Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Optimization of heterogeneous multi-radio multi-hop rural wireless network

Ting, Kee Ngoh Alvin and Chieng, David and Kwong, Kae and Andonovic, Ivan (2012) Optimization of heterogeneous multi-radio multi-hop rural wireless network. In: 2012 IEEE 14th International Conference on Communication Technology (ICCT). IEEE, New York, pp. 1159-1165. ISBN 9781467321006

Full text not available in this repository. Request a copy from the Strathclyde author


This paper presents an planning optimization framework focusing on coverage and capacity for a multi-radio, multi-hop network which consists of heterogeneous WLAN access and backhaul radios. Using a representative rural site in Malaysia, various stages of optimization exercises are undertaken including: 1) Optimizing Multi-radio Access Router (MAR) location, 2) Optimizing wireless backhaul topology, 3) Optimizing access channel and 4) access radio transmit power; taking into consideration various requirements and constraints such as the number of MARs, house/user distribution, house/user capacity requirement, backhaul capacity and hop counts. The ultimate goal is to minimize resources required and provide optimum network coverage and capacity to satisfy user requirements. Results show that only 9 MARs are required to provision 95% coverage at 4.7Mbps per house in the selected rural area. By optimizing the channel, a further 1.5Mbps capacity improvement and 21% of total coverage improvement can be achieved.