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Abstract

This paper is concerned with the following Markovian stochastic
differential equation of mean-reversion type

dRt = (θ + σα(Rt, t))Rtdt+ σRtdBt

with an initial value R0 = r0 ∈ R, where θ ∈ R and σ > 0 are con-
stants, and the mean correction function α : R× [0,∞) 7→ α(x, t) ∈ R

is twice continuously differentiable in x and continuously differentiable
in t. We first derive that under the assumption of path indepen-
dence of the density process of Girsanov transformation for the above
stochastic differential equation, the mean correction function α sat-
isfies a non-linear partial differential equation which is known as the
viscous Burgers equation. We then develop a Galerkin type approxi-
mation scheme for the function α by utilizing truncation of discretised
Fourier transformation to the viscous Burgers equation.

Mathematics Subject Classification (2000): 60H35; 35Q53

Key Words and Phrases: Markovian stochastic differential equation of
mean-reversion type, viscous Burgers Equation, truncation of (discretised)
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1 Introduction

Stochastic differential equations (SDEs) have become more and more popular
in mathematical modeling the (random) dynamics involving uncertainty with
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the passage of time. There are diverse applications ranging from physics, bi-
ology, medical and health studies, climate studies, engineering, systematical
science to economics and finance (cf. e.g. [14] and references therein). In
many studies of such stochastic models, the mean-reversion type stochastic
dynamics is very important, which corresponds to equilibrium state(s) of the
systems concerned and usually links to certain partial differential equations
appeared in (classical) mathematical physics.

In this paper, we study a stochastic differential equation of mean-reversion
type which arises from the (modern) mathematical modeling in economics
and finance. We aim to derive an equation for the mean correction function
appearing in the SDE which characterizes the path inpendent property of
the density process of the Girsanov transformation for the stochastic equa-
tion. Applying Itô stochastic calculus, we end up with a viscous Burgers
equation for the mean correction function. We then develop a Galerkin type
approximation scheme for the mean correction function by utilizing Galerkin
truncation of the (discrete) Fourier transform of the viscous Burgers equa-
tion. Our approximation provides an adaptive algorithm towards numerical
solutions for the mean correction function and hence gives a way (as one may
hope) to explore statistical behaviors of the mean-reversion type SDEs in the
financial modeling.

The rest of the paper is organized as follows. Section 2 will introduce the
stochastic differential equations of mean-reversion type along with Girsanov
transformation. We prove that the solution, if exists, of the equation stays
the same sign as the initial value. Section 3 is devoted to the derivation
of the viscous Burgers equation for the mean correction function under the
assumption that the density process of the Girsanov transform for the SDE
possesses the path independent property. We also give some discussions of our
notion of the path-independence and its link to terminologies in economics
and finance. In Section 4, we develop the Galerkin type approximation for
the derived viscous Burgers equation.

2 Preliminary

We start with a brief account of Girsanov theorem. Given a complete proba-
bility space (Ω,F ,P) with a usual filtration {Ft}t∈[0,∞), let b : [0,∞)×R → R

and σ : [0,∞)× R → R be measurable functions. Let E denote the expec-
tation with respect to the probability measure P. We consider the following
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SDE
dXt = b(t, Xt)dt+ σ(t, Xt)dBt, t > 0 (2.1)

where Bt is a standard Brownian motion. It is well-known, see e.g. [10,
Theorem IV.3.1], that when b and σ satisfy a linear growth and local Lipschitz
condition with respect to the second variable, there exists a unique solution to
Equation (2.1) with any given initial dataX0 and the solutionX = (Xt)t∈[0,∞)

is a real-valued continuous Markov process.
The celebrated Girsanov theorem provides a very powerful probabilistic

tool to solve Equation (2.1) under the name of the Girsanov transformation
or the transformation of the drift. Let γ : [0,∞)×R → R satisfy the following
Novikov condition

E

[
exp

(
1

2

∫ t

0

γ(s,Xs)
2ds

)]
< ∞, ∀t > 0.

