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ABSTRACT 

Computational fluid dynamics (CFD) studies capturing 
vortex-induced vibration (VIV) phenomena in a wide range of 
both the hydrodynamics and the structural parameters are 
important, because the analysis outcomes can be applied to 
numerical prediction codes, complement experimental 
measurement results and suggest a modification of some 
practical design guidelines. Nevertheless, in spite of many 
published studies on VIV, CFD studies for two dimensional 
coupled cross-flow/in-line VIV even with two degrees of 
freedom (2-DoF), are still quite limited. More CFD studies 
which can control the equivalence of system fluid-structure 
parameters in different directions with reduced uncertainty are 
needed to improve the numerical model empirical coefficients 
and capability to effectively match numerical predictions and 
experimental outcomes.  

This paper presents a CFD study on the 2-DoF VIV of 
elastically mounted circular cylinder with a low mass ratio 
(m*=2.55). The Reynolds number is fixed to be 150 and the 
reduced flow velocity parameter is varied by changing the 
cross-flow natural frequency. To model the problem, two-
dimensional Navier-Stokes equations coupled with linear 
structural equations in the in-line and cross-flow directions are 
solved. Particular attention is paid to the determination of 
maximum attainable amplitudes and the associated 
instantaneous lift and drag forces and hydrodynamic 
coefficients. These results are compared with the obtained 
results from alternative numerical prediction outcomes using 
new reduced-order models with four nonlinearly coupled wake-
structure oscillators (Srinil and Zanganeh, 2012). Some 
qualitative and quantitative aspects are discussed. Overall, the 
important VIV characteristics are captured including the dual-
resonance and figure-of-eight trajectories. Through the flow 
visualization study, it is found that as the dual-resonance is 
excited, a P+S wake pattern appears. 

 

1. INTRODUCTION 
The phenomenon of vortex-induced vibration (VIV) has 

been of great practical interest in offshore, ocean and subsea 
engineering. It is well known that when a bluff body is placed 
in a fluid flow, the fluid-structure interaction gives rise to VIV. 
Cylindrical structures are involved in offshore engineering, 
such as marine cables, mooring lines, pipelines, drilling and 
production risers and many other hydrodynamic applications. 
The risk of VIV has become one of the major concerns, which 
leads to extensive studies on VIV over the past four decades, 
see, e.g., Sarpkaya (1979), Bearman (1984), Sarpkaya (2004), 
Williamson and Govardhan (2004), Gabbai and Benaroya 
(2005) and Bearman (2011). 

As the oscillation amplitude in in-line direction is usually 
smaller than that in the cross-flow direction, transverse VIV of 
an elastically mounted circular cylinder has been vastly studied, 
such as Feng (1968), Khalak and Williamson (1996) and 
Govardhan and Williamson (2004). Feng’s results showed that 
when the vortex shedding frequency approaches the natural 
frequency of the system, the so-called lock-in phenomenon 
occurs and this phenomenon usually falls into the reduced 
velocity range of 5≤Ur≤7. Two response branches were found, 
i.e. the initial and the lower branches. The initial branch is 
usually associated with 2S wake mode (two single vortices are 
shed per cycle). In contrast, two pairs of vortices are formed in 
each vibration cycle (2P mode) in the lower branch. For a 
cylinder with low mass and damping (quantified by the 
parameter m*ζ), a third branch, i.e. the upper branch is 
discovered by Williamson’s group. The 2P mode is also 
observed in the upper branch. When the mass ratio is further 
reduced to be less than 6, the effect of in-line motion on the 
fluid-structure interaction becomes obvious. The maximum 
transverse vibration amplitude can reach as large as 1.5D 
(Jauvtis and Williamson, 2004) and the corresponding vortex 
mode also changes into the 2T mode with two triplets of 
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vortices being formed each cycle. This new response branch is 
called the super upper branch. 

Singh and Mittal (2005) reported the hysteresis effect in 
their numerical simulation, and for the first time they observed 
the P+S mode of vortex shedding (one single vortex is shed at 
the upper side wake, while a vortex pair forms on the lower 
side). 

Dahl et al. (2010) performed an experiment on the vortex-
induced vibration of an elastically mounted circular cylinder at 
subcritical Reynolds number range (Re=15000-60000) and 
supercritical Re regime (Re=320000-710000). Their results 
showed a ‘dual resonant’ response, which can be described as: 
the motion in cross-flow direction resonates near the vortex 
shedding frequency fv, and the in-line motion resonates at 2 fv. 
This occurs over a wide frequency range near the vortex 
shedding frequency and leads to a highly repeatable figure-
eight trajectory. In addition, the third-harmonic components of 
lift force were observed. The effective natural frequency ratio is 
found always near 2.0 under the dual-resonance conditions 
regardless of the nominal natural frequency ratio. 

