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Problem Definition
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ROBUST DESIGN OF DEFLECTION ACTIONS FOR NON-COOPERATIVE TARGETS

Problem
 Definition

Inducted 
thrust
F(t)

Debris 
plume

Heliocentric 
NEO orbit

Proximal 
motion orbit

 The Solar Laser Ablation concept envisages the use of a Space-based solar 

pumped laser system to sublimate the surface material of the target object.

 Sublimation creates a low thrust acceleration which, over an extended period 

of time, will deviate the target’s orbit.
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Maximum Impact Parameter Problem

 Given a spacecraft mass ms/c producing a deviation action ad for a time ∆t=te-ti

maximise the impact parameter on the b-plane at the expected time of the impact. 

 In the Hill reference frame, this is computed as:

 With kA0
and kAdev

as the Keplerian elements of the                                                                                                 

nominal and deflected asteroid orbits.

 To compute kAdev
one can integrate the Gauss’  

Variational equations with the ablation induced thrust acceleration.
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Problem
 Definition
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Low-Thrust Analytical Integration
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Equations of Motion
Low

-Thrust Analytical Integration

 Non-singular Equinoctial elements:

 No singularities for zero-inclination 

and zero-eccentricity orbits.
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 Gauss planetary equations in Equinoctial elements, under a perturbing acceleration ε in 

the r-t-h frame:
( )

2

2 1

1
1 2 1 2

2
2 1 1

2 sin cos cos cos cos sin

cos cos cos 1 sin cos sin ( cos sin ) sin

cos cos cos 1 sin cos sin (

da a pP L P L
dt h r

dP r p pL P L P Q L Q L
dt h r r

dP r p pL P L P Q
dt h r r

ε β α ε β α

ε β α ε β α ε β

ε β α ε β α

= − +

   = − ⋅ + + + − −      

  = − ⋅ + + + −   




 


 

( )

( )

( )

2

2 21
1 2

2 22
1 2

1 23

cos sin ) sin

1 sin sin
2

1 cos sin
2

  cos sin sin

 

L Q L

dQ r Q Q L
dt h

dQ r Q Q L
dt h

dL r Q L Q L
dt a h

ε β

ε β

ε β

µ ε β

 
− 

 

= + + ⋅

= + + ⋅

= − −



6/14/2011

● 8

The Perturbative Approach

 Assumptions:

 Perturbing acceleration ε is very small compared to the local gravitational 
acceleration:

 Constant modulus and direction in the radial-transversal reference frame.

 A system of differential equations in time is translated into a system of
differential equations in true longitude:

2r
µε 

[ ], , constε α β =

( , , , , )d
dt f L ε α β=X X

( , , , , )d
dL f L ε α β=X X

Low
-Thrust Analytical Integration
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First order expansion of Equations of Motion

ε= +0 1X X X

 With these one could obtain a set of equations in the form:

 Which could be integrated analytically between L0 and L, thus obtaining a first-order 

expansion of the variation of Equinoctial elements with respect to the reference orbit:

 This requires finding the primitives of the integrals in the form:

' ' 'ε= +0 1X X X
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Low
-Thrust Analytical Integration
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Analytical Solution of the Equations of Motion

 Thus the first order approximate solution of perturbed Keplerian motion takes the 

form:
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 A complete set of analytic equations parameterised on the Longitude is thus available 

to propagate the perturbed orbital motion, in the form:

( ), , , ,0 0(L L) f (L ) L∆ ∆ ε α β+ =X X

Low
-Thrust Analytical Integration
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Transcription into FPET 

 To propagate the motion, the trajectory is 

subdivided into Finite Perturbative Elements.

 On each element, thrust is continuous, albeit 

constant in modulus and direction in the r-t-h 

frame.

 ~10 times speed up compared to numerical 

integration and with comparable accuracy.

Low
-Thrust Analytical Integration
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Deflection and System Models
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Ablation Model

 The thrust is a function of the rate of mass expulsion:

 The power input due to the solar concentrator is:

 The Black Body radiation loss and the conduction loss are:

 The average velocity of the ejecta is given by:

 Thus the sublimation thrust is computed, under the assumption of tangential 

thrust, as:
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Physical properties of the asteroid are known with a degree of uncertainty



6/14/2011

● 14

Spacecraft System sizing

 Each spacecraft consists of:

• A primary mirror M1 which focuses the solar rays 

on the secondary mirror M2.

