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ABSTRACT

An advanced model for predicting a two-dimensional

coupled cross-flow and in-line vortex-induced viima (VIV)
of a flexibly-mounted circular cylinder in a unifarflow is
proposed and investigated. Attention is placed @ystematic
extraction of variable hydrodynamics propertieasged with
a bi-directional fluid-structure interaction systenirhe
governing equations of motion are based on doubférig-van
der Pol (structural-wake) oscillators with the twtructural
equations containing cubic and quadratic nonliteens. The
cubic nonlinearities capture the geometrical coupbf cross-
flow/in-line displacements excited by hydrodynantfift/drag
forces whereas the quadratic nonlinearities allovdfstructure
interactions. The combined analytical and numerszdutions
of the proposed model are established. By varyiluyv f
velocities in numerical simulations, the derivedwiorder
model qualitatively captures several key VIV chéedstics of
coupled in-line/cross-flow oscillations. By makinge of a
newly-derived empirical formula, the predicted nmaxim cross-
flow/in-line VIV amplitudes and associated lock-imnges
compare well with several experimental results dglinders
with low/high mass or damping ratios. Moreover, hsuc
important hydrodynamic properties as VIV-inducedamelrag,
added mass, excitation and damping terms can bensgscally
determined via the proposed model and compared wigl
some experimental results in the literature.

INTRODUCTION

Vortex-induced vibration (VIV) is a basic phenomeno
commonly encountered in various practical engimgeri
applications and physical sciences where a fluidwfl
dynamically excites and interacts with a bluff dfflexible
structure. In connection with the oil & gas indysthe risk of
VIV is one of the most technically and economicathjtical
concerns in the analysis and design of key offslegtiadrical

structures including risers, mooring cables, pipdiand subsea

components. Although a basic mechanism of the VIV

occurrence is well known (Blevins, 1990) and VINated
subjects have been extensively investigated (Bear@ll;
Sarpkaya, 2004; Williamson and Govardhan, 2004),
completely reliable simulation model for predictinthe
associated fluid-structure interaction and nonlindgnamical
behavior is still needed. Owing to the complexifyttee vortex
hydrodynamics, the intrinsic mechanism of the dstne; the
overall elasto-hydro nonlinearities, the influenoé several
mechanical/physical parameters, and the necessitalibrate
and validate the simulation model with substargigerimental
data, modelling of VIV remains a challenging theme.

VIV occurrences are widely categorized as crosa-for
in-line VIV in which the structure oscillates inettdirection
transverse to or aligned with the flow, respectivelany
studies have focused on the modelling of pure eflogs VIV
excited by the lift force because of its usuallysetved largest
response (Gabbai and Benaroya, 2005; Sarpkaya,).20€d/
little is known about the effect of oscillating drdorce, the
ensuing in-line VIV, the coupling of cross-flow/iime VIV, the
dependence on system parameters and how to reallisti
model these features. Several recent experimetudies have
evidenced the significant effect of in-line VIV (Blaet al.,
2006; Dahl et al., 2010; Jauvtis and Williamsom4£0) due to a
doubled oscillating frequency, this can contributas much as
the cross-flow VIV — to the current-induced fatigl@mage of
structures (Vandiver and Jong, 1987). Computatioifal
visualizations have also illustrated different eart mode
patterns in the wake behind cylinders oscillatinghwone-
degree-of-freedom (DOF) vs. two-DOF displacemebise to
combined lift/drag forces associated with the sliveglgortices
and the fact that actual underwater structuresgsssmultiple
natural frequencies in different directions, a dbad of
coupled cross-flow/in-line VIV is certainly achidda in most
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practical situations which can be responsible fanggrously-
amplified dynamics. Nevertheless, most of the nicaétools
currently used in the engineering industry are tichito the
analysis of cross-flow-only VIV (Chaplin et al., @ Srinil,
2010, 2011; sSrinil et al.,, 2009). Therefore, an aaubed
predictive model accounting for the coupled crdsg4in-line,
two-dimensional (2-D) or 2-DOF VIV would be worthikh
from a practical and industrial viewpoint.

