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Hohmann Spiral Transfer With Inclination Change Performed By 
Low-Thrust System  

Steven Owens1 and Malcolm Macdonald2  

This paper investigates the Hohmann Spiral Transfer (HST), an orbit transfer 

method previously developed by the authors incorporating both high and low-

thrust propulsion systems, using the low-thrust system to perform an inclination 

change as well as orbit transfer. The HST is similar to the bi-elliptic transfer as 

the high-thrust system is first used to propel the spacecraft beyond the target 

where it is used again to circularize at an intermediate orbit. The low-thrust 

system is then activated and, while maintaining this orbit altitude, used to 

change the orbit inclination to suit the mission specification. The low-thrust 

system is then used again to reduce the spacecraft altitude by spiraling in-toward 

the target orbit. An analytical analysis of the HST utilizing the low-thrust system 

for the inclination change is performed which allows a critical specific impulse 

ratio to be derived determining the point at which the HST consumes the same 

amount of fuel as the Hohmann transfer. A critical ratio is found for both a 

circular and elliptical initial orbit. These equations are validated by a numerical 

approach before being compared to the HST utilizing the high-thrust system to 

perform the inclination change. An additional critical ratio comparing the HST 

utilizing the low-thrust system for the inclination change with its high-thrust 

counterpart is derived and by using these three critical ratios together, it can be 

determined when each transfer offers the lowest fuel mass consumption. Initial 

analyses have shown the HST utilizing low-thrust inclination change to offer the 

greatest benefit at low            and large            . A novel 

numerical optimization process which could be used to optimize the trajectory is 

also introduced. 

INTRODUCTION 

As commercial satellites have an ever-increasing role in our everyday lives there is great demand 

for more satellite platforms to accommodate the services offered such as telecommunications, 

Global Positioning System (GPS) and Earth-monitoring. As the life length of such a platform is 

largely dictated by its amount of on-board fuel there is great interest in ensuring the fuel required 

for the trajectory to deliver the satellite to its working orbit is kept at a minimum. This paper 

investigates the Hohmann Spiral Transfer (HST), an orbit transfer method previously developed 

by the author incorporating both high and low-thrust propulsion systems
1–3

, with an inclination 

change performed by the low-thrust propulsion system. The HST is similar to a bi-elliptic transfer 

as the high-thrust system is first used to propel the spacecraft way beyond the target where it is 

used again to circularize at an intermediate orbit. The low-thrust system is then activated and, 

while maintaining this orbit altitude, used to change the orbit inclination to suit the mission 

specification. The low-thrust system is then used again to reduce the spacecraft altitude and spiral 
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in toward the target orbit. Figure 1 gives a visual representation of the transfer. The analytical 

methodology is compared to a numerical method for validation before being compared against the 

HST using the high-thrust system to impart the inclination change, as described in Reference 1, to 

determine when each transfer should be used.  

 

Figure 1. HST and Hohmann Transfer Specification 

CRITICAL SPECIFIC IMPULSE DERIVATION 

The critical ratios for the HST and compared transfers are referred to as    
    , where the 

superscript section denotes the comparison as is detailed in Table 3. They are considered 

separately as different orbit transfers will depend on one ratio and not the other. The analytical 

equations derived in this paper only concern the HST with low-thrust inclination change. 

The following equations derive the critical specific impulse ratio, which can then be applied to 

each case independently. The high thrust and HST fuel mass fractions can be written as,  

   

    
      

(
         

     
)
  (1) 

     

    
      

(
            

     
)
   

(
       

     
)

  (2) 

By equating Eqns. (1) and (2), it can be shown that the HST transfer is equivalent, or better in 

terms of fuel mass fraction when, 
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which can be simplified to give 
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confirming that a critical specific impulse ratio can be determined for the condition when the 

high-thrust fuel consumption is equal to the HST fuel consumption. Thus, for a given set of initial 

conditions, any specific impulse ratio above this critical value will be more fuel-efficient than the 

compared transfer. 

From Eq. (4) it can be seen that, for the condition when the HST high-thrust    equals that of the 

high-thrust only   , a singularity exists. Beyond this signifies the region where the HST requires 

more fuel than the high-thrust only transfer and would be required to add mass to the system 

rather than remove it.  

