20]. Hence the domain of applicability is the same as
for the Klein-Gordon equation, restricted to plasmas where
the electron spin-1/2 effects are not decisive, like in most
electrostatic phenomena. Moreover, in a multistream approach
it is expected that each beam has a definite identity, which
is satisfied if the thermal spread is not too large. In the
nondegenerate case, this implies a beam velocity much larger
than the thermal speed. In the degenerate case, the thermal
speed is replaced by the Fermi speed. In a multistream
model [26], one discretizes the (quasi)probability distribution
function, representing it by a certain number N of streams. In
this way, one can, in principle, introduce thermal and kinetic
effects like Landau damping, using a large number of streams.
The result of a kinetic theory should then be recovered in the
appropriate limit when N → ∞. In this sense, any desired
distribution function can be emulated by a sufficiently large
number of streams. For instance, the Maxwell-Boltzmann or
Fermi-Dirac equilibria can be modeled in this way.

Another fundamental issue is the applicability of the
hydrodynamic method, which amounts to a small quantum
recoil and associated resonances [23,26,27]. Examining the
dielectric function (37), one finds that

γ 2(ωR − kv)2 � h̄2k4

4m2
(50)

as a further requirement, posing a limit on the maximal wave
number. Hence, as in any fluidlike theory, we have a long
wavelength assumption.

One further question in the approach refers to the magnetic
field generation due to the unbalanced current at equilibrium.
Following the discussion of Bludman et al. [13], we can
examine the neglect of static magnetic fields according to

∇ × B = −μ0n0ev ⇒ B ∼ μ0n0eLv, (51)

where B is the magnetic field strength, μ0 is the vacuum
permeability, and L is some characteristic dimension of a beam
of finite cross section. From this, one can estimate the Larmor
frequency ωL as

ωL = eB

γm
∼ n0e

2μ0Lv

γm
= ω2

eLv

γ c2
⇒ ωL

ωe

= βLωe

γ c
. (52)

For the low frequency, the last quantity may be significant, so
that neglecting a return current may be unjustified. However,
one can always have ωL/ωe � 1 for sufficiently small L.

Finally, no collisional effects are included. Therefore, a
weak coupling assumption should hold. Since the form of
the cold beam and weak coupling conditions depend on
the degree of degeneracy, we treat separately the degenerate
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and nondegenerate cases, together with some representative
examples. Moreover, the wavelength must certainly be (much)
larger than the interparticle distance, otherwise clearly a
fluidlike model would be not adequate.

A. Degenerate case

In the fully degenerate case, by definition one has κBT �
EF , where κB is the Boltzmann constant, T is the beam
temperature, and EF = h̄2(3π2n0)2/3/(2m) the Fermi energy.
The cold beam hypothesis then is equivalent to v � vF , where
vF = (2EF /m)1/2 is the Fermi speed.

On the other hand, the weak coupling condition amounts to
Ep � EF , since a measure of the kinetic energy of one charge
carrier is the Fermi energy and where Ep = e2/(4πε0a) is
a measure of the electrostatic energy per particle. Here a =
(4πn0/3)−1/3 is the Wigner-Seitz radius.

Consider, for instance, a large density n0 = 1032 m−3

used in laser-compressed plasma interaction experiments
[28,29]. To safely satisfy the cold beam assumption, one
may chose v = 0.9c, so that vF /v = 0.06. One then finds
that T � 9.1 × 106 K is necessary for complete electron
degeneracy. The ideality condition is also verified, since
Ep/EF = 0.14.

Focusing on the negative sign choice in Eqs. (42) and (49),
so that ζ−(H,γ ) and ϕ−(H,γ ) are used, it is verified that
the structural requirement (45) and the small quantum recoil
inequality (50) are satisfied. Moreover, one has ζ

1/3
− = 0.66,

which, by comparison with Eq. (49), means a reduction of
34% of the instability rate, due mostly to relativistic effects
since H = 9.0 × 10−4 with the chosen parameters. In addition,
Eqs. (42) and (49) yield ωR = 12.1 × 1015 s−1 and k =
6.0 × 108 m−1, implying a wavelength λ = 2π/k = 10.5 nm
much larger than the interparticle distance, since in this case
λ/a = 782.7.