Insights into the hydrodynamic properties (suchadded
mass, added damping and mean drag) of cylinder B-B{¥
are also important from an analysis and design pigm since
these properties could be further applied to thalyais of
actual flexible cylinders including marine risersgables and
mooring lines. However, a systematic approach mjwetion
with an advanced mathematical modelling to extrtmtse
properties is still lacking in the literature.

This study presents an advanced model and combined

numerical and analytical approach to extract hygnadic
properties from the 2-DOF VIV of circular cylindersy also
capturing the important effect of system mass, daghand
natural frequency ratios. Some initial comparisaith known
experimental results are made and discussed aldhgewveral
parametric studies in the case of varying flow viies.

COUPLED CROSS-FLOW/IN-LINE VIV MODEL

The capability to reasonably model and accuratetgiot
the coupled cross-flow/in-line VIV structural rese excited
by the unsteady flow field has been a major chghero
modelers and offshore engineers for many yearsugtin some
prediction tools are currently available in theustty.

A schematic model of the cylinder subject to a omif
flow V and restrained by two pairs of springs to osdilliat X
and Y directions is displayed in Fig. 1a. The kepext in the
formulation of system equations of motions is tgtoee the
quadratic relationship between in-line and crosgl
displacements (Vandiver and Jong, 1987). Followiveang et
al. (2003), the two-directional unsteady fluid fesccan be
exerted on the oscillating cylinder as opposechéstationary
one, by also accounting for the relative velocitietween the
incoming flow and the cylinder in-line motion. Asresult, the
sectional lift &) and drag Fp) forces coincide with an
arbitrary plane making up an angle éfvith respect to the Y
and X axes, respectively.

Two cases can be realized depending on whethés
counterclockwise (Fig. 1b) or clockwise (Fig. 1@&rom our
numerical simulation experience, it has been diecay that
suché direction plays a key role in the ensuing phafferdince
between cross-flow and in-line oscillations and,timn, the
figure-of-eight appearing shape. In general, thbitalr plot
exhibits a figure-eight trajectory with tips poimgi upstream
with a counterclockwis® model (e.g. Fig. 1c) or downstream

Figure 1 Model for a 2-DOF V1V of circular cylinder

By assuming a smafl, the unsteady hydrodynamic forces
Fx andF, may be simplified after resolvirfg andFp into the X
and Y directions as

F, = Fp cos9F F, sinf=Fp T F YN, 1)
F, = L cosf+ Fp sif= F £ Fp YV, @)

where Y is the dimensional transverse displacement, a dot
denotes differentiation with respect to the dimenal timeT,
pis the fluid densityCp andC, are the time-varying drag and
lift coefficients, the minus (positive) and pos#iyminus) sign
in Eq. (1) (Eq. 2) correspond to the case of caefdekwise
and clockwisé, respectively.

By assigning the fluid vortex variables s 2Cp/Cpo and
g = 2C,/Co (Facchinetti et al., 2004) in whidly, andC,, are
the associated drag and lift coefficients of aiatatry cylinder
(assumed a€p=0.2 (Currie and Turnbull, 1987) ar@j,=0.3
(Blevins, 1990)), the time variation pfandgq may be assumed
to follow the self-excitation and -limiting mechani of the van
der Pol wake oscillators. By introducing the dimenkess time
t = wyT and normalizing the displacements with respedd to
the nonlinearly coupled equations describing thknia () and
cross-flow §) oscillations of the cylinder subject to the
fluctuating fluid force componentp,(q) may be expressed in
dimensionless form as (Srinil and Zanganeh, 2012)

with a clockwised model (e.g. Fig. 1e). As both cases have X*AX+ f*2(X+0xx3+ﬁxxy2)=MDQZP$2ﬂMLQZ(QY/Vr),

been experimentally observed in the literaturey thee herein
accounted for in the generalized model formulation.

p+2£x_0(p2 —1) b+ 422p= A%



JHAY+y+ayy’ + By’ =M Q% 2nMp Q% (py/N, ),

d+2,0(a?-1)a+ Q%= A,

(3-6)
in which
Mp =Cpo/16n°St2u, M| =C_o/16nSt%u,
/F(”E“me )/PDZ,
M =25 8" + Y02 1, Ay =28, + Y2 1, 1% = ey, e

