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In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause

transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical

activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate

and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has

zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather

unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and

used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the

degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly

polarized but carry a small amount of orbital angular momentum caused by the interaction between the

core mode and the hollow channels.

DOI: 10.1103/PhysRevLett.110.143903 PACS numbers: 42.81.Gs, 42.81.Cn

Introduction.—Optical activity (rotation of the elliptical
polarization axis) occurs in materials where left- and right-
circularly (LC and RC) polarized light have different phase
indices; i.e., there is circular birefringence. The relation-
ship between ellipse rotation angle c and propagation
distance z is given by

c ¼ �ðnRC � nLCÞ
�

z ¼ �BC

�
z; (1)

where � is the wavelength, nRC and nLC are the effective
refractive indices of RC and LC polarized modes and BC is
the circular birefringence. Optical fibers with high values
of BC are able to maintain circular polarization state
against external perturbations such as bending and me-
chanical stress and are useful in applications such as
electric-current monitoring [1] where it is necessary to
suppress polarization scrambling. Circular birefringence
can be induced in optical fibers by mechanically twisting
a linearly birefringent fiber [2], and by spinning (during the
draw) a fiber with an off-axis core [3], a photonic crystal
fiber with elliptical hollow channels [4], or a fiber incor-
porating anisotropic materials [5]. Theory confirms that a
similar effect can be induced by incorporating chiral
materials into the fiber structure [6].

In a recent paper it was shown that continuously twisted
endlessly single-mode (ESM) photonic crystal fibers
(PCFs) [7] exhibit dips in their transmission spectrum,
associated with coupling to orbital angular momentum
resonances in the cladding [8]. Here we show theoretically
and experimentally that such fibers exhibit circular bire-
fringence within the high-transmission spectral regions
between the transmission dips, despite there being no

linear birefringence or anisotropy in the structure. This
effect is caused by a subtle interplay between the twisted
‘‘six-spoke’’ modal field pattern and the polarization state.
A theoretical model based on symmetry properties and
perturbation theory is used to analyze the phenomenon.
Excellent agreement is obtained between experiment and
theory.
Experiment.—An ESM PCF with hole diameter�1 �m

and interhole spacing�3 �m was used in the experiments
[see the scanning electron micrograph in Fig. 1(a)]. The
twisted PCFs were fabricated by rigidly fixing one end
while mounting the other at the center of a motorized
rotation stage. While the motor was rotating, a focused
continuous-wave CO2 laser beam was scanned along the
fiber using a steering mirror fixed to a motorized linear
translation stage. The laser power was chosen to heat the
fiber to the glass-softening temperature—any residual tor-
sional stress is relieved when the sample is dismounted.
The circular birefringence of three �5 cm long samples
with twist rates of 3.1, 6.3, and 10:1 rad=mm were mea-
sured using a cut-back method. A tunable continuous-wave
Ti:sapphire laser was used as the light source and the
polarization states before and after the fiber were measured
with a commercial polarimeter.
The results from a series of cut-back measurements with

linearly polarized light at a fixed wavelength of 800 nm are
plotted in Fig. 1(a). The output polarization state remains
predominantly linearly polarized but rotated by an angle
c , as expected if circular birefringence is present. It is
clear from Fig. 1(a) that the rotation angle is linearly
proportional to the fiber length and therefore that the value
of BC can be obtained by fitting Eq. (1) to straight lines.
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The dependence of the output polarization angle on the
launched polarization angle was also measured for a sam-
ple with a twist rate of 6:3 rad=mm [Fig. 1(b)] and shows a
deviation of less than �0:5%. The ellipticity, defined here
as the ratio of semiminor to semimajor axis of the polar-
ization states, was measured to be less than 0.05, showing
that the circular birefringence is very weakly dichroic. We
attribute this to inevitable small deviations from sixfold
symmetry in the structure.

The values of BC at different twist rates are plotted in
Fig. 2(a) for the three fibers in Fig. 1(a). A comparison of
the experimental results with numerical solutions modeled
by a finite element method applied to the full Maxwell
equations in a twisted coordinate frame [8] shows excellent
agreement; as expected, BC increases with twist rate.
Figure 2(b) shows the measured wavelength dependence
of BC for a twist rate of 10:1 rad=mm. The modal field
extends further into the cladding as the wavelength
increases, resulting in a larger overlap with the cladding
microstructure and increasing the effect.