• A set of solar arrays S, which collect the radiation 

from the secondary mirror.

• A semiconductor laser L.

• A steering mirror Md, which directs the Laser light on the target.

• A set of radiators, which dissipate energy to maintain the Solar arrays and 

the Laser within acceptable limits.

Deflection and System
 M

odel
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Spacecraft System sizing 

 System sizing procedure:

• The number of spacecraft nsc, the primary mirror 

diameter dM1and the mirror concentration ratio 

Cr are specified as design parameters.

• The radiator area is computed through steady 

state thermal balance from the solar input 

power and the irradiated power.
• The total mass of the spacecraft:

• The dry mass:

1.1sc dry pm m m= +

( )1.2dry C S M L R busm m m m m m m= + + + + +

1.5L L L Lm Pρ η=

1.15S S Sm Aρ=

( )1 2
1.25 2M M d M Mm A A Aρ= + +

R R Rm Aρ=

These quantities are the result of assumptions on technological readiness

Deflection and System
 M

odel

sys L SA P Mη η η η ε=



6/14/2011

● 16

Evidence-Based Robust Design 
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Evidence-Based robust design

 Evidence Theory could be viewed as a generalisation of classical Probability 

Theory.

 Both aleatory (stochastic) and epistemic (incomplete knowledge) uncertainty 

can be modelled.

 Uncertain parameters u are given as intervals Up and a probability m is 

associated to each interval. 

 Different uncertain intervals can be disconnected from each other or even 

overlapping.

{ }: [ , ] ;   ( ) [0,1]p pU p p p p m U= ∀ ∈ ∈

1 2 1 2( ) ( ) ( ) 1p p p pm U m U m U U+ + ∪ =

Introduction to Evidence-based Reasoning (1)
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 Evidence Theory uses two measures to characterise uncertainty on a given result: 
Belief and Plausibility. On the contrary, Probability Theory uses on the Probability 
of an event.

 Bel and Pl could be interpreted as the lower and upper bound on the likelihood of 
an event.

 Bel

 Pl

Evidence-Based robust design
Introduction to Evidence-based Reasoning (2)
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Deflection and System Model Coupling

Impact 
parameter 

computation
System sizing

x
Design 

parameters

uphys
Physical 

uncertainties

utech
Technological 
uncertainties

b System mass

Laser system 
global 

efficiency

uaux

Evidence-Based robust design
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Experts’ Information Fusion

 Confidence statements on uncertain parameters can have different and often 
conflicting sources, which need to be combined together into a single set of 
uncertain intervals.

 Example: three different experts express an opinion on the values for       :Lη

1. Conservative opinion: “The Laser efficiency will be 
between 40% and 50% with 70% confidence and 
between 50% and 60% with 30% confidence”.

2. Realistic opinion: “The Laser efficiency will be between 
40% and 50% with 30% confidence, between 50% and 
60% with 60% confidence and between 60% and 66.4% 
with 10% confidence”.

3. Optimistic opinion: “The Laser efficiency will be 
between 55% and 66.4% with 100% confidence”.
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Evidence based robust design

0.33333m =

0.33333m =

0.03333m =0.3m =



6/14/2011

● 21

Interval summary (1): asteroid physical characteristics

 Specific heat:

 Thermal conductivity:

 Sublimation Temperature:

 Sublimation enthalpy:

 Density:

Evidence-Based robust design
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 Laser efficiency:

 Solar array efficiency:

 Laser specific mass:

 Radiator specific mass:

 Mirror specific mass:

Interval summary (2): technological properties
Evidence-Based robust design
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Integrated System and Trajectory Optimisation

 Minimum total spacecraft mass and maximum impact parameter variation:

 Where x is given by the 3 design parameters:

• Diameter of the primary mirror:

• Number of spacecraft’s in the formation:

• Concentration ratio: 

 Mixed integer-nonlinear multiobjective optimisation problem

 Solution with Multi-Agent Collaborative Search (MACS) a hybrid memetic

stochastic optimiser.

min systemD
m b

∈
 − x

[ ]2,20md m∈

[ ]1,10SCn ∈

[ ]1000,3000rC ∈

Evidence-Based robust design
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Integrated System and Trajectory Optimisation Under Uncertainty

 Collection of focal elements are mapped into a unit hypercube 

 The maximum over the hypercube defines the worst case values of the cost 
functions under uncertainty.