Q=SW,, mx :npDZCM/4, ms is the cylinder massyy the fluid

added mas<;y the added mass coefficient assumed to be unity

for a circular cylinder (Blevins, 1990), St the &thal number,
y the stall parameter which is directly related he sectional
mean drag coefficient and assumed to be a constual to 0.8
(Facchinetti et al., 2004), and co-subscriptandy identify
properties in these directions. Note that the matés definition
in the literature is variable but the widely reczgal one with
mr=4u/m-Cy is herein considered (Wiliamson and

Govardhan, 2004).

In contrast to typical VIV models which considelfirrear
structural oscillator to describe the cylinder thspment
(Gabbai and Benaroya, 2005), Egs. (3) and (5) axtdoun the
effect of geometric nonlinearities (i.e. nonlinestiffness or
restoring force) of the oscillating cylinder. Thesguations are
so-called Duffing-type oscillators (Nayfeh, 1993Lubic
nonlinear terms capture the effect of nonlineagtshing (, y°)
and physical cross-flow/in-line displacement couglixy?, x%),
depending on the geometrical parametesg @, fx B)).
Quadratic nonlinear terms have been found to bporesble
for the figure-of-eight appearance associated with2:1
resonance condition (Srinil and Zanganeh, 2012¢. ddupling
and interaction between the fluid and the structsreaptured
through all linear and nonlinear terms in the rigand side of
Egs. (3)-(6). It is also worth remarking that, igs=(3) and (5),
the maximum cross-flow/in-line amplitudes are ueetiéd by
the choice of) since the associated velocities are trivial.

The analysis and prediction of coupled cross-floifie
VIV depend on a number of empirical coefficientg €, A,
/\) and geometrical parametersa,,(a,, Sy f,). Based on
calibration with experimental results (Stappenle¢lal., 2007)
with varyingm* and f*=1, it may be assumed that

= 0.002340-228"y ) (8

To reduce the time-consuming task involving thargrof
individual model coefficientss, = 0.3,/ = A, = 15, andoy =
= px = Py = 0.7 are initially assumed in dhicases, unless
stated otherwise. Egs. (3)-(6) are nonlinearly éedi@and can
be numerically solved by using a fourth-order Rukgéta
scheme with an adaptive
convergence and stability, and with assigned iritiaditions at
t=0ofx=y=0,p=q=2 and zero velocities.

&y

time step enabling solution

EXTRACTION OF HYDRODYNAMIC COEFFICIENTS

It has been observed by several experimental thsts
regardless of the specifiét] most of thex-y trajectories exhibit
the figure-eight orbits (Dahl et al. 2006; 2010¢pdnding on
the corresponding in-line/cross-flow amplitudes, itiah
conditions, relative phases and the nearness ofréstnant
frequencies. These dual resonance characterigsust rin the
two-dimensional lock-in conditions. To extract thesociated
hydrodynamic properties for a 2-DOF VIV, a perfeial
resonance is herein assumed: both the cylindersdlos
motiony and the lift forceq are approximately sinusoidal at a
common oscillating frequency whereas both the cylinder in-
line motionx and the drag forcp are approximately sinusoidal
at 22 Accordingly, steady-state solutions of Eqgs. @)+hay be
postulated as

X = XgSin(2at + 6, )
y = Yosin(at +6,),

p=pg sin(2t+6, )
q=do Singt +6 ),

wherexo, Po, Yo, and gp are dimensionless amplitudéy, 6,, 6y,
andd, are associated phases. By substituting Egs. (9)iito
Egs. (3)-(6), applying the harmonic balance methai
neglecting higher-order nonlinear terms (althougis thay be
invalid for a large amplitude motion), the analgtiexpressions
for (i) the mean drag coefficient caused by VIV €dio the
guadratic nonlinearities associated with the ie-lioylinder-
wake interaction), (ii) the oscillating in-line f component in
phase with the cylinder acceleration, (iii) the ibating in-line
force component in phase with the cylinder velgocfty) the
oscillating transverse force component in phaseh whe
cylinder acceleration and (v) the oscillating tnaarse force