Bao et al. (2012) numerically investigated the effect of 
natural frequency ratios on flow-induced vibrations of an 
isolated cylinder and tandem cylinders. The occurrence of dual-
resonant response was found to exist over a wide range of 
natural frequency ratios they tested. A third harmonic frequency 
component appeared in the lift fluctuation and multiple small 
peaks of amplitude distributed over a narrow Ur ranging from 
4.45 to 5.15. The P+S wake mode is observed when a dual 
resonance is excited. 

Srinil and Zanganeh (2012) proposed an advanced model 
for predicting a 2-DoF VIV of a flexibly mounted circular 
cylinder in a uniform flow. Different from linear structural 
oscillator and van der Pol wake oscillator that were used in 
previous studies, they developed a model based on double 
Duffing-van der Pol oscillators with the two structural 
equations containing both cubic and quadratic nonlinear terms. 
The predicted results of their model showed a good agreement 
with several experimental results. Several important VIV 
characteristics, such as 2-dimensional lock-in, hysteresis 
phenomenon, and figure-eight trajectory were also captured. 

In this work, we present the computational results for 1-
DoF and 2-DoF VIV with three different natural frequency 
ratios. The Reynolds number is fixed as 150. Therefore, a 2-D 
laminar flow is assumed. The simulation results demonstrate 
the moving trajectories, amplitudes and hydrodynamic forces of 
VIV responses. The vortex shedding modes are also shown and 
analyzed. 

The outline of the paper is as follows. A brief description 
of governing equation for 2-D incompressible flow and the 
motion equation of rigid bodies is given in Section 3. Section 4 
describes how the problem is set up. The results and discussion 
are given in Section 5, followed by the conclusions. 
 
 

2. NOMENCLATURE 
 

m* Mass ratio 
Ur The reduced velocity 
ζ Damping coefficient 
fv Vortex-shedding frequency 

u, v 
Velocity components in stream-wise and 
transverse directions 

mx, my System mass 
cx, cy Damping factor 
kx, ky Spring stiffness 

Fx, Fy 
Hydrodynamic forces in stream-wise and 
transverse directions 

fnx, fny Natural frequency in x- and y-direction 
f*=fnx/fny Natural frequency ratio 

fnx, fny 
Natural frequency in stream-wise and 
transverse directions 

x/D, y/D 
Dimensionless in-line and cross-flow 
displacement 

ωnx, ωny Structural angular velocity 

Ax/D, Ay/D 
Dimensionless in-line and cross-flow 
amplitude 

Cd drag coefficient 
Cl lift coefficient 

  

3. NUMERICAL METHOD 

3.1 Governing equations 
The present simulation is based on a Finite Volume Method 

(FVM) and the fluid flow is governed by two-dimensional, 
incompressible, Navier-Stokes equations. The continuity 
equation and momentum equation in Cartesian Coordinates are 
given as  
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where u and v are velocity components in x- and y-directions, p 
is the pressure, ρ is fluid density and ν is the kinematic 
viscosity of the fluid. The Semi-Implicit Method for Pressure-
Linkage Equations (SIMPLE) algorithm is used to solve the 
pressure-velocity coupled equations. Second-order upwind 
difference scheme is adopted to deal with the convection terms 
and a first-order implicit scheme is applied to the unsteady 
terms in the governing equations. 
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The unstructured mesh is used for the present simulation 
with a thin layer of structured mesh around the cylinder. The 
computational mesh used in current simulation is shown in 
Figure 1. The upstream side has a length of 10D in the negative 
x-direction and the downstream side has length of 20D in 
positive x-direction. The upper and lower parts each have 10D 
in length. The boundary conditions of the computational 
domain are: the left boundary is defined as velocity inlet; the 
right boundary is defined as pressure outlet; the upper and 
lower boundaries have a boundary condition of symmetry and 
the cylinder is with a no-slip wall boundary condition. Before 
carrying out the numerical simulations, a mesh refinement test 
was performed giving the most suitable mesh, in terms of 
accuracy and computational time, with 200 nodes on the 
cylinder and 24452 cells in total. 