Then, by Girsanov theorem (cf e.g. Theorem IV 4.1 of [10]),

exp

(∫ t

0

γ(s,Xs)dBs −
1

2

∫ t

0

γ(s,Xs)
2ds

)
, t ∈ [0,∞)

is an {Ft}-martingale. Furthermore, for t ≥ 0, we define

Qt := exp

(∫ t

0

γ(s,Xs)dBs −
1

2

∫ t

0

γ(s,Xs)
2ds

)
· P

or equivalently, in terms of the Radon-Nikodym derivative

dQt

dP
= exp

(∫ t

0

γ(s,Xs), dBs −
1

2

∫ t

0

γ(s,Xs)
2ds

)
.

Then, for any T > 0,

B̃t := Bt −
∫ t

0

γ(s,Xs)ds, 0 ≤ t ≤ T

is an {Ft}-Brownian motion under the probability QT . Moreover, Xt satisfies

dXt = [b(t, Xt) + σ(t, Xt)γ(t, Xt)]dt+ σ(t, Xt)dB̃t, t > 0. (2.2)

One can then discuss comprehensively the existence and uniqueness as well
as the structure of solutions to the initial value problem for Equation (2.1)
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by appealing the above argument with suitable choice of γ. A remarkable
choice of γ is to vanish the drift coefficient. To be more precise, assume that
σ(t, x) 6= 0 for all (t, x) ∈ [0,∞)× R. We then take

γ(t, x) := − b(t, x)

σ(t, x)
, (t, x) ∈ [0,∞)× R. (2.3)

Then, under the assumption of Novikov condition for this specified γ

E

[
exp

(
1

2

∫ t

0

[
b(s,Xs)

σ(s,Xs)

]2
ds

)]
< ∞, ∀t > 0.

Equation (2.2) becomes

dXt = σ(t, Xt)dB̃t, t ≥ 0

indicating that (Xt)t∈[0,T ] then becomes a local martingale on the probability
set-up (Ω,F ,QT ; {Ft}t∈[0,T ]).

In the present paper, we are concerned with the following SDE of mean-
reversion type

dRt = (θ + σα(Rt, t))Rtdt+ σRtdBt, t > 0 (2.4)

where θ ∈ R and σ > 0 are constants, and the function α ∈ C2,1(R× [0,∞)).
Here and in the sequel, C2,1(R × [0,∞)) stands for the space of functions

f : R× [0,∞) → R such that both ∂f2

∂x2 (x, t) and
∂f

∂t
(x, t) are continuous.

From the above general discussion, we know that under the linear growth
and the Lipschitz conditions on both drift and diffusion coefficients, there
is a unique solution to (2.4) with a given initial value R0 = r0 ∈ R. So we
assume that there exists a constant c > 0 such that

|α(x, t)x| ≤ c(1 + |x|)

and
|xα(x, t)− yα(y, t)| ≤ c|x− y|

for all x, y ∈ R and t ∈ [0,∞).
The next result will be used in the rest of the paper. The result is also

interesting in itself.
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Proposition 2.1. Let (Rt, t ≥ 0) be the solution of (2.4) with an initial
value R0 = r0 ∈ R \ {0}. If

E

[
exp

(
1

2

∫ t

0

(
θ

σ
+ α(Rs, s)

)2

ds

)]
< ∞, ∀ t > 0, (2.5)

then
Rt r0 > 0, for all t ≥ 0.

That is, the solution (Rt, t ≥ 0) keeps the same sign as the initial value r0.

Proof. Set, for t ≥ 0,

Qt := exp

(
−
∫ t

0

(
θ

σ
+ α(Rs, s)

)
dBs −

1

2

∫ t

0

(
θ

σ
+ α(Rs, s)

)2

ds

)
P

and

B̃t := Bt +

∫ t

0

(
θ

σ
+ α(Rs, s)

)
ds.

Then by Girsanov Theorem, for any T > 0, (B̃t, 0 ≤ t ≤ T ) is a Brownian
motion under QT and the (2.4) becomes

dRt = σRtdB̃t. (2.6)

Clearly, Equation (2.6) has the explicit solution

Rt = r0 exp

(
B̃t −

1

2
σ2t

)
, ∀t ≥ 0

which justifies our claim.
In the rest of the paper, we assume the condition (2.5) holds. We also

assume that the initial value r0 > 0. Hence, the process (Rt, t ≥ 0) takes
positive values only.