ANALYTICAL LOW-THRUST INCLINATION CHANGE METHODOLOGY 

In order to consider the inclination change performed by the low-thrust system analytically, it is 

necessary to define the rate of change of inclination using the Gauss form of the Lagrange 

Planetary Equations, in terms of a spacecraft centered RTN coordinate system 
4
. This is defined 

as 
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where, for a circular orbit using the HST 

     (6) 

As this analysis is based on a circular intermediate orbit and the argument of perigee is of no 

importance, it is assumed to be 90° to avoid the problem of it being undefined. This equation can 

then be integrated over one orbit to give the change in inclination. However, as the locally 

optimal control law states that the normal thrust switches sign depending on the argument of 

latitude, the integration is performed in two parts, from     and     . Eq. (7) represents the 

overall inclination change over one orbit, a result of summing the magnitudes from each 

integration. 
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This can then be used with the orbital period and number of orbits required, defined respectively 

as 
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and 
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to give the ∆V for the inclination change as shown in Eq. (10). 
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This can then be summed with the    required to perform the low-thrust orbit transfer given in 

Eq.(11), and by introducing the orbit ratios    ( 
  

  
) and   ( 

  

  
) can be simplified to give the 

total    used by the low-thrust system as shown in Eq. (12). It should be noted that Eq. (11) is an 

approximation for the low-thrust   . 
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This equation can be used in the comparison of different initial orbits and transfers as the low-

thrust section is constant in all cases. A visual representation of the transfer can be found in 

Figure 1. 

ANALYTICAL HIGH-THRUST INCLINATION CHANGE METHODOLOGY 

As is commonly known, it is more efficient to impart a plane change and orbit raise as part of the 

same maneuver, compared to carrying out each sequentially, when using a high-thrust system
5
. 

The    required to perform the transfer is therefore calculated by comparing the initial and final 

orbit velocity vectors as well as the inclination plane change required. This is done using the 

cosine law as part of vector analysis. Figure 1 highlights the transfer specification while Eq. (13) 

details the    equation.  
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As the transfer is conducted using two impulses, one to enter the transfer orbit and one to capture 

the target orbit, it is necessary to determine how much inclination change to impart at each 

impulse of the maneuver. An analytical approximation of this has already been established to an 

accuracy of 0.5° which introduces a scaling term, s, to represent the inclination imparted at each 

impulse as shown in Eq. (14)
5
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Firstly, squaring the two velocities to remove the square roots and ignoring the cross product 

terms           gives 
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This can then be differentiated with respect to s and set equal to zero: 
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By collecting terms and rearranging: 

        

        
 

                    

                                    
  

Which then, with further simplification gives 
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Where   
               

             

 

 

Note that   can be modified, depending on the transfer scenario under consideration, by 

introducing the velocity formulas and simplifying with respect to the orbit ratios. For each 

transfer considered in this section this is accounted for and X is adjusted accordingly. 

HOHMANN AND HST CRITICAL SPECIFIC IMPULSE RATIO WITH LOW-THRUST 

INCLINATION CHANGE (CIRCULAR INITIAL ORBIT) 

The high-thrust only    used to represent the Hohmann transfer in the comparison is given in Eq. 

(16). The high and low-thrust sections of the HST, both with a circular initial orbit, are defined in 

Eq. (17) and (12) respectively. 
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(16) 
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By substituting the orbit ratios defined previously, Eq. (4) reduces to give the critical ratio for the 

scenario, when the low-thrust system performs the inclination change, as defined in Eq. (18). 
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Equation (18) now gives a critical ratio that is dependent on only three variables;   ,    and   . 
If the target orbit and inclination are known then the equation is only dependent on    or more 

specifically, the intermediate circular orbit radius value,   . Varying this will give a range of 

critical ratios where the HST using the low-thrust system to perform the inclination change, is 

equivalent in terms of fuel mass fraction to that of the Hohmann transfer utilizing a high-thrust 

inclination change. It should be noted that for this analytical approach it is assumed that the low-

thrust system first performs the inclination change at the intermediate circular orbit before then 

spiraling in towards the target. This is a reasonable assumption based on the fact that the low-

thrust    for a plane change is at a minimum at the furthest point from the central body. This 

method will be validated later in this paper to ensure the assumption is credible. Figure 2 

highlights    
     for a varying    and    and it can be seen that the critical ratio drops off with 

an increasing inclination change suggesting that the HST is more effective at larger inclination 

changes. Figure 3 displays the same critical equation but for a fixed    and    with changing 

inclination. It can be seen that    
     tends to a constant value, with an inclination change 

greater than approximately 1.6 radians (90).  