(9-10)

component in phase with the cylinder velocity, mhg
decomposed and derived, respectively, as follows
8712/1
C 7IStM | Q sin{ 6y — 6,
DV =F 5 L{<0oYoW ( )) 11)
8772;1 DQZpocos(é’ —6’):L
7S | Qdgyowcod 6, + 6y 9) 12)
_8 ,U —MDQ posm H H)
7S | Qdgyowsin(6, + 6y - 9) (13)
8772;1 M Q@ qocos(é’ -6, )+
? | 1SMp2peyweod 8, - B, ’ (14)
Cy - 8mu| ~ M Q2 qosm(é’ H)TL
r2 StM D_onyoa)sm(é?p— 29y) ' (15)

These coefficients depend on the mass ratio, tibra
amplitudes, relative phases, reduced velocity patamand the
common oscillating frequency. With varying (), the values
of po, o, Xo, Yo, Ox, Op, 6y, 64, and w are numerically obtained
based on direct numerical integrations.



4.5

Experimental results of Stappenbelt et al. (2007)

= Numerical prediction (m*=2.36, £&=0.006)
4r @] Experimental results of Blevins and Coughran (2009)
——E— Numerical prediction (m*=35.40, £&=0.002)

Figure 2 Comparison of numerical and experimental Cpr
with varying V, in thef*=1 case

f*=1

Figure 3 Variation of Cpr with m* and V,

Figure 4 Variation of the oscillating lift force component in

phase with the cylinder velocity (C,y) and acceleration (Cyy):

lines denote numerical results, symbols denote experimental
results compiled by Blevins (2009) and Sar pkaya (1995)

RESULTSAND DISCUSSION

Results of hydrodynamic coefficients extracted e
proposed mathematical model in the case of inangasi and
assumed clockwisé (Fig. 1b and 1e) are now exemplified, by
also focusing on the effect of* and f*. Figure 2 illustrates the
variation of total mean drag coefficie@yr which comprises
the mean drag coefficient of the associated stationylinder
(taken as 0.83 as in Stappenbelt et al. 2007) lednean drag
coefficient due to VIV obtained from Eq. (11). Ndteat the
phase difference is numerically observed suchGhady-6, <z,
leading to a positive sine term. Experimental meaé|Blevins
and Coughran (2009) withi* = 5.4 and¢ = 0.002 (cross-flow-



only VIV), and Stappenbelt et al. (2007) withi = 2.36 and¢ =
0.006 (2-D VIV) are considered who$& results are also
compared for a model validation purpose.

Overall, good qualitative and quantitative agreemeh
experimental and numerical results is found in FRAgwhich
suggests a maximum (avera@g)- value of about 3.25 within a
similar lock-in range (4%, <10) where the response cylinder
(cross-flow motion) and wake (lift force) amplitiedeare ™
maximized. Outside the lock-in regime, the statigndrag
coefficient of 0.83 is the main component. Experitagéresults
are more scattered. Similar to the amplitude respoa jump in
the Cpr plot is noticed experimentally as well as numdljca
this suggests a possible hysteresis effect.

Figure 3 shows the effect of varyingt and V; on the total
mean drag coefficient, for 2 casesfof 1 and 2 €= 0.001).
Results suggest a strong dependence of respondiéuaiemand

lock-in ranges: the lower the* value, the higher th€pr value. 18 "
For a givenm*, larger Cpr values are observed in tifie= 1 Cux

case, especially witht* < 6. This is due to the fact that cross- 3
flow amplitudes are slightly decreasedfamcreases from 1 to 15 7