3 The link of α with viscous Burgers equaiton

This section is devoted to derive a non-linear partial differential equation of
Burgers type for the mean correction term α in Equation (2.4).
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Definition 3.1 (Path independence of Girsanov transform density).
Let the process (Rt, t ≥ 0) be determined by Equation (2.4). We say that the
Girsanov transform density (i.e. Radon-Nikodym derivative) associated with
the mean-reversion drift

dQt

dP
= exp

(
−1

2

∫ t

0

(
θ + σα(Rs, s)

σ

)2

ds−
∫ t

0

θ + σα(Rs, s)

σ
dBs

)

has path independent property if there exists F ∈ C2,1(R× [0,∞)) such that

F (Rt, t) = F (R0, 0)−
1

2

∫ t

0

(
θ + σα(Rs, s)

σ

)2

ds

−
∫ t

0

θ + σα(Rs, s)

σ
dBs, ∀t > 0 .

This is equivalent to say that the exponent of the Radon-Nikodym derivative
is path independent, i.e.

ln

(
dQt

dP

)
= F (Rt, t)− F (R0, 0), for all t > 0. (3.1)

The concept of path independence of Girsanov transform density has its
root in mathematical economics. In a market with underlying stock price
dynamics described by SDEs of mean reversion type, the market efficiency
is indeed characterised by the path independent property of certain utility
function which can be expressed in terms of Girsanov transform density, see
c.f e.g. [7, 15]. Market efficiency is sometime linked with the terminology
market equilibrium in certain literature.

Let us explicate this point further. A conventional kind of equilibrium
market can be characterized by a value function V : [0,∞) × R → R of a
representative agent (see e.g., [9, 3, 4, 5]). Given the probability measure P

as an objective probability in the market model, one can interpret our Rt as
the wealth of the representative agent in a single stock market. Assuming
that the representative agent has certain utility function U , depending on
time t and stock price process (Rt, t ≥ 0), and maximizes his expected total
utility and that the value function V is differentiable in the first variable and
defined as the expectation of total utility, Cox and Leland in [2] show that the
path independence is necessary for expected utility maximization. By path
independence, they mean that the value of a portfolio at certain time t > 0
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will depend only on the asset prices at time t, not on the path followed by
the asset in reaching that price. Namely, the utility U depends on the state
price Rt and time t that is, the function U is of the form U(t, Rt). Further
more, it was shown e.g. in [7] that there exists a risk neutral probability
measure Q which is absolutely continuous with respect to P and that the
Radon-Nikodym derivative dQ

dP
gives the state-price density. Combining the

above U(t, Rt), therefore, the Radon-Nikodym derivative is exactly in the
form of (3.1).

We are now in the position to present our main result of this section.

Theorem 3.2. Let (Rt, t ≥ 0) be the solution of (2.4) with an initial value
R0 = r0 > 0. If the Girsanov transform density of (2.4) has the path indepen-
dent property, then the mean correction function α satisfies the time-reverse
viscous Burgers equation

∂

∂t
α(x, t) = −1

2
σ2 ∂2

∂x2
α(x, t)− σα(x, t)

∂

∂x
α(x, t) (3.2)

for (x, t) ∈ R× [0,∞).

Proof. From Proposition 2.1, we know Rt > 0 for all t > 0 since r0 > 0.
Then we define a process (Xt, t ≥ 0) by

Xt := lnRt − (θ − 1

2
σ2)t. (3.3)

Treating Rt as an integrity variable and using Itô formula to (3.3), together
with Equation (2.4), we get

dXt =
∂Xt

∂t
dt +

∂Xt

∂Rt

dRt +
1

2

∂2Xt

∂R2
t

(dRt)
2

= −(θ − 1

2
σ2)dt+

1

Rt

((θ + σα(t, Rt))Rtdt+ σRtdBt)

+
1

2
(−1)

1

R2
t

σ2R2
t dt

= −(θ − 1

2
σ2)dt+ (θ + σα(t, Rt))Rtdt+ σdBt −

1

2
σ2dt

= σα(t, Rt)dt+ σdBt.

(3.4)
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By Girsanov theorem, we know that the change of measure is characterized
by the Radon-Nikodym derivative

dQt

dP
= exp

(
−1

2

∫ t

0

α2(Xs, s)ds−
∫ t

0

α(Xs, s)dBs

)
.