Theoretical model.—To understand the observed circu-
lar birefringence, it is useful to solve Maxwell’s equations
both in a helicoidal coordinate system [9] and in the
Cartesian laboratory frame. The full details of this analysis
will be published elsewhere, but, in essence, because the
twist rate � (rad=mm) is relatively small (i.e., � �� � 1,
where� is the interhole spacing), Maxwell’s equations can
be solved using a perturbation approach, based on accurate

full-vector numerical solutions for the modal fields in the
untwisted fiber.
Modes of untwisted fiber.—The modes of the untwisted

fiber fall into two categories: a core mode, which is expo-
nentially localized in the vicinity of the glass core, and
cladding modes (commonly referred to as space-filling
modes), which are delocalized in the microstructured clad-
ding. Herewe are interested only in the coremode. All these
modes are eigensolutions of the system Hun ~u ¼ �i@z ~u,
where Hun is defined in the paraxial approximation as

Hun ¼ �0

4�nð�;�; �0Þ r
2
?; (2)

r2
? is the transverse Laplacian, �0 the vacuum wavelength,

and nð�;�Þ maps the transverse refractive index profile of
the fiber. The vector ~u ¼ ðux; uyÞ denotes the electric field
vector profile in the transverse direction, which in the case
of fiber modes is given by ~u ¼ ~wð�;�Þ expði��un

z zÞ,
where � and � are the radial and azimuthal coordinates
and �un

z ¼ �0 þ ��un
z is the modal propagation constant

in the untwisted fiber and �0 is a reference wave vector.
The orbital and spin angular momentum operators are
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FIG. 2 (color online). (a) Circular birefringence as a function
of twist rate at a wavelength of �0 ¼ 800 nm. The error is the
difference between the numerically modeled (by solving the full
Maxwell equations with a finite element method) and the values
of BC calculated using perturbation theory; (b) BC as a function
of wavelength for a twist rate of 10:1 rad=mm.
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FIG. 1 (color online). (a) Cut-back measurements (circles) and
linear regression (lines) of the rotation angle of linear polariza-
tion at a fixed wavelength of 800 nm for PCFs with twist rates
of 3.1, 6.3, and 10:1 rad=mm, with corresponding beat lengths of
57.1, 27.6, and 16.9 cm. (Inset) Scanning electron micrograph of
the PCF. (b) Relative rotation angle deviation of the output
polarization state as a function of input polarization angle.
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L ¼ �i@� and S ¼ �2, where �2 ¼ ½ð0;�iÞ; ði; 0Þ� is the
second Pauli matrix; the total angular momentum operator
J equals Lþ S.

In an untwisted PCF the hollow channels break the
circular symmetry and as a result the expectation value
of the total angular momentum, which we denote by hJi,
deviates slightly from �1 due to the presence of minor
contributions from eigenstates with eigenvalues j ¼ �1þ
6m (this follows from the sixfold rotational symmetry),
where m is a positive or negative integer. hJi can be
separated into spin and orbital angular momentum contri-
butions, which one can calculate from the field distribu-
tions (modeled numerically) in the untwisted fiber via the
nonparaxial integral expression in Eq. (38) in Ref. [10]
[this is more accurate than Eq. (3)]. Numerical calculations
based on the finite element method, using both Cartesian
and cylindrical coordinates, yielded the same values (to
the fourth decimal place) for the individual contributions
of spin and orbital angular momenta: ðhSi; hLiÞ ¼
�ð0:9996; 0:0022Þ where (þ ) refers to LC and (� ) to
RC polarization, i.e., hJi ¼ �1:0018. The deviation of hSi
from unity indicates that the modal solutions are not per-
fectly LC or RC polarized, as might perhaps be expected.
Note that in the untwisted fiber the LC and RC modes are
degenerate; i.e., their axial propagation constants are iden-
tical, which means that no optical activity will be observed,
also as expected. Figure 3 shows the axial component of
the spin and orbital angular momentum (OAM) densities.
The OAM density is nonzero only close to the air holes
in the first ring, where significant contributions from the
other eigenstates of J are present.