• “minmax”, i.e. optimised worst case scenario

• The minimum over the hypercube defines the best case values of the cost 
functions under uncertainty.

• “minmin”, i.e. optimised best case scenario

 Minimax mixed integer nonlinear programming problems. Solution with minmax

version of MACS.

( )min max maxsystemD U U
m b

∈ ∈ ∈
 − x u u

( )min min minsystemD U U
m b

∈ ∈ ∈
 − x u u

Evidence-Based robust design

U
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Integrated System and Trajectory Optimisation Under Uncertainty

 The solution of the two problems provides the interval of optimal values for the 
cost functions and design parameters.

 Upper limit corresponds to maximum Belief:

 Lower limit corresponds to minimum Plausibility:

 All optimal design values under uncertainty are within these two limits.

Evidence-Based robust design
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Results



 The Pareto Sets show a switch between 
two families of designs:

• In the “minmax” case, solutions 
with a high number of spacecraft 
and a small primary mirror are 
preferred (Many spacecraft to 
compensate for their lower 
individual efficiency).

• In the “minmin” case, solutions 
with a low number of spacecraft 
and a large primary mirror are 
preferred (Few spacecraft but very 
efficient).

6/14/2011
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Deterministic vs Robust

 Deterministic multi-objective 
optimization problem:

 “minmax” case:

 “minmin” case:

Results

min systemD
m b

∈
 − x

( ) ( )min max maxsystemD U U
m b

∈ ∈ ∈
 − x u u

( ) ( )min min minsystemD U U
m b

∈ ∈ ∈
 − x u u

Performance parameters could be 

significantly sensitive to 

uncertainties on physical and 

technological parameters

Five design points are selected for 

further analysis.
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Belief/Plausibility curves: Design 1
Results



6/14/2011

● 29

Belief/Plausibility curves: Design 2
Results
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Belief/Plausibility curves: Design 3
Results
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Belief/Plausibility curves: Design 4
Results
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Belief/Plausibility curves: Design 5
Results
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Belief/Plausibility b curves for single uncertain parameter

 The difference 
between νmin and 
νmax is some 
orders of 
magnitude larger 
in the case of the 
Sublimation 
Enthalpy.

Results
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Conclusions
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Conclusions and future work
Conclusions

 A detailed model for the integrated design of a Laser deflection system 

was proposed.

 The use of Perturbative expansion of Gauss’ Variational Equations 

allowed for the fast integration of the dynamics of orbital deflection.

 Epistemic uncertainties were introduced by means of an Evidence 

Theory

 Efficient Bel/Pl reconstruction with evolutionary approach

 Future works will address the topic of optimizing the design in order to 

achieve adequate system robustness.
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Thank you for your attention! Questions?
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ROBUST DESIGN OF DEFLECTION ACTIONS FOR NON-COOPERATIVE TARGETS

Problem
 Definition

 Deflection of non-cooperative targets is a recent and challenging research field.

 Defines the techniques which are aimed at changing the orbital parameters of a inert 

object (i.e. “non-cooperative). The target object could be a small celestial body, space 

debris etc. 

 Main focus: deflection of Near Earth Objects (NEO) from Earth-threatening trajectories.

 Various NEO deflection techniques have been investigated (kinetic impactors, 

gravitational tug, thermonuclear explosive devices, laser ablation etc).

 Recent studies (see Vasile, Maddock, Colombo, Sanchez et al.) have identified solar-

pumped laser ablation as one of the most promising deflection techniques.
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ROBUST DESIGN OF DEFLECTION ACTIONS FOR NON-COOPERATIVE TARGETS

Problem
 Definition

Laser ablation is achieved by irradiating the surface by a laser light 
source. The resulting heat sublimates the surface, transforming it 
directly from a solid to a gas . 

Following ablation expanded 
jets of ejecta -gas, dust and 
particles -are created. This 
creates an ejecta cloud & 

change of momentum. 
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Max Impact Parameter

 As a test case, asteroid Aphophis with an Earth intercepting orbit is taken.

 Define kA0
and kAdev

as the Keplerian elements of the                                                                                                 

nominal and deflected asteroid orbits.

 To compute kAdev
one must integrate the Gauss’ Variational equations with the ablation 

induced thrust acceleration.