3.2 Equations for an elastically mounted circular 
cylinder 
The motion of an elastically mounted circular cylinder, in 

x- and y-direction, is governed by the following second-order 
Ordinary Differential Equations (ODE): 
 

  x x x xm c XX FX k+ + =ɺɺ ɺ   (4) 
 

  y y y ym c YY Y k F+ + =ɺɺ ɺ   (5) 
 
where a dot denotes differentiation with respect to time, X and 
Y stand for the in-line and cross-flow displacements, m, c, k, 
and F are cylinder mass, system damping coefficient, system 
stiffness, and hydrodynamic force, respectively. The subscripts 
x and y indicates the properties in in-line and cross-flow 
directions. It is assumed that mx=my=m=m*ρπD2/4, and in order 
to get a maximum oscillation amplitude, the damping 
coefficients in both directions are set to be zero, i.e. cx=cy=c= 0. 

Eq. 4 and Eq. 5 can be rearranged into implicit functions as 
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Here, u and v are velocity in x- and y-direction respectively. 
ζx=ζy=ζ=c/[ 2√(km)]. The angular natural frequency of the 
system ωnx=√(kx/m)=2πfnx and ωny=√(ky/m)=2πfny. 

The forces are assumed to be constant within a sufficient 
small time step. Thus, Eq. 6 and Eq. 7 can be discretized by 
using 4th-order Runge-Kutta method. 
 

4. DESCRIPTION OF THE PROBLEM 
Simulations are conducted for 1-DoF (cross-flow) VIV and 

2-DoF (combined in-line and cross-flow) VIV. The cylinder has 
a diameter of D and the free stream velocity is denoted by U∞. 

The Reynolds number is calculated by Re=ρU∞D/µ based on D 
and U∞. Although the physical nature of laminar is completely 
different from that of turbulent flow, the responses of VIV in 
both laminar and turbulent flow have something in common. In 
the sense of studying basic response features of VIV, laminar 
modeling is sufficient to capture characteristic phenomena of 
VIV, such as the three branches of the amplitude responses, 
figure-of-eight orbital trajectories and dual resonance.  
Moreover, compared to turbulence modeling, laminar modeling 
is simpler and less time-consuming so it can be a good starting 
point for moving on to the modeling of more complex VIV 
phenomena. Therefore, studies on 2-DoF VIV associated with 
laminar flow do have some reference value for more complex 
VIV phenomenon in terms of flow physics. Thus, the 
simulations are carried out with a fixed Reynolds number of 
Re=150. For the Reynolds number 40<Re<200, the vortex 
shedding is essentially two-dimensional, i.e. it does not vary in 
the span-wise direction (Williamson, 1989). The mass ratio is 
m*=4m/(ρπD2). The reduced velocity Ur=U∞/(fnyD) is varied by 
changing the transverse natural frequency fny. The reduced 
velocity ranges from Ur=3.0 to Ur=10.0 and for each reduced 
velocity, different frequency ratios are considered, i.e.  
fnx/fny=1.0, 1.5, and 2.0. 
 

5. RESULTS AND DISCUSSION 

5.1 1-DoF VIV: Re=150, varying Ur 
Transverse-only VIV is considered first as a validation 

case. Figure 2 shows how the maximum transverse vibration 
amplitude varies against the reduced velocity at Re=150, 
m*=2.55 and ζ=0 as well as other available data. As seen from 
Figure 2, the present simulation is in good agreement with 
others’ results. The lock-in regime of 1-DoF VIV lies in the Ur 
range of 4.0<Ur<7.0. The maximum oscillation amplitude 
appears at Ur=4.0. 

5.2 2-DoF VIV: Re=150, varying Ur 
The discussion on the 2-DoF VIV will start with the orbital 

trajectories of the circular cylinder, followed by the cylinder 
response versus the reduced velocity. The hydrodynamic forces 
and vortex shedding modes of different Ur at different natural 
frequency ratios will be presented as well. 