 
Figure 2.    

     Characteristics (R1=6.36) 

 

 
Figure 3.    

     Characteristics (R1=6.36, R2=100) 

HOHMANN AND HST CRITICAL SPECIFIC IMPULSE RATIO WITH LOW-THRUST 

INCLINATION CHANGE (ELLIPTICAL INITIAL ORBIT) 

For the case when the spacecraft starts in an elliptical orbit and the low-thrust section of the HST 

performs the inclination change, the high-thrust only Hohmann    is given in Eq. (19) and 

accounts for a single impulse burn at apogee. This burn circularizes the orbit while also changing 

the inclination. It should be noted that the analytical analysis is only valid when the apogee of the 

initial orbit coincides with the final orbit radius. This is a reasonable assumption as it is 



representative of a standard Geostationary Transfer Orbit (GTO) to Geostationary Earth Orbit 

(GEO). The low-thrust section of the HST is equal to Eq. (12). The high-thrust section of the HST 

is given in Eq. (20). 
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By then using the orbit ratios as previously defined and Eq. (4), the critical specific impulse ratio 

is given in Eq. (21). 
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where, 
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The critical specific impulse ratio is now only dependent on   ,    and   . If the target orbit and 

inclination are known then this equation is only dependent on    or more specifically, the 

intermediate circular orbit radius value,   . Varying this will give a range of critical specific 

impulse ratios that determine when the HST is equivalent, in terms of fuel mass fraction, to the 

Hohmann transfer. The comparison of the HST with the Hohmann transfer using the low-thrust 

system to implement the inclination change and starting in an elliptical orbit is very similar to the 

same case starting in a circular initial orbit. Figure 4 highlight the characteristics of    
     

showing that with increasing inclination change the HST’s efficiency improves highlighted by the 

critical ratio becoming smaller. It can be seen that the elliptical and circular initial orbit critical 

equations display very similar characteristics. 



 

 

 
Figure 4    

     characteristics (R1=6.36) 

HST CRITICAL SPECIFIC IMPULSE RATIO 

In order for a full comparison of the HST utilizing both high and low-thrust propulsion to 

implement an inclination change an additional critical ratio, dependent on the specific impulse 

again, can be derived which used in collaboration with the HST and Hohmann critical ratio, will 

give a full overview of the system. The critical ratio can be derived by comparing the fuel mass 

fraction, given Eq. (2), for each HST transfer configuration. The critical ratio, with little 

simplification, is then defined in Eq. (22) and is relevant for both a circular and elliptical initial 

orbit as only the    equations will vary. The     equations representing the HST utilizing high-

thrust inclination change can be found in Reference 1. 
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By substituting the relevant equations in, the critical specific impulse ratio comparing the HST 

utilizing high-thrust inclination change with its counterpart for a circular initial orbit is then 

defined in Eq. (23). 
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where 
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Similarly, the critical specific impulse ratio, comparing the HST utilizing high-thrust inclination 

change and its counterpart for an elliptical initial orbit is defined in Eq. (24) with only the 

relevant   ’s changing. 
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where 
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NUMERICAL METHOD 

Locally Optimal Control Laws 

There are seven locally optimal control laws which can be used to optimize a trajectory; however 

as a general analysis of the HST without insertion requirements etc. requires only the semi-major 

axis, eccentricity and inclination, only these control laws will be introduced. As the rate of change 

of an element can be easily calculated, a locally optimal control law can be generated. These 

control laws aim to maximize the instantaneous rate of the element and provide the required 

thrust vector in a closed analytical form. The advantage of these control laws is the speed at 

which they can be implemented in trajectory models. The disadvantage is the sub-optimal nature 

of them and how this affects the resulting solution
6
. The variational equation of the element 

concerned is shown in Eq. (25). 

  

  
    ̂   (25) 

where σ represents the respective element.  The required force,   in the Radial, Transverse and 

Normal Axes (RTN) to maximise the rate of change of σ is a unit vector defined by   . By 

maximizing the force along   , the instantaneous rate of σ is also maximized.  



Semi-Major Axis Control Law 

The semi-major axis variational equation is given in Eq. (26) in classical elements 
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By then identifying    and converting to modified equinoctial elements
7
, the maximized unit 

thrust direction vector is given in Eq. (27). 
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This can now be used to generate a locally optimal control law which focuses on maximizing the 

semi-major axis. This is also known as the energy gain control law as it gives a locally optimal 

variation in orbit energy. 

Eccentricity Control Law 

The eccentricity variational equation is given in Eq. (28) and is defined in classical elements. 
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By identifying    and converting to modified equinoctial elements, the maximized thrust 

direction vector is given in Eq. (29). 
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Inclination Control Law 

The inclination control law varies to the previously defined. It depends only on the out of plane 

perturbation and as such a switching term is required in order to maintain the chosen rate of 

change, either positive or negative. It will change according to the argument of latitude. Eq. (30) 

gives the variational equation for inclination defined in classical elements. 
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Identifying λi, converting to modified equinoctial elements and applying the switching term as 

discussed, the maximized unit thrust direction vector is given in Eq. (31). 
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Control Law Blending Method 

The blending method used to determine the final direction vector, based on the mission 

objectives, derives from a form of averaging that has previously been applied to solar sail 

trajectory design known as A
n
D blending

6
. The method is adopted here to suit low-thrust 

technologies without the limitations of a sail i.e. the thrust can be directed in any direction as and 

when it is needed. The method calculates the deficit (time to target) of each control law based on 

the maximized thrust vector if it were solely used and assuming a constant rate of change. These 

are normalized with respect to the largest, resulting with each control law receiving a score 

between zero and one; zero meaning the control law has achieved its target and one meaning it is 

furthest, in terms of time, from its target value. The control laws are then multiplied by an 

optimized weighting constant, based on mission specification, before finally being blended using 

the averaging technique as is shown in Eq. (32). This now forms the maximized thrust direction 

unit vector; all symbols have the same meanings as previously discussed. 
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As opposed to several other blending methods in which the optimization process calculates the 

weighting parameters as a function of time from the initial epoch[5,6], this method ensures that 

the optimized weighting constants are independent of time. It should be noted that not all control 

laws are multiplied by an optimized weighting constant if they are not required to achieve the 

mission specification. In the cases which they are required, the optimizer selects the constants in 

such a manner that the overall time of flight and fuel mass are minimized while still achieving the 

mission specification. 

Optimization Method 

The optimization method selected to determine the constants uses a constrained nonlinear 

optimization method adapting a sequential quadratic programming (SQP) method. This was 

selected as it has a strict feasibility with respect to the bounds meaning every iterative step is 

taken within the specified bounds
10

. This is necessary for this study as the constants cannot be 

negative otherwise the trajectory generation will fail. As a result the lower boundary remains 

always at zero. 

Analytical Validation 

It is necessary to validate the analytical approach to ensure it can be used for further analysis. To 

do this a benchmark comparison against the numerical model is necessary. Table 1 details the 

transfer specification used while Table 2 provides the results. It should be noted that the 

optimization process was not used to perform the benchmark, instead it was performed in two 

phases; the first phase used only the inclination control law to perform the plane change and the  

spiral-in second phase used the semi-major axis control law only.  



Table 1. Validation Study Specification  

Analysis Parameter Value 

Initial Orbit,    (km) 6,628 

Target Orbit,    (km) 19,884 

Intermediate Orbit,    (km) 33,140 

R1 3 

R2 5 

Initial Mass,      (kg) 554 

Low-thrust system specific impulse,     (s) 4,500 

Thrust,   (mN) 150 

Inclination Change,    (rad) 0.5236 (30°) 

 

It can be seen that the majority of the error is associated with the mass analysis section of the 

transfer while the transfer time errors for both the inclination change and spiral sections are less 

than 0.1%. If the overall error is considered, as in that associated with the total fuel mass and 

transfer time then it can be seen that the total error for both cases reduces with the fuel mass error 

less than 3%.  