Problem
 Definition

b-plane

Earth

b*

NEO, nominalU

Ev

δ∆ +r r

 The deflected orbit is assumed to be proximal to the 

undeviated one.

 For an Earth intercepting trajectory b* will be smaller 

than the Earth’s radius.

 The deflection obtained is measured as the difference 

between the undeviated and the deviated Impact 

parameters b* on the undeviated b-plane at tMOID.
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Max Impact Parameter

 The Minimum Orbital Intersection Distance (MOID) is the separation distance at the 

closest point between the threatening object and the Earth.

 The deflection obtained is measured as the difference between the undeviated and the 

deviated MOIDs at tMOID.

 In the Hill reference frame, this is computed as:

 With kA0
and kAdev

as the Keplerian elements of the                                                                                                 

nominal and deflected asteroid orbits.

 To compute kAdev
one must integrate the Gauss’ Variational equations with the ablation 

induced thrust acceleration.
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Problem
 Definition
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Introduction (2)
Evidence Theory

 Evidence Theory uses two measures to characterise uncertainty on a given result: 
Belief and Plausibility. On the contrary, Probability Theory uses on the Probability 
of an event.

 Given the set of values assumed by a function f of the parameters x:

 Belief and Plausibility are defined as:

 Where:

 Bel and Pl could be interpreted as the lower and upper bound on the likelihood of 
an event.
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Introduction (3)
Evidence Theory

 Differently from the probability of an event and its contrary, Bel and Pl are not 
strictly complementary.

 Instead, the following relationships are valid:

( )Bel A( )Bel A

( )Pl A

Uncertainty

0 1

( ) ( ) 1Bel A Bel A+ ≤ ( ) ( ) 1Pl A Pl A+ ≥ ( ) ( ) 1Bel A Pl A+ =
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Belief and Plausibility curves reconstruction
Evidence Theory

 For a given design point x, we want to reconstruct the Belief and Plausibility 
curves for the mass and MOID, with respect to the uncertain parameters u.

Where Y is the domain of the admissible values for the performance parameter 
y=f(x,u).

 The computation of mass and MOID curves are uncoupled and treated separately.
• Uncertainties on technological and physical parameters can be treated 

separately.
• Some variables which are a function of the system sizing and contribute to the 

MOID computation could be treated as uncertain parameters as well.

( )
( )

* *

* *

y Y Bel y y

y Y Pl y y

∈ → ≤

∈ → ≤
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Interval combination
Evidence Theory

 We obtain three matrices:

 Which could then be averaged:

 Leading to the the equivalent interval:
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Interval summary (1): asteroid physical characteristics
Evidence Theory

Interval 1 Interval 2 Interval 3 Interval 4
LB UB m LB UB m LB UB m LB UB m

Specific Heat 
[J/KgK] 375 470 0.1 470 600 0.3667 470 750 0.3333 600 750 0.2

Thermal 
Conductivity 

[W/mK]
0.2 0.5 0.1 1.47 0.6 0.4 0.2 2 0.5

Density [kg/m3] 1100 2000 0.1 2000 3700 0.5667 1100 3700 0.3333

Sublimation 
temperature [K] 1700 1720 0.3333 1720 1812 0.3333 1700 1812 0.3333

Sublimation
Enthalpy [J/kg] 2.7e5 1e6 0.0667 2.7e5 6e6 0.3333 4e6 6e6 0.2333 10e6 19.686e6 0.3667
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Interval summary (2): technological properties
Evidence Theory

Interval 1 Interval 2 Interval 3 Interval 4
LB UB m LB UB m LB UB m LB UB m

Laser 
efficiency 0.4 0.5 0.3333 0.5 0.6 0.3 0.55 0.664 0.3333 0.6 0.664 0.0333

Solar Array 
efficiency 0.2 0.3 0.2 0.3 0.5 0.3 0.2 0.5 0.5

Mirror specific 
mass [kg/m2] 0.3 0.5 0.5 0.1 0.3 0.1667 0.01 0.05 0.3333

Laser specific
mass [kg/W] 0.005 0.01 0.2 0.01 0.02 0.8

Radiator mass 
[kg/m2] 1 2 0.2 1 3 0.5 2 4 0.3
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Belief/Plausibility System Mass curves for single uncertain parameter

 The difference 
between νmin and 
νmax is similar in 
all cases.

Results
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