Under the assumption that the Girsanov transform density of (2.4) has the
path independent property, we get

1

2

∫ t

0

α2(Xs, s)ds+

∫ t

0

α(Xs, s)dBs

is also path independent. Set

Z(Xt, t) :=
1

2

∫ t

0

α2(Xs, s)ds+

∫ t

0

α(Xs, s)dBs (3.5)

then we can write
dQt

dP
= exp(−Z(Xt, t)).

From Equation (3.4), we have

dBt =
dXt − σα(Xt, t)dt

σ
, (3.6)

further substituting Equation (3.6) into the integrand of (3.5) in place of dBt

then yields

Z(Xt, t) =

∫ t

0

(1
2
α2(Xs, s)ds+ α(Xs, s)

dXs − σα(Xs, s)ds

σ

)

=

∫ t

0

(
− 1

2
α2(Xs, s)ds+

α(Xs, s)

σ
dXs

)
.

(3.7)

Differential formulation of (3.7) is written as

dZ(Xt, t) = −1

2
α2(Xt, t)dt+

α(Xt, t)

σ
dXt. (3.8)

On the other hand, treating Xt as an integrity variable and using Itô formula
for the composition Z(Xt, t), we derive that

dZ(Xt, t) =
∂

∂t
Z(Xt, t)dt+

∂

∂Xt

Z(Xt, t)dXt +
1

2
σ2 ∂2

∂X2
t

Z(Xt, t)dt. (3.9)
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Equating the right hand side of (3.8) to that of (3.9), we conclude

− 1

2
α2(Xt, t)dt+

α(Xt, t)

σ
dXt

=

(
∂

∂t
Z(Xt, t) +

1

2
σ2 ∂2

∂X2
t

Z(Xt, t)

)
dt+

∂

∂Xt

Z(Xt, t)dXt. (3.10)

Comparing the coefficients of dt and dXt in (3.10) respectively, we get

∂

∂Xt

Z(Xt, t) =
α(Xt, t)

σ
(3.11)

and
∂

∂t
Z(Xt, t) +

1

2
σ2 ∂2

∂X2
t

Z(Xt, t) = −1

2
α2(Xt, t). (3.12)

We are aiming to find an equation for α, so we try to eliminate Z by manip-
ulating Equations (3.11) and (3.12). Differentiating Equation (3.11) again
with respect to the variable Xt we get

∂2

∂X2
t

Z(Xt, t) =
1

σ

∂

∂Xt

α(Xt, t) (3.13)

then substituting Equation (3.13) into Equation (3.12), we have

∂

∂t
Z(Xt, t) = −1

2
σ

∂

∂Xt

α(Xt, t)−
1

2
α2(Xt, t) . (3.14)

Now, to eliminate Z, we can differentiate Equation (3.14) with respect to x

and (3.11) with respect to t, respectively,

∂2

∂t∂Xt

Z(Xt, t) = −1

2
σ

∂2

∂X2
t

α(Xt, t)− α(Xt, t)
∂

∂Xt

α(Xt, t)

and
∂2

∂Xt∂t
Z(Xt, t) =

1

σ

∂

∂t
α(Xt, t).

Furthermore, equating the above two equations, we get

∂

∂t
α(Xt, t) = −1

2
σ2 ∂2

∂X2
t

α(Xt, t)− σα(Xt, t)
∂

∂Xt

α(Xt, t).
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Since σ > 0, the solution (Rt, t ≥ 0) of (2.4) is non-degenerate. By the
definition (3.3), the process (Xt, t ≥ 0) is fully supported on R. Hence we
obtain

∂

∂t
α(x, t) = −1

2
σ2 ∂2

∂x2
α(x, t)− σα(x, t)

∂

∂x
α(x, t).

This shows that the mean correction function α in (2.4) satisfies the time-
reversal viscous Burgers equation. We are done.