Table 2 Validation Results 

Analysis Parameter Numerical Analytical 
Absolute Error (%) w.r.t. 

Numerical 

Inclination Change Fuel Mass, (kg) 35.8 33.88 5.57 

Spiral Fuel Mass, (kg) 11.84 12.52 5.74 

Inclination Change Transfer Time, 

(days) 
121.8 121.93 0.11 

Spiral Transfer Time, (days) 40.26 40.44 0.45 

Total Fuel Mass, (kg) 47.64 46.4 2.6 

Total Transfer Time, (days) 162.06 162.4 0.21 

COMPARISON OF CRITICAL SPECIFIC IMPULSE RATIOS (CIRCULAR ONLY) 

The critical ratio derived in Reference 1 and given in Eq. (33) represents the Hohmann and HST 

comparison with the high-thrust section implementing the inclination change. This can be 

compared with the low-thrust inclination change as defined in Eq. (18) to help determine when 

each transfer is better. 
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where 
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As the comparison is of the same transfers, i.e. Hohmann and HST but with different methods of 

inclination change, then only the lower critical ratio has to be exceeded to ensure the HST 

outperforms the Hohmann as opposed to having to satisfy the higher of the critical ratios when 

comparing different transfer types
2,3

. By then using the additional critical equation defined in Eq. 

(23), comparing the HST with both high and low-thrust inclination change, it is clearly shown for 

an example of        and                      in Figure 5 when the HST utilizing low-

thrust inclination change will outperform its high-thrust counterpart. The light grey section 

represents the region in which the HST utilizing low-thrust inclination change will always be 

better, in terms of fuel mass fraction, than the Hohmann transfer and HST with high-thrust 

inclination change. The dark grey section represents the region in which the HST utilizing high-

thrust inclination change will always be better, in terms of fuel mass fraction, than the Hohmann 

transfer and HST with low-thrust inclination change. In the white region the HST with high or 

low-thrust inclination change will never outperform the Hohmann transfer. In addition, it is seen 

there is an intersection between    
    ,    

     and    
     at          which represents 

the point at which, for a critical specific impulse ratio of      , both HST systems will be 

equivalent, in terms of fuel mass fraction, to the Hohmann transfer. 

 

Figure 5 Critical Ratio Comparison,                              



MASS ANALYSIS WITH TIME RESTRICTION 

In order to perform a mission analysis it is necessary to determine the fuel mass required and total 

transfer time. This can be done numerically by substituting the    for the low and high-thrust 

sections of the HST, as given in Eq. (12) and (17) respectively, into Eq. (2). Eq. (17) represents a 

circular initial orbit, if the elliptical initial orbit was to be studied Eq. (20) would have to be used. 

The fuel mass equation representing the circular initial orbit is given in Eq. (34). 
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(34) 

The equation representing the total transfer time associated with the HST is given in Eq. (35). It 

should be noted that    accounts for both the inclination change and spiral transfer and assumes a 

constant acceleration based on the spacecraft mass after the high-thrust transfer section has been 

completed. 
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These equations, coupled with the relevant critical specific impulse ratios can help give a full 

overview of a mission specification utilizing the HST and therefore help decide which transfer 

should be selected. 

CONCLUSION 

A critical specific impulse ratio defining the point at which the HST utilizing low-thrust 

inclination change is equivalent, in terms of fuel mass fraction, to a Hohmann transfer has been 

derived. Adopting a satellite configuration that exceeds this critical ratio will ensure that the HST 

offers a fuel mass benefit in comparison to the Hohmann only transfer. By using this critical ratio 

in conjunction with the ratio comparing the HST utilizing high-thrust inclination change and 

Hohmann transfer and the critical ratio comparing the two HST transfers, it can be determined 

which transfer offers the greatest fuel mass benefit depending on the satellite configuration and 

mission specification. Initial analyses have shown the HST utilizing low-thrust inclination change 

to offer the greatest benefit at low            and large            .  

FUTURE WORK 

To progress the analysis, the numerical optimization method will be used to optimize the HST 

transfer. This will allow the intermediate orbit to be varied and the inclination and spiral-in 

pahses to be combined. This should give benefits to both the fuel-mass and transfer time of the 

HST.  



NOTATION 

g – standard gravitational acceleration, m/s
2
 

µ - gravitational constant, m
3
/s

2
 

mdry – spacecraft mass without fuel, kg 

mwet – spacecraft mass with total fuel, kg 

mHF – high-thrust system fuel mass, kg 

mHSTLF – HST low-thrust section fuel mass, kg 

mHSTF – HST total fuel mass, kg 

m02 – spacecraft mass after phase 1 of the HST transfer, kg 

ΔVH(C/E) – high-thrust only system with inclination change    (circular/elliptical initial orbit),  m/s 

ΔVHSTH(C/E) – high-thrust section of HST with low-thrust inclination change    (circular/elliptical initial 

orbit),        m/s 

ΔVHSTHH(C/E) – high-thrust section of HST with high-thrust inclination change    (circular/elliptical initial  

orbit),  m/s 

ΔVHSTIL – low-thrust inclination change section   , m/s 

ΔVHSTSL – low-thrust spiral-in section   , m/s 

ΔVHSTL – Total low-thrust section of HST    with low-thrust inclination change, m/s 

ΔVHSTHL – low-thrust section of HST    with high-thrust inclination change, m/s 

ΔV(a/b) – specified node    between transfer and initial, m/s 

ΔI – total inclination change, rad 

ΔIpo – inclination change per orbit, rad 

IspH – high-thrust system specific impulse, s 

IspL – low-thrust system specific impulse, s 

υinitial – initial orbit velocity at beginning of specified transfer, m/s 

υfinal – target orbit velocity at end of specified transfer, m/s 

υtrans(a/b)– transfer orbit velocity at specified node, m/s 

a1 – semi-major axis between ri and rc 

s – percentage inclination change at node a 

ri – initial orbit radius, m 

rt – target orbit radius, m 



rc – circular transfer orbit, m 

a – semi-major axis, m 

e – eccentricity  

i – inclination, rad 

p – semi-latus rectum, m 

ω – argument of perigee, rad 

υ – true anomaly, rad 

E – eccentric anomaly 

f – modified equinoctial element 

g – modified equinoctial element 

h – modified equinoctial element 

L – modified equinoctial element 

τ – auxiliary (positive) variable 

σ – arbitrary orbit element 

R – Radial Perturbation Component - RTN axis 

T – Transverse Perturbation Component - RTN axis 

N – Normal Perturbation Component - RTN axis 

Tr – Thrust, mN 

NF – acceleration of low-thrust system based on    , m/s
2
 

NOO – number of orbits required for inclination maneuver 

t – time, s 

tT – total HST transfer duration, seconds 

tH– HST transfer phase 1 duration (high-thrust), seconds 

tL – HST transfer phase 2 duration (low-thrust), seconds 

tperiod – orbital period, s 

λσ – locally optimal orientation vector for element σ 

λb – locally optimal orientation blended vector 

Wσ – optimized weighting constant for each element σ 

 

 



Table 3. Subscript Notation detailing transfer specification. 

Transfer Comparison Type 
Superscript 

 (Isp
XXXX) 

Hohmann compared with HST utilizing high-thrust system for inclination change HHH- 

Hohmann compared with HST utilizing low-thrust system for inclination change HHL- 

Hohmann compared with HST utilizing high-thrust system for inclination change (elliptical initial orbit) HHHE 

Hohmann compared with HST utilizing low-thrust system for inclination change (elliptical initial orbit) HHLE 

HST utilizing high-thrust system for inclination change compared with HST utilizing low-thrust system 

for inclination change 
HSH- 

HST utilizing high-thrust system for inclination change compared with HST utilizing low-thrust system 

for inclination change (elliptical initial orbit) 
HSHE 
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