2 (Srinil and Zanganeh 2012). From numerical sitimute, 2

when A/D is less than 1.1, the value Gy slightly changes

with respect to increasing. Thus, in this range, the mean drag 1z Ik

function may be uniquely defined. a® i Lo
Figure 4 illustrates the variation of the oscilti 9 |

transverse force component in phase with the cgtinglocity -1

(Cy) and accelerationQ,) with increasingV,. Comparisons

with a series of experimental forced vibration Hss(compiled 6 4

by Sarpkaya 1995 and Blevins 2009) when specifyihg 6, & . S
= 0.001 andf*=1 in numerical simulations is made. Both ’ .
experimental and numerical results are in good eageait by
showing that, within the initial and lower branchet the

amplitude responses,,, values are greater than zero, whereas ] o ) m*_ )

in the upper branch associated with the lock-irgeathey are Figure 5 Variation of the oscillating for ce componentsin
negative.The region ofC,, < 0 is referred to as a negative phase with the cylinder velocity with f*=1

damping region which indicates the excitation af ttylinder Moreover, Fig. 5 reveals that, a# is less than a critical

and how the energy is transferred from the fluidhi® structure mass ratio, the absolute values @f and C,, increase a¥/,
(Sarpkaya, 1995). Whe@,, achieves its minimum value (i.e. at  increases. As observed from recent experiments, isgeeasing
the self-limiting state), the inertia componé&y, tends to zero range of the excitation coefficients at highérindicates the

and changes sign across the resonance. existence of the “lock-in forever” where associatedponse
Overall, numerical results of minimu@,, andC,, occur at amplitudes persist (Govardhan and Wiiliamson, 2002)
higher V, than experimental results according to their peak The effect of varyingn* and V; on values ofC,y andCy is
amplitudes. It should be noted, however, that erpental now illustrated in Fig. 6 with two cases Bf=1 and 2 € =
conditions were different as were their basic patans such as  0.001). Forf* =1, C,, plots in a large range oft* show the
the aspect ratios, Reynolds and Strouhal numbers. typical transition from + to - values when increagV,. When
With =1 and ¢ = 0.001, Fig. 5 illustrates the effect of increasingm®, this transition range is very narrow, with both
varyingm* and V; on the oscillating transvers€,f) and in-line positive and negative values 6f, become decreased. These
(C.) force components in phase with the cylinder vigjodt observations hold also in the casefof= 2. On the contrary,

can be seen that bo@, andC, plots exhibit similar diagrams  there is a clear difference in ti&, plots between the cases of
and trendsFor lowm* < 6 (2), C,y (Cy) is negative within the f*=1 and 2. In the former case;, values are generally
lock-in region. Asm* increases, botlC,, andC, increase and negative, becoming nearly zero for lamgé In the latter case,

become no longer negative. Nevertheless, for thdinén the C, plots are similar taC,, plots where both negative and
response withm* being higher than 6, there is no clear border positive coefficients are realized, depending rah and V,.
between lock-in and non-synchronized region owingthe These results deserve further experimental vatidati

negligible in-line motion contribution to ttf&eD VIV.
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Figure 6 Variation of the oscillating lift and drag force component in phase with the cylinder acceleration

CONCLUSIONS

An advanced prediction model for a 2-DOF VIV invioly
cross-flow/in-line motions of an elastically-mouditeircular
cylinder in uniform flow has been proposed and stigated.
The model is based on double Duffing-van der Pou¢ture-
wake) oscillators, capturing the structural geoioatrcoupling
and fluid-structure interaction effects throughtegs cubic and
guadratic nonlinearities. The combined analytiaaterical
approach has been implemented to extract key hydesdic
coefficients in both cross-flow and in-line dirests. The
hydrodynamic added mass, the mean drag and th#atiegi
transverse/in-line forces in phase with the vejocand
acceleration of the cylinder are analyzed. Some peoisons
with published experimental results have been madeiing a
good agreement, although more experimental freeatidn
investigations are needed. Numerical results taghlihe effect
of mass ratio, reduced flow velocity and cylindarline-to-
cross-flow natural frequency ratio on the valuesva$f as the
sign of hydrodynamic coefficients, in conjunctiontiw the
dependence on oscillation amplitudes (and relgtivases) in
both cross-flow and in-line directions. These maakeldictions
could be correlated with the forced-vibration réswnd flow
visualization studies, and applicable to the anslgEa flexible
long cylinder involving a bi-directional multi-modeteraction.
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