Twisted fibers.—In a twisted fiber, however, the situation
gets more complicated and interesting. Upon introducing
the ansatz ~u ¼ expði�z½Lþ S�Þ ~wð�;�Þ expði��tw

z zÞ, one
can show by perturbation theory that the propagation con-
stant of the core mode, evaluated in a helicoidal reference
frame rotating with the twist, can be written

�tw
z ¼�un

z ��

R
�d�d� ~wyðLþSÞ ~w
R
�d�d� ~wy ~w

¼�un
z ��hJi: (3)

This indicates that, in the helicoidal reference frame,�tw
z is

shifted in proportion to its total angular momentum,
weighted by ~w, in agreement with perturbation theory.
This shift is opposite in sign for LC and RC polarized
core modes, as confirmed by finite element modeling in
Fig. 3 of the paper by Wong et al. [8]. The shift in
propagation constant in Eq. (3) is reminiscent of Zeeman
splitting, in which a magnetic field (analogous in our case
with twist rate) induces an electronic energy level shift
(analogous with propagation constant) that depends on the
total angular momentum.We intend to explore this analogy
in more detail in a future publication.
Twisted circular-symmetric fiber.—In a twisted circular-

symmetric fiber the modes turn out to be eigenstates of J
with integral eigenvalues j ¼ lþ s (although l and s
themselves are not in general exact integers, their sum is
integral [11]). In order to return from the helicoidal to the
laboratory frame, a coordinate transformation is necessary.
For a circular-symmetric fiber this yields

�lab
z ¼ �tw

z þ �ðlþ sÞ ¼ �un
z ; (4)

i.e., the quotient of integrals in Eq. (3) evaluates exactly to
the integer j ¼ ðlþ sÞ so that the laboratory propagation
constant exactly equals that of the untwisted fiber: as
expected, twisting has no effect in this case.
Twisted PCF.—In an untwisted PCF we have seen that

the fiber mode consists of a linear superposition of all the J
eigenstates, with an expectation value hJi that is no longer
an integer. When the PCF is twisted, Eqs. (3) and (4) lead
to the result

�lab
z ¼ �un

z þ �ðj� hJiÞ (5)

in the laboratory frame, where j is the integral eigenvalue
of the J operator corresponding most closely to the total

FIG. 3 (color online). (a) Axial component of spin angular momentum density, normalized so that the total energy flux is unity.
(b) Normalized axial component of OAM density. Note the small OAM contribution in the vicinity of the fiber core, which leads to a
non-negligible contribution to the total angular momentum density and becomes dominant when circular birefringence is considered.
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angular momentum of the PCF core mode. Because in
our case one of the J eigenstates in the superposition is
dominant (the one with eigenvalue j), �lab

z is consistently
slightly different from�un

z . It is this small disparity, caused
by the presence of small but significant amounts of higher
order OAM states, that gives rise to the observed optical
activity.

Evaluating �lab
z in Eq. (5) for the LC (j ¼ þ1) and RC

(j ¼ �1) polarized modes, and taking the difference of the
two values, we finally obtain an expression for the circular
birefringence:

BC ¼ nRC � nLC � ��0ðhJi � jÞ=�: (6)

This estimate of BC, calculated using perturbation theory,
is compared in Fig. 2(a) with the value obtained from a full
numerical solution of Maxwell’s equations. The error is
less than 2%.

Conclusions.—In spectral regions where the transmis-
sion is high (i.e., away from the transmission dips caused
by excitation of orbital resonances in the cladding [8]),
continuously twisted ESM PCFs exhibit circular birefrin-
gence via a nonresonant geometrical effect that can only be
understood if both spin and orbital angular momentum are
considered. A theoretical model based on symmetry prop-
erties and perturbation theory is in excellent agreement
with experimental and numerical data and shows that the
circular birefringence is caused by excitation of higher
order angular momentum eigenstates by the sixfold sym-
metric structure around the core. Because the structures are
created by thermal postprocessing and not mechanical
stress, the value of BC is not limited by the ultimate
strength of the glass [12], and furthermore can be

fine-tuned by applying mechanical twist [13]. Such
optically active twisted fibers may find applications in
polarization control, nonlinear optics, and sensing.
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