
This version is available at https://strathprints.strath.ac.uk/43999/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Application of neutral iridium(I) \textit{N}-heterocyclic carbene complexes in \textit{ortho}-directed hydrogen isotope exchange†,‡

Alison R. Cochrane,a Stephanie Irvine,a William J. Kerr,a* Marc Reid,a Shalini Andersson,b and Göran N. Nilssonb

Bench-stable complexes of the type $[\text{Ir(COD})(\text{NHC})\text{Cl}]$ (NHC = \textit{N}-heterocyclic carbene) have been investigated within the field of hydrogen isotope exchange. By employing a sterically encumbered NHC within such complexes and catalyst loadings of only 5 mol\%, moderate to high deuterium incorporations were achieved across a range of aromatic ketones and carboxylic acids and anilides could be labelled regioselectively using RhCl$_2$(PPh$_3$)$_3$. Indeed, over the recent expansion in the range of NHC ligands we have shown previously that more encumbered ligand systems produce the most efficient catalysts.

To circumvent issues of high catalyst loadings, our efforts have focused on novel mixed NHC-phosphine systems, $[\text{(COD)}\text{Ir(NHC)(PR$_3$)}]\text{PF}_6$, \textit{1}, as a means of introducing hydrogen isotopes with enhanced levels of overall efficiency (Figure 1). Preliminary studies in this area have now allowed expedient access to a series of novel iridium complexes,35 many of which were previously inaccessible.36,37 Moreover, by judicious and careful manipulation of the ligands supporting the iridium centre, these electron-rich and sterically encumbered catalysts have emerged to become some of the most active species known in this area of labelling chemistry.14,35,38 Additionally, and outside of labelling science, the utility of these catalysts has recently been extended, with these species now proving to be highly active in the selective reduction of alkenes39 and in Z-selective dimerization of terminal alkynes.40

With close regard to the overall steric bulk of these complexes, we have shown previously that more encumbered ligand systems produce the most efficient catalysts.35 In relation to this, and with the recent expansion in the range of NHC ligands applicable in this area of chemistry, high-yielding syntheses of...
catalyst intermediate structures, [(COD)Ir(NHC)Cl], 2a-d, have facilitated the synthesis and diversification of structural analogues of catalysts 1a-c. Moreover, as we have routinely synthesised structures 2a-c en route to more intricate catalyst systems such as 1, we were curious to note whether or not complexes of type 2 were catalytically active within HIE processes in their own right. In this article, we report for the first time the application of the less elaborate complexes 2a-d in ortho-directed HIE processes, comparing their overall utility relative to our more established catalyst systems.

Experimental
For full details on all experimental procedures, including catalyst syntheses and individual labelling reaction processes, please see the Supporting Information.

Synthesis of catalyst 2c
A stock solution of 1 M sodium ethoxide was prepared by dissolving sodium metal (0.25 g) in ethanol (10 mL). A solution of 1-cycloocta-1,5-dieneiridium(I) chloride dimer (0.400 g, 0.595 mmol) in dry dichloromethane (2.5 mL) was added in one portion. The solution was stirred for 10 min at r.t., 1,3-dimesitylimidazolium chloride (0.406 g, 1.191 mmol) was added in one portion. The solution was stirred for 72 h at 45 °C under Ar, resulting in a gradual colour change from yellow to orange. The solvent was subsequently removed in vacuo, and the residue purified directly via flash column chromatography, eluting the yellow fraction with ethyl acetate/hexanes (1:1). The combined yellow fractions were concentrated under reduced pressure. The desired yellow, crystalline solid precipitated from the resultant oil on addition of petroleum ether.

FTIR (neat):
3092, 3009, 2916, 2876, 1609 and 1485 cm⁻¹.

1H NMR (400 MHz, CDCl₃):
δ 6.99–6.96 (2 × bs, 4H, ArH), 6.93 (s, 2H, ArH), 4.14–4.10 (m, 2H, COD CH), 2.96–2.94 (m, 2H, COD CH), 2.34 (s, 12H, ArCH₂), 2.14 (s, 6H, ArCH₃), 1.74–1.59 (m, 4H, COD CH₂) and 1.33–1.21 (m, 4H, COD CH₂).

13C NMR (100 MHz, CDCl₃):
δ 181.0, 138.8, 137.6, 136.3, 134.6, 133.0, 129.7, 128.3, 123.5, 82.8, 66.1, 51.6, 33.7, 29.2, 21.4, 19.9 and 15.5.

Standard hydrogen isotope exchange procedure
A flame dried and argon cooled 100 mL three-neck round bottomed flask, equipped with two stopcock valves and a suba seal, was charged with the iridium complex (5 mol%) and dry dichloromethane (2.5 mL), followed by the substrate (0.215 mmol). The suba seal was replaced by a glass stopper fitted with a Teflon® sleeve, and the reaction vessel was cooled to –78 °C in a dry ice/acetone bath, prior to being purged twice with nitrogen. The flask was then evacuated and filled with deuterium gas via balloon. The flask was removed from the slurry and allowed to warm to room temperature. (NOTE: the glass stopper must be physically restrained as the reaction mixture warms to room temperature). The reaction mixture was then allowed to stir vigorously at room temperature for 16 h. The level of isotope incorporation into the substrate was determined by 1H NMR analysis of the reaction products. As such, the residual proton signal from the site of incorporation was compared against that of a site where incorporation was not expected to occur. Each reaction was carried out in duplicate.

