
P and M class PMU examples for MATLAB ® Simulink 
Andrew J. Roscoe 

Quick start 
1. Unzip to a directory. 

2. Double-click “PMU_for_PublicUse_setup.m” (MATLAB starts) 

3. Run “PMU_for_PublicUse_setup.m” in MATLAB 

4. Open “PMU_for_PublicUse_P.mdl” in MATLAB/Simulink 

5. Run “PMU_for_PublicUse_P.mdl” 

6. Ditto with “PMU_for_PublicUse_M.mdl” 

What’s in this archive? 
This directory contains compiled MATLAB® Simulink “S functions” for P and M class PMUs using 

adaptive filters. The P and M class algorithms are exactly those used in [1] (The hybrid P/M PMU 

referred to in [1] is not included). For further description of the algorithms and their evolution, 

please refer to [2] and [3], and previous papers referred to in [1-3]. Both 32 and 64-bit versions are 

given. Your MATLAB installation should pick the right one automatically. 

How do these PMUs work? 
These PMUs use adaptive filtering and so the rejection of harmonics and unbalance is virtually 

“ideal”, no matter what the power system frequency is. The problem of “off-nominal frequency” is 

virtually eliminated in these PMUs, since the filter zeros always track the harmonics. The baseband 

signal is also always at almost exactly zero Hz, and so the issue of FIR filter flatness and 

calibration/compensation is much reduced compared to non-frequency-tracking implementations. 

In that respect, these algorithms perform much better than the “reference” algorithms from 

C37.118 [4] and other non-frequency-tracking implementations. The algorithms are C37.118.1 

compliant in all respects except [1]. 

1. The M class ROCOF during steady-state testing (across the frequency range) when the signal 

amplitude is <<1pu, which is common to most PMUs due to ADC resolution. 

2. M class Frequency and ROCOF during OOB testing. 

Notably, all the exceptions listed above will cease to be exceptions when the standard is adjusted in 

the near future, because all PMUs are failing these same tests (i.e. they are practically impossible to 

comply with). 

Nominal frequency and frequency range 
These examples (compiled as Simulink “S functions”) are all pre-configured for a nominal frequency 

of 50Hz, but they will track over a range of 40-70Hz and so can be used at 60Hz. The reporting rate 

for these S functions is fixed at 50Hz. The M class device has filter lengths as described in [1] so that 

it complies with the FS=50Hz dynamic tests. FS is fixed at 50Hz and so in these examples you cannot 

pick the other M-class choices with longer filters such as FS=25Hz or FS=10Hz. But, in [2], I showed 

how “frequency chirp” effects can be a big problem in those longer M-class filters if frequency 

moves dynamically. So, in my opinion the FS=50Hz M-class PMU is the best choice anyway. 



Sample rates 
There are 3 versions of the P and M class PMUs. The differences are only in the sample rate which 

they have been pre-compiled with. The options are 10kHz (as used in [1]), and also 4kHz and 12.8kHz 

since these are favoured sample rates under IEC61850. You can choose the appropriate block from 

the file “RoscoePMUs.mdl” and drop it into your Simulink Simulation. 

Example applications 
To show very simple examples of use, there are two model files “PMU_for_PublicUse_P.mdl” and 

“PMU_for_PublicUse_M.mdl”. They are virtually identical and contain a very basic signal generator 

and PMU demonstration. To run these examples, first execute the script 

“PMU_for_PublicUse_setup.m” and then run the model. 

Changing sample rate 
If you want to use a different sample rate, then adjust the setting of SamplesPerCycleAtFnom in 
“PMU_for_PublicUse_setup.m” and make sure it matches the block you insert from 
“RoscoePMUs.mdl”. 

Insertion into more complex environments 
If you want to move the blocks to your own more complex models using high-fidelity power system 

simulations with small step times, then take extra care with rate transitions and analogue anti-

aliasing filter implementations since these can insert simulation delays which you don’t expect. Code 

sections in “PMU_for_PublicUse_setup.m” describe how to configure the input parameters 

“HardwareAndAntiAlias_GainCorrectCoeffs” and “HardwareAndAntiAlias_PhaseCorrectCoeffs”. If 

you set these up correctly, the PMU will compensate the amplitude and phase results for your 

(simulated) analogue hardware and (simulated) ADC sampling. 

If you are assessing what the errors are (i.e. TVE, frequency error, ROCOF error) compared to a 

known applied signal, then you need to carefully account for the timestamp which the PMU issues, 

which will be “in the past” compared to the present UTC_time. In my C37 test environment, I have a 

piece of code which remembers the applied signal parameters in a rolling buffer, so that they can be 

“pulled back” from the timestamp and compared accurately. This type of code is not in the given 

example, for reasons of simplicity etc.. 

Creating report outputs at the full sample rate 
There is a configurable input flag called “Sample only when Timestamp crosses Fs intervals”. 

Normally you should set this to 1 and the PMU will issue a new report only on the regular 20ms 

(50Hz) intervals following a UTC second rollover. Since the block is executing at 4, 10 or 12.8kHz, the 

data from the block still comes out at this rate, but it only changes on the 20ms intervals when you 

set the flag to 1. There is also a “NewReportAvailable” output flag which goes true when a new 

report appears. This is the C37 compliant mode. You can downsample the outputs if you like to 20ms 

using rate transition blocks if you are careful. 

You can set the input flag to 0. If you do this, then ignore “NewReportAvailable”. The PMU will issue 

a new report every sample (at 4, 10 or 12.8kHz), and the timestamps will be determined by the 

present UTC_time and the exact configurations of the internal filters. The timestamps will not 

necessarily increase at monotonic intervals, or match up exactly with the UTC_time second rollover. 



This mode is not C37 compliant, but it is very useful for assessing the dynamic response 

characteristics since the “equivalent time sampling approach” from [4] does not need to be used. 

There is no execution time penalty for using this latter mode, since the PMU generates a new report 

internally at the full sample rate. You should find that the algorithms execute very quickly, even the 

M class, due to the architecture and also because they are precompiled into the linked libraries. 

Different configurations 
It would be possible to compile slightly different versions, for instance with nominal frequency 60Hz 

and reporting rate 60Hz, or for sample rates other than 4, 10 or 12.8kHz. If this would be particularly 

helpful for your research, then please email me. Also, while the examples only provide the most 

basic PMU output information, the per-phase data is not given, only the positive-sequence 

summary. I could provide a model in the public domain with this functionality if there is a good 

enough reason. Please email to discuss. 

Finally, these algorithms do not contain any special fault-ride-through optimisations yet. So, while 

[5] showed how you can make the performance better, I don’t consider that work finished and no 

such algorithmic “tweaks” are present in these algorithms yet. The determination of frequency and 

ROCOF is strictly as per [1]. 

 

Andrew J. Roscoe 

Andrew.J.Roscoe@strath.ac.uk 

http://personal.strath.ac.uk/andrew.j.roscoe/ 

14th August 2013 

 

[1] A. J. Roscoe, "Exploring the relative performance of frequency-tracking and fixed-filter 
Phasor Measurement Unit algorithms under C37.118 test procedures, the effects of 
interharmonics, and initial attempts at merging P class response with M class filtering," IEEE 
Transactions on Instrumentation and Measurement, vol. 62, pp. 2140-2153, 2013. 

[2] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, "P and M Class Phasor Measurement Unit 
Algorithms using Adaptive Cascaded Filters," IEEE Transactions on Power Delivery, vol. 28, 
pp. 1447-1459, 2013. 

[3] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, "P-Class Phasor Measurement Unit Algorithms 
Using Adaptive Filtering to Enhance Accuracy at Off-Nominal Frequencies," in IEEE SMFG 
2011 Smart Measurements For Future Grids, Bologna, Italy, 2011. 

[4] IEEE, "IEEE Standard for Synchrophasor Measurements for Power Systems," C37.118.1-2011, 
2011. 

[5] A. J. Roscoe, G. M. Burt, and G. Rietveld, "Improving frequency and ROCOF accuracy during 
faults, for P class Phasor Measurement Units," in IEEE Applied Measurements in Power 
Systems (AMPS), Aachen, Germany, 2013. 

 

 

mailto:Andrew.J.Roscoe@strath.ac.uk
http://personal.strath.ac.uk/andrew.j.roscoe/