Unfortunately, the choice of the positive sign in Eqs. (42)
and (49), so that ζ+(H,γ ) and ϕ+(H,γ ) are used, gives
wavelengths much smaller than the interparticle distance
a, in all reasonable parameter regimes. For instance, in
the present example where n0 = 1032 m−3,v = 0.9c one has
λ/a = 0.04 for the purely quantum wave. For such small
wavelengths, a quantum relativistic kinetic theory is necessary.
Therefore, more realistic predictions from the model can be
trusted only when referring to the semiclassic mode (the
negative sign choice). A further indication of the need of
a kinetic theory consideration is the violation of the small
recoil condition (50) for the purely quantum Buneman mode.
Also, note that a more rigorous treatment of degenerate
plasma would include exchange effects due to the particles
indistinguishability.

B. Nondegenerate case

In the fully nondegenerate case, one has by definition
κBT � EF , and the cold beam hypothesis amounts to v � vT ,
where vT = (3κBT /m)1/2 is the thermal velocity. On the other
hand, the weak coupling condition amounts to Ep � κBT .

Consider, as a representative example, a density n0 =
1024 m−3 and a beam velocity v = 0.9c. The simultaneous
weak coupling and cold beam hypothesis then imply that

2.7 × 103 K � T � 1.6 × 109 K. The nondegeneracy con-
dition is immediately satisfied, since the Fermi temperature
TF = EF /κB = 42.3 K in this case. Moreover, focusing on
the negative sign choice in Eqs. (42) and (49), so that
ζ−(H,γ ) and ϕ−(H,γ ) are used, it is verified that the structural
requirement (45) and the small quantum recoil inequality
(50) are satisfied. One further has ζ

1/3
− = 0.60, which, by

comparison with Eq. (49), means a reduction of 40% of the
instability rate, due mostly to relativistic effects, since H =
9.0 × 10−8 with the chosen parameters. In addition, Eqs. (42)
and (49) yield ωR = 1.1 × 1012 s−1 and k = 8.0 × 104 m−1,
implying a wavelength λ = 7.9 × 10−5 m much larger than
the interparticle distance, since in this case λ/a = 1.3 × 104.
The same comments as earlier on the purely quantum mode
apply, since using ζ+ and ϕ+ would produce λ/a = 9.5 ×
10−5, which deserves a kinetic theory treatment. This fact
is further justified by the violation of the inequality (50)
also in the nondegenerate case, when choosing the new
quantum mode.

VII. SUMMARY AND CONCLUSIONS

In summary, we have developed a unified methodology
for the treatment of low-frequency beam-driven instabilities
in relativistic quantum plasmas. A detailed comparison was
made considering different parameter regimes (formally, h̄ = 0
and 1/c �= 0; h̄ �= 0 and 1/c = 0; both h̄ �= 0 and 1/c �= 0).
The corresponding Buneman instabilities were shown to be
associated to certain beam-plasma negative energy modes.
Both quantum and relativistic effects cause a stabilizing effect,
with the remark that the quantum effects produce a splitting
of the original Buneman mode into two modes, due to the
quantum recoil term as discussed in Sec. IV. In addition,
observe that the model equations have certain limitations in
particular because of the semiclassic nature (no quantized
fields); see [17] for more details. Moreover, our collective
Klein-Gordon plasma model neglects collisions, thermal and
degeneracy pressure, and kinetic (Landau damping) effects,
besides exchange interactions [26], which should be included
in more sophisticated models for relativistic beams in quantum
plasmas. Nevertheless, the dispersion relation (7) can be
equally found using more complete, field-theoretic methods
[24]. In this context, the positive-negative energy waves
found here have a more broad applicability, as long as the
low-frequency assumption is valid.

As a by-product, the present treatment derived the
Doppler-shifted relativistic Bohm-Pines dispersion relations in
Eqs. (39) and (40). The relativistic effects inhibit dispersion,
with a lower group velocity for a given wavelength, as can
be verified. This prediction should be tested, e.g., with the
development of multi-Peta-Watt lasers [30].

Regarding the observability considerations of Sec. VI, we
note that while some restrictions on the practical aspects of
the new Buneman unstable quantum branch were found, it
does not mean that the mode should be ruled out. Rather,
since it violates both the small recoil and long wavelength
conditions, it certainly deserves a quantum relativistic kinetic
theory. Nevertheless, the present hydrodynamiclike treatment
indicates the existence of a qualitatively new mode, originating
from quantum diffraction effects causing the split of the
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resonance condition (41) in two distinct solutions. It is an
interesting issue, to investigate this new physical phenomenon
in the context of relativistic kinetic theory containing quantum
diffraction effects. However, this is outside the scope of the
present work.
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