Results and discussion
In our initial experiments, chloro-carbene complexes 2a-d were employed in the ortho-directed labelling of acetophenone, 3, under our optimised reaction conditions (Scheme 1, Table 1). Interestingly, whereas complexes 2a and 2b, holding sterically smaller NHC ligands, failed to catalyse the reaction to any appreciable extent, more encumbered analogues 2c and 2d proved to be remarkably efficient HIE catalysts. This supports our previous hypothesis that a sterically encumbered coordination sphere is a necessary trait in such HIE catalyst systems. Having said this, it is also evident from these reference reactions that, in moving from the optimum system in 2c to an even more encumbered NHC, as in 2d, catalyst efficiency deteriorates. Indeed, all attempts to form HIE catalysts of type 1 from 2d have thus far failed, indicating that the ligand sphere around the iridium centre is already too congested and cannot accommodate the introduction of a phosphine ligand.

Having identified 2c as a highly efficient catalyst in the labelling of acetophenone, we were keen to investigate the effective substrate scope of this system (Scheme 2, Table 2). Towards this aim, a series of para-substituted aryl ketones were labelled with deuterium using the HIE catalyst 2c (Scheme 2).

Table 1. Labelling of acetophenone

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>% D³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>87</td>
</tr>
</tbody>
</table>

³Average incorporation into the positions shown over two separate reaction runs; the percentage given refers to the level of D incorporation over the total number of positions possible, e.g. 97% for the two possible positions in Entry 3 indicates 1.94 D incorporation.
studied, with good to excellent levels of deuterium incorporation being achieved for both electron-donating and electron-withdrawing substitution (Entries 1 and 2–4, respectively). However, on moving to bromo-derivatives or iodo-derivatives, the labelling efficiency of 2c proved to be less effective (Entries 5 and 6, respectively); this reduced exchange efficiency could be a consequence of the relatively and perceived lowered electrophilicity of the chloro-carbene catalyst in combination with less readily coordinating substrates. Our investigations then progressed toward labelling more sterically encumbered aryl ketones. Pleasingly, benzophenone and 1-phenyl-1-propanone were both found to undergo highly efficient ortho-labelling with 2c (Entries 7 and 8, respectively). On labelling further extended and branched alkyl derivatives of acetophenone, more moderate levels of deuterium incorporation were achieved under the operative reaction conditions (Entries 9 and 10).

To further investigate the variety of substrates amenable to deuterium labelling with chloro-carbene catalyst 2c, a series of aryl amides was investigated. Unfortunately, in all cases, lowered levels of deuterium incorporation were observed (Figure 2). This observation held true for benzamide, 7, and toluyl amide, 8, which would be labelled via a five-membered metallo cyclic (5-mmi), and for acetonilide, 9, in which deuterium would be incorporated via a more energetically demanding 6-mmi. Interestingly, in the case of benzanilide, 10, which has the capacity to be labelled via both 5-mmi and 6-mmi, almost exclusive labelling in the a-ring (via a 5-mmi) was found, albeit with low overall levels of D incorporation. These findings are in contrast to those reported previously when catalysts 1a-c were employed, with high levels of deuterium incorporation having been achieved across all substrates 7–10. Despite the good general levels of effectiveness found to this stage with catalyst 2c, this highlights a notable limitation in the utility of this species and, indeed, demonstrates the necessity for the use of cationic NHC-phosphine complexes of the type 1 towards achieving the widest possible substrate scope.

In our final study, we investigated the propensity for 2c to mediate ortho-HIE using nitrogen-based heterocyclic functionalities as the key directing group. As such, we are pleased to report the highly efficient labelling with pyridine, 11, pyrazole, 12, and imidazole, 13, using catalyst 2c under the remarkably mild reaction conditions shown in Figure 3.

Conclusions

The results presented herein show that synthetically accessible chloro-carbene complexes, such as 2c and 2d, bearing sterically encumbered NHC ligands, are effective catalysts for the ortho-directed labelling of simple organic substrates. Moreover, complex 2c proved to be more generally efficient than 2d, suggesting an optimal ligand size in the former species; for further studies showing the more limited applicability of 2d, see the Supporting Information. Although this overall study provides more direct evidence for the necessity for more elaborate and activated complexes, such as 1, this work expands the range of HIE catalysts available to the labelling chemist, with the establishment of ortho-directed HIE protocols using a simple and readily accessible chloro-iridium/NHC species. Moreover, this work also supports our further explorations into the development of extended novel catalysts for application in HIE and other transformations.

Table 2. Labelling of aryl ketones

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>R</th>
<th>% D<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMe</td>
<td>Me</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>Me</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>Cl</td>
<td>Me</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td>Me</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Me</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>Ph</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>Et</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>n-Bu</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>t-Bu</td>
<td>41</td>
</tr>
</tbody>
</table>

^aAverage incorporation into the positions shown over two separate reaction runs; the percentage given refers to the level of D incorporation over the total number of positions possible.

Figure 2. Labelling of aryl amides.

Figure 3. Labelling of N-based heterocyclic compounds.
Acknowledgements

The authors are grateful to both AstraZeneca (ARC, SI) and The Carnegie Trust (MR) for funding. Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Conflict of Interest

The authors did not report any conflict of interest.

References

[38] Catalysts 1a-c are available commercially from Strem Chemicals.
[41] For a comprehensive study on quantifying NHC characteristics, see: