Gibbings, Alison and Komninou, Eirini and Vasile, Massimiliano (2010)
Kinematic impactors: Improved modelling of asteroid deflection from an
experimental and numerical approach. In: European Planetary Science

This version is available at https://strathprints.strath.ac.uk/44159/

Strathprints is designed to allow users to access the research output of the University of
Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights
for the papers on this site are retained by the individual authors and/or other copyright owners.
Please check the manuscript for details of any other licences that may have been applied. You
may not engage in further distribution of the material for any profitmaking activities or any
commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the
content of this paper for research or private study, educational, or not-for-profit purposes without
prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:
strathprints@strath.ac.uk
2010 European Planetary Science Congress

Kinematic Impacts – Improved Modeling of Asteroid Deflection
Experimental and Numerical Approach

Alison Gibbings
Eirini Komninou
Massimiliano Vasile

Space Advanced Research Team
Dept. of Aerospace Engineering
University of Glasgow,
Scotland, UK

Rome, Italy, 19th-24th September
CONTENTS

Motivation and requirement for modelling
Newly adopted approach
Numerical and Experimental design
Preliminary Results
Closing remarks
Future Work
MOTIVATION

Aims to model the kinematic impact asteroid deflection scenario....long-term impact evolution of the solar system

Limited by:

• Kinematic impacts that occur at the Centre of Mass of the asteroid
• Characterisation of the asteroid (analogue) physical/material characteristics
• Assumptions regarding the ejecta distribution and profile
MODELLING – APPROACH

Developing a model to account for:

- Impacts onto non-spherical, initially rotating bodies
- Occur from a given proximity to the CoM
- Variation in impact geometry
- Variation in asteroidal composition (Athen, Apollo etc)

Provide a realistic and improved deflection and cratering response of (kinematic) impacting events

Support this development, wished to provide validation data through experimental cratering events
EXPERIMENT - APPROACH

ESA Education Office – 2010 Spin Your Thesis! Campaign

8 m Large Diameter Centrifuge, with a payload capability of 80 kg

Intended to:

• Reproduce and investigate impact cratering events onto porous asteroid analogue bodies
• Provide cratering response data – validation and advancement of numerical models

Assess projectile density and target material (asteroid analogue) porosity as a function of crater formation and ejecta distribution
SIMILARITY ANALYSIS

Crater’s volume can be expressed as:

\[V = f[a, U, \delta, \rho, Y, g, n...] \]

Standard tools of dimensional analysis:

\[\frac{\rho V}{m} = f\left[\frac{ga}{U^2}, \frac{Y}{\rho U^2}, \frac{\rho}{\delta}, n, \pi_M \right] \]

Further reduced to:

\[\frac{(g_C)(a_C)}{U_C^2} = \frac{(g_A)(a_A)}{U_A^2} \]

\[a_A = a_C \left(\frac{g_C}{g_A} \right) \left[\frac{U_A}{U_C} \right]^2 \]

‘Gravity regime’ dominates the cratering process

(Schmidt & Holsapple, 1987; Housen & Holsapple 2002)
SIMILARITY ANALYSIS

Increasing role of gravity

\[\pi_2 = \frac{g a}{U^2} \]
EXPERIMENT

Target material - mixture of quartz sand and expanded perlite

Table 2: Target Material Mixture

<table>
<thead>
<tr>
<th>Mixture (Percentage by Mass)</th>
<th>Average Density (g/cm³)</th>
<th>Average Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanded Perlite</td>
<td>Quartz Sand</td>
<td>Water</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>30</td>
</tr>
</tbody>
</table>
EXPERIMENT

For each sample, impact events occurred at increasing levels of acceleration

- Recorded each impact onto high speed cameras
- Measured the crater diameter, shape, cross-section depth
- Preserved selected samples through application of a epoxy resin

Enable later topographical scans

Analysis of possible microscopic compaction as a function of distance via a SEM
EXPERIMENT AT ESA/ESTEC

University of Glasgow
SPACE ART
Space Advanced Research Team

agibbing@eng.gla.ac.uk
OBSERVED TRENDS

- With very high porosity samples (96 %), under increasing acceleration:
 - More ejecta remained within the crater bowl.
 - Noticeable & increasing central peak
 - Crater becomes smaller, with some irregular impact craters.
OBSERVED TRENDS

- At high porosity (approx 70 %) sample, under increasing acceleration:
 - Crater becomes slightly wider, with an decreasing depth.
 - Much less ejecta escapes the crater rim.

- At mid porosity (approx 60 %) under increasing acceleration:
 - Crater shape is far more coincident between tests
 - Decreasing crater size, with less ejecta
CLOSING REMARKS & FUTURE WORK

- Ongoing analysis will provide data for the advancement and validation of numerical code
 - Include detailed material characterisation of the asteroid-analogue target material and cratering response
 - Analysis is ongoing – data was collected last week!
- 2010 Spin Your Thesis! Campaign provided a solid foundation, and prove of concept for the experimental design

University of Glasgow SPACE ART agibbing@eng.gla.ac.uk
Thank you for your Time

ANY QUESTIONS?