Remark 3.3. The (viscous) Burgers equation arises in connection with the
behavior of the risk premium of the market portfolio of risky assets in the clas-
sical Black-Scholes efficient stock market models can be found in Bick [1] and
He-Leland [6]. Our analysis in this section is inspired by Hodges-Carverhill
[7] and Hodges-Selby [8], which investigate the behavior of a single asset price
St in an equilibrium market with price dynamics follows the following type
stochastic differential equation

dS

S
= [r + σα(S, t)]dt+ σdz

where r is a constant risk-free interest rate, σ is a constant volatility param-
eter, z stands for a Brownian motion, and α(S, t) is an adapted stochastic
process standing for the risk price. Hodges et al. in [7, 8] claim that in
the equilibrium market, the risk premium α(S, t) must satisfy the (viscous)
Burgers equation. Let us also mention an interesting articles [15] for the rel-
evant analytic studies for the Black-Scholes’ equilibrium market model with
the above type stochastic differential equation.

Remark 3.4. The characterization of path independent property of the den-
sity processes of Girsanov transformation for SDEs with more general coef-
ficients and for SDEs in multi-dimensional spaces as well as for SDEs on
differential manifolds can be found in [17, 16].

4 An approximation scheme to the mean cor-

rection term α

Tracing back to 1950 and 1951, Hopf and Cole derived independently an
analytic solution to the Burgers equation by using a transformation, nowa-
days called Hopf-Cole transformation, which reduces the Burgers equation
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(which is a nonlinear partial differential equation) to a heat diffusion equa-
tion (which is linear). Namely, the (viscous) Burgers equation can be solved
in closed form in terms of the initial data by utilising the Hopf-Cole substi-
tution. However, to establish an applicable, numerical solution to the initial
value problem for the Burgers equation is a very interesting problem and
it remains as a great challenge as long as applying the Burgers equation to
model various practical problems. Thereafter, there is an increasing interest
to solve Burgers equation numerically. Majda and Timofeyev [12, 13] intro-
duced a very remarkable method which provides a suitable approximation of
the inviscid Burgers equation. Their approximation involves Galerkin projec-
tion on the Fourier modes involved. Our analysis in this section is inspired by
[12, 13] with resulting in a numerical approximation to our formerly derived
viscous Burgers equation.

We recall our viscous Burgers equation is given as follows

∂

∂t
α(x, t) = −1

2
σ2 ∂2

∂x2
α(x, t)− σα(x, t)

∂

∂x
α(x, t), (x, t) ∈ R× [0,∞). (4.1)

and rewrite this equation as

∂

∂t
α(x, t) = −1

2
σ2 ∂2

∂x2
α(x, t)− σ

2

∂

∂x

[
α(x, t)

]2
. (4.2)

Using the Fourier transformation, one can convert this equation to an ordi-
nary differential equation. Define the Fourier transformation and the inverse
Fourier transformation of α as

α̂(k, t) :=
1√
2π

∫
∞

−∞

e−ikxα(x, t)dx

and

α(x, t) :=
1√
2π

∫
∞

−∞

eikxα̂(k, t)dk

provided the both integral are well-defined. We have the following two prop-
erties:

(i)
∂

∂k
α̂(k, t) = ikα̂(k, t)

(ii)
∂2

∂k2
α̂(k, t) = (ik)2α̂(k, t) = −k2α̂(k, t).
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After the Fourier transformation, (4.2) becomes

∂

∂t
α̂(k, t) = −1

2
σ2(ik)2α̂(k, t)− σ

2
(ik)α̂2(k, t) . (4.3)

Furthermore, discretising the Fourier transformation into the Fourier series
and truncating the Fourier series, we get an approximation to solution α̂(k, t)
of the ordinary differential equation (4.3), which in turn provides an approx-
imation to the solution α(k, t) of the viscous Burgers equation (4.1). Define
now the Galerkin truncation for arbitrarily fixed natural number N ∈ N as
follows

αN(x, t) := (PNα)(x, t) :=

N∑

k=−N

α̂(k, t)eikx.

Then it is clear that

∂2

∂x2
αN(x, t) = (PN

∂2

∂x2
α)(x, t) =

N∑

k=−N

(ik)2α̂(k, t)eikx

and

∂

∂x

[
α2
N(x, t)

]
= PN

[
∂

∂x
(α2(x, t))

]

=
N∑

k=−N

(ik)α̂(k, t)α̂(k, t)eikx

=

N∑

k=−N

(ik)

N∑

p=−N

α̂(p, t)α̂(k − p, t)eikx.

