Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Environmental and toenail metals concentrations in copper mining and non mining communities in Zambia

Ndilila, Wesu and Callan, Anna Carita and McGregor, Laura A and Kalin, Robert M and Hinwood, Andrea L (2014) Environmental and toenail metals concentrations in copper mining and non mining communities in Zambia. International Journal of Hygiene and Environmental Health, 217 (1). pp. 62-69.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Copper mining contributes to increased concentrations of metals in the environment, thereby increasing the risk of metals exposure to populations living in and around mining areas. This study investigated environmental and toenail metals concentrations of non-occupational human exposure to metals in 39 copper-mining town residents and 47 non-mining town residents in Zambia. Elevated environmental concentrations were found in samples collected from the mining town residents. Toenail concentrations of cobalt (GM 1.39mg/kg), copper (GM 132mg/kg), lead (21.41mg/kg) selenium (GM 0.38mg/kg) and zinc (GM 113mg/kg) were significantly higher in the mining area and these metals have previously been associated with copper mining. Residence in the mining area, drinking water, dust and soil metals concentrations were the most important contributors to toenail metals concentrations. Further work is required to establish the specific pathways of exposure and the health risks of elevated metals concentrations in the copper mining area.