5.2.1 Orbital trajectories 
Figure 3 shows the orbital trajectory of 2-DoF VIV of a 

circular cylinder. The results of both CFD simulation and 
reduced-order model prediction are plotted. From the 
mechanism of vortex shedding, when each vortex is shed, a 
fluctuating drag is generated, leading to the in-line 
instantaneous forcing frequency fx is twice that of the transverse 
direction fy (Bearman, 1984; Naudascher, 1987). As a 
consequence, the typically orbital trajectory of a circular 
cylinder undergoing a combined in-line and transverse 
vibration is of a figure-eight type. This phenomenon is also 
observed in the present CFD simulation. In Figure 3, the 
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moving trajectories of two cases, i.e. f*=1.0 and 2.0 are 
presented. A periodic figure-eight trajectory is observed for all 
simulations at different Ur as shown in Figure 3 except for the 
case of f*=1.0 and Ur=4.0, where an unrepeatable trajectory is 
observed. In addition, the moving direction of the circular 
cylinder is labeled with ‘C’ or ‘CC’, which corresponds to a 
clockwise and counter-clockwise direction, respectively. In the 
present simulation, the orbital direction of f*=1.0 is either 
clockwise or counter-clockwise. However, at a frequency ratio 
of f*=2.0, the cylinder moves only in the counter-clockwise 
direction. Dahl et al. (2007) related the direction of the orbital 
trajectory to the high force harmonics. They stated that the 
cylinder moving upstream at the two extreme ends (counter-
clockwise motion) has additional vorticity being generated, 
which results in a multiple vortex formation and high force 
harmonics. Triantafyllou et al. (2008) found that the counter-
clockwise mode leads to larger fluid forces than the clockwise 
mode. This will be proved in the following section where the 
hydrodynamic forces will be discussed. 

5.2.2 Cylinder response amplitudes 
One of the most important non-dimensional parameters 

that affects the dynamic characteristics of 2-DoF VIV of a 
circular cylinder is the mass ratio m*. It is known that when the 
mass ratio m*>6.0, the effect of the in-line oscillation on the 
transverse vibration is small but when it decreases to m*<6.0, a 
dramatic change occurs in the fluid-structure interactions 
(Jauvtis and Williamson, 2004). As the case in this paper has a 
relatively small mass ratio, it is of great interest to investigate 
how the in-line freedom will affect the transverse responses. In 
Figure 4, a comparison is made between the results of CFD 
simulation and numerical prediction using a reduced-order 
model in the amplitude response (in form of dimensionless 
amplitude vs. Ur). 

As is shown in Figure 4 (a), for the CFD simulation results 
with the natural frequency ratio of f*=1.0 and 1.5, the non-
dimensional amplitudes almost have the same trend against the 
reduced velocity. The maximum transverse amplitude is 
observed at Ur=4.0 and its value is approximately 0.6. It has a 
slight increase as compared to the transverse only (1-DoF) case. 
However, situation becomes more different when f* is increased 
to 2.0. There is a delay in the reduced velocity to Ur=6.0 for the 
peak amplitude to occur and the maximum value of the non-
dimensional amplitude also increase to around 0.8. 

A similar increase in the response amplitude is observed 
for the in-line motion when natural frequency ratio increases 
with the peak value appears at Ur=4.0 and it reaches a value as 
high as Ax/D=0.25, which is comparable to the experimental 
results by Dahl et al. (2010). 

5.2.3 Hydrodynamic forces 
In the dual-resonant state, the in-line displacements have 

significant effects on the hydrodynamic force coefficients. To 
present this, the hydrodynamic force coefficients are drawn 
against the reduced velocity in Figure 5 for both CFD 
simulation and reduced-order model prediction. 

In terms of the CFD simulation results, A dramatic change 
can be observed in the oscillating drag coefficient at f*=2.0, 
which is nearly three times as large as that at f*=1.0 and f*=1.5. 
On the other hand, the oscillating lift component seems not to 
change that much as the oscillating drag component. 

5.2.4 Vortex shedding modes 
When the mass ratio m* drops to less than 6.0, a dramatic 

change occurs in the fluid-structure interaction. This change not 
only happens in the response amplitude, but also takes place in 
the vortex shedding mode. The so-call 2T mode (a triplet of 
vortices being formed in each half cycle) was found by Jauvtis 
and Williamson (2004). 

The wake structure in the fully developed vorticity field is 
presented in Figure 6 for f*=1.0 and 2.0. 2S mode (two single 
vortices are shed each cycle) is observed for all the reduced 
velocities displayed at a natural frequency ratio of f*=1.0. 
Although the wake modes are the same for different Ur at 
f*=1.0, slight differences still exist in the wake structure for 
different Ur. For example, a two-row vortex structure is 
observed for Ur=4.0 and 5.0 in comparison with one-row wake 
structure in the rest of the cases in Figure 6 (a). 

An important change in the wake structure is found at 
f*=2.0. At Ur=3.0 and 4.0 the wake retains the 2S mode. 
However, when the reduced velocity is increased to 5.0, the 
vortex shedding mode changes into P+S mode (a single vortex 
and a pair of opposite signed vortices formed each cycle). With 
a further increase of Ur, the wake mode returns to 2S. A similar 
result is observed by Sigh and Mittal (2005) and Bao et al. 
(2012). 

 
5.3 Comparisons with numerical prediction results 

By ways of examples, numerical prediction results based 
on the nonlinearly coupled structure-wake (Duffing-van der 
Pol) oscillators (Srinil and Zanganeh 2012) are also given in 
Figures 3-5 in terms of orbital motions, response amplitude 
diagrams and hydrodynamic force coefficients, respectively, in 
comparison with CFD results. This reduced-order model 
(ROM) has been simulated via direct numerical integrations. 
Note also that the in-line displacements due to the VIV-induced 
mean drag forces have been removed from prediction results 
plotted in Figure 4. 

Overall comparisons in Figures 4-6 show both qualitative 
and quantitative differences between the two models: these 
reflect the challenges in matching the 2-D VIV results which 
depend on the mathematical models, assumptions, terms and 
several influencing fluid-structure parameters. For instance, the 
numerical model has been calibrated based on the experimental 
results in a higher Re range (whereas the CFD results are based 
on the fixed Re) and with varying stream-wise and transverse 
natural frequency (fnx and fny). Another possible reason might be 
due to the fact that the numerical model takes into account the 
effect of geometric cubic-type nonlinear coupling of cross-
flow/in-line displacements whereas these features have been 
disregarded from the CFD model. 
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Nevertheless, as shown by the CFD results, the numerical 
model captures the dual resonance in which both cross-flow 
and in-line motions are locked-in with their 2:1 tuned 
oscillating frequencies, regardless of the specified f* and there 
is a phase x-y difference observed when varying Ur. In addition, 
the numerical model shows the effect of varying f* on the 
maximum attainable amplitudes and the trend of in-line 
response seems to be in a good qualitative agreement with CFD 
analysis. The hydrodynamic coefficients between the two 
models are different and these are attributed to the fact that the 
numerical model does not rely on the real flow physics or fluid 
mechanics. Perhaps overall comparisons would be improved 
when considering a higher Re range in the CFD study. 

6. CONCLUSIONS 
A numerical simulation of the vortex-induced vibration of 

an elastically mounted circular cylinder in the in-line (1-DoF) 
and combined in-line and cross-flow directions (2-DoF) is 
carried out at Re=150. A finite volume method is used to solve 
the governing equations of fluid flow in two dimensions with 
varying reduced velocity from 1.0 to 10.0. A low mass ratio 
m*=2.55 and zero structural damping are considered in the 
simulation. Three different natural frequency ratios are 
examined, i.e. f*=1.0, 1.5 and 2.0. The CFD results are 
compared with the results from the new reduced-order models. 

It is found that the phenomenon of dual-resonance occurs 
at the values of f* that tested. The orbital trajectory at f*=1.0 is 
either clockwise or counter-clockwise. However, at f*=2.0, only 
counter-clockwise direction trajectory is observed. With a low 
mass ratio used in the simulation, the transverse vibration is 
significantly amplified by the stream-wise motion. The peak 
response is also delayed to a higher reduced velocity. The 
vortex shedding mode of f*=1.0 is always 2S for the reduced 
velocity examined, however, for f*=2.0, P+S mode appears 
associated with the maximum in-line response.  

More parametric studies and comparisons between CFD 
and numerical prediction models for 2-D VIV in a higher Re 
range are needed to improve the empirical coefficients of the 
latter model. Other parameters to be accounted for include the 
mass, damping and natural frequency ratios. 
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Figure 1. Computational mesh 

 
Figure 2. 1-DoF VIV: Re=150, varying Ur 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Cylinder orbital trajectories at different f*: (a) Ur=3.0, (b) Ur=4.0, (c) Ur=5.0, (d) Ur=7.0, and (e) Ur=10.0 
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(a) 

 
(b) 

Figure 4. Dimensionless response amplitude vs. the reduced velocity at different f*: (a) transverse amplitude, and 
(b) in-line amplitude 
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(a) 

 
(b) 

Figure 5. Hydrodynamic force coefficients vs. the reduced velocity at different natural frequency ratios: 
(a)maximum value of Cl, and (b) maximum value of oscillating Cd 
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 Ur=3.0  Ur=3.0 

 Ur=4.0  Ur=4.0 

 Ur=5.0  Ur=5.0 

 Ur=6.0  Ur=6.0 

 Ur=7.0  Ur=7.0 

 Ur=8.0  Ur=8.0 
(a) (b) 

Figure 6. Vortex-shedding modes: (a) f*=1.0, and (b) f*=2.0 
 