Consequently, Equation (4.3) becomes

∂

∂t
(

N∑

k=−N

α̂(k, t)eikx) =− σ2

2

N∑

k=−N

(ik)2α̂(k, t)eikx

− σ

2

N∑

k=−N

(ik)
N∑

p=−N

α̂(p, t)α̂(k − p, t)eikx .
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Simplifying the above equation, we get

N∑

k=−N

∂

∂t
α̂(k, t)eikx =

σ2

2

N∑

k=−N

k2α̂(k, t)eikx

− σ

2

N∑

k=−N

(ik)

N∑

p=−N

α̂(p, t)α̂(k − p, t)eikx

=

N∑

k=−N

(
σ2

2
k2α̂(k, t)− σik

2

N∑

p=−N

α̂(p, t)α̂(k − p, t)

)
eikx.

Fixing k and comparing the coefficients on the both sides, we get

∂

∂t
α̂(k, t) =

σ2

2
k2α̂(k, t)− σik

2

N∑

p=−N

α̂(p, t)α̂(k − p, t) (4.4)

for k = −N,−N + 1, ..., N − 1, N . It turns out that the partial differential
equation (4.1) has been reduced to a system of 2N + 1 ordinary differential
equations with the help of truncated (discretised) Fourier transformation.
Then we may rewrite Equation (4.4) in the conventional manner

d

dt
α̂(k, t) =

σ2

2
k2α̂(k, t)− σik

2

N∑

p=−N

α̂(p, t)α̂(k − p, t). (4.5)

Next, we shall try to find a numerical solution to the Equation (4.5). For
any natural number n ∈ N, we split the time interval [0, T ] into n equal-sized
sub-intervals, i.e.

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T

and denote the step-size δ := T−0
n

as a fixed parameter. Replacing d
dt
α̂(k, t)

by the forward numerical differentiation
α̂(k,tj)−α̂(k,tj−1)

δ
, where j = 1, 2, · · · , n,

and putting it into Equation (4.5), we get

α̂(k, tj)− α̂(k, tj−1)

δ
=

σ2

2
k2α̂(k, tj−1)−

σik

2

N∑

p=−N

α̂(p, tj−1)α̂(k − p, tj−1) .

We now rearrange this equation as follows

α̂(k, tj) =

(
δσ2

2
k2 + 1

)
α̂(k, tj−1)−

δσik

2

N∑

p=−N

α̂(p, tj−1)α̂(k−p, tj−1) , (4.6)
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for all k = −N,−N + 1, ..., N − 1, N . This is a recurrence formula on
t0, t1, . . . , tn, which is a Galerkin truncation of the equation (4.3). Namely,
the set {α̂(k, t0), α̂(k, t1), . . . , α̂(k, tn)} forms a numerical solution to the
equation (4.5) in the sense that α̂(k, tn) converges stably to the Fourier trans-
formation of the analytic closed form solution of the initial value problem for
the equation (4.1) as the step-size δ → 0 or equivalently as n → ∞. The
mathematical justification of this argument is rather routine in the topic of
numerical solutions to differential equations (cf. e.g. [11]).

Finally we come to the stage to get the initial value α̂(k, t0) = α̂(k, 0), for
each k = −N,−N+1, ..., N−1, N . With the given initial data of real-valued
α(x, 0), we have

α(x, 0) = αN(x, 0) =
N∑

m=−N

α̂(m, 0)eimx.

Now for any fixed −N ≤ k ≤ N , multiplying e−ikx to the above identity and
taking integral of x over [−π, π], we get

∫ π

−π

α(x, 0)e−ikxdx =
N∑

m=−N

α̂(m, 0)

∫ π

−π

eimxe−ikxdx = 2πα̂(k, 0)

since
∫ π

−π

eikxe−ikxdx = 2π and

∫ π

−π

eimxe−ikxdx = 0 for m 6= k.

Hence, we obtain

α̂(k, 0) =
1

2π

∫ π

−π

α(x, 0)e−ikxdx. (4.7)

To summarise, in this section, with Galerkin truncation of the (discre-
tised) Fourier transformation of the viscous Burgers equation (4.1), we derive
a recurrence formula (4.6) with the initial value (4.7) which is a numerical
solution to the mean correction function α.
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