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Abstract  

 

Decisions during the reliability growth development process of engineering equipment 

involve trade-offs between cost and risk.   However slight, there exists a chance an item of 

equipment will not function as planned during its specified life.  Consequently the producer 

can incur a financial penalty.  To date, reliability growth research has focussed on the 

development of models to estimate the rate of failure from test data.  Such models are used to 

support decisions about the effectiveness of options to improve reliability. The extension of 

reliability growth models to incorporate financial costs associated with ‘unreliability’ is much 

neglected.   

 

In this paper, we extend a Bayesian reliability growth model to include cost analysis.  The 

rationale of the stochastic process underpinning the growth model and the cost structures are 

described.  The ways in which this model can be used to support cost-benefit analysis during 

product development are discussed and illustrated through a simple case. 
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Introduction 

The time-to-market of complex engineering product can be several years as a result of the 

need for long development processes to mature the design.  Testing is an important part of the 

development process and usually involves both growth tests and demonstration tests.  The 

former aims to expose the design to a range of stresses to expose weaknesses quickly so that 

corrective action can be taken to remove or mitigate the effect of faults thereby growing the 

reliability.  While the latter aims to demonstrate that the mature reliability conforms to the 

specified customer or regulatory requirements.  Both tests are important as they provide 

evidence of assurance that a design has improved and so unscheduled failure events are 

unlikely in operation.   

 

Testing is costly in terms of time and resources required.  This is particularly true for growth 

tests where the duration and conditions will be subject to considerable uncertainty given the 

reactive nature of the test decision process and the complexity of relationships between the 

failure mechanisms and the operating environment.  As a result there is much scepticism 

surrounding the marginal benefits of growth testing in relation to its cost.  Despite this, 

growth testing continues to be widely used because industry adopts a risk averse approach to 

reliability and believes that however expensive it is to remove a fault during design, it is 

likely to be much more expensive to incur the costs of its realisation as a failure in operation 

(see Hobbs
1
). 

 

Many models exist to support reliability growth decision-making, see Jewell
2
, Xie

3
, Ansell et 

al
4
 for a review and critical appraisal.  However these models aim to provide information 

about the effectiveness of testing for improving reliability by measuring increases in the 



 3 

observed rate of failure.  Both classical and Bayesian inference procedures have been 

proposed.  However those models using classical inference demand statistical test data that 

can be, at best, late and, at worst, sparse in practice. Bayesian approaches intend to reduce the 

reliance on observed failures by combining what failure data that become available with prior 

data based on engineering belief about some aspect of expected reliability growth. While 

attractive in principle, because this approach allows us to acknowledge designs that are 

inherently good and so free from major defects, many models using Bayesian approaches tend 

to make strong assumptions about the form of the prior distributions for reasons of 

mathematical tractability that are not meaningful to practitioners (Walls and Quigley
5
).  

Therefore the data structures assumed lack credibility.  To overcome these criticisms Quigley 

and Walls
6
 proposed a reliability growth model which aims to combine engineering 

judgement about the inherent concerns with the design to be tested with observed failures on 

test that has nice theoretical properties and has been accepted by practitioners.  Nevertheless 

this model again only aims to assist in assessing the effectiveness of reliability growth test. 

There is a need to extend such a model to support decisions concerning the financial worth of 

tests and allowing cost-benefit analysis to be conducted. 

 

While there is considerable interest in the trade-offs between reliability and cost within the 

product lifecycle (Kumar et al
7
), there is no reported evidence of cost-benefit analysis of 

reliability growth tests and our experience indicates that practical analysis is rather informal 

and haphazard.  In this paper we propose to extend earlier work (Quigley and Walls
6,8

) and 

develop a unified modelling framework to support effective and efficient decision making 

during a reliability growth test programme that addresses many of the shortcomings of 

existing models.  To specify our framework we begin by describing the decision-making 
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process inherent in reliability growth development programmes.  Next the formulation of the 

mathematical model is introduced and an example application of the model within a Bayesian 

context is presented.  We conclude by reflecting upon the strengths and weaknesses of the 

proposed model and directions for future research. 

  

Product Development Decision-Making Process 

The reliability plan provides the blue print for developing a product design that will meet 

customer reliability requirements in terms of functionality.  In turn, the reliability plan will 

provide an input into the overall project plan that will take into account other customer 

requirements such as delivery schedules and cost of the product.  Here we focus on the 

reliability plan and decisions about reliability related activities only. The typical activities 

included in a reliability plan and their purpose are described in O’Connor
9
.   

 

In the design phase one output of the reliability plan may be a risk register of potential 

concerns about weaknesses or faults in the design.  This will evolve from a list of concerns 

about the product design constructed initially during concept phase and further articulated 

during detailed design.  These may cover issues related to the anticipated strength of the 

design in relation to the stresses it is likely to experience.  For example, use of new 

technology, changes in manufacturing processes in relation to more extreme environmental 

conditions such as higher/lower temperatures or increased vibration.  

 

The risk register, or concerns list, will document the beliefs of engineers based on their 

expertise and experience about potential ways in which the design may fail to function, the 

reasons for such failure and the consequences of their occurrence.  Processes used to capture 
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such beliefs include FMEA (Gilchrist
10

), HAZOP (Kletz
11

) and elicitation of engineering 

judgement (Walls and Quigley
5
).   Consequently the register provides an insight into expected 

failure scenarios and can help inform re-designs and development testing regimes used to 

prove the product design. 

 

During development data collected from testing activities provide information about the 

observed failure events that can be compared with the expectations articulated during design.  

The reliability plan will stipulate that this assessment of reliability will be conducted at formal 

design reviews where the information will be used to predict whether the target product 

reliability required by the customer is likely to be achieved and whether the project plan for 

timely delivery of a mature product is sufficient.   

 

The key decision at such a review will be informed by an assessment of reliability growth to 

establish if the planned development activities are maturing the product design.  If reliability 

assessment concludes that expected growth is being achieved and faults are being exposed 

and corrected successfully then the decision-maker will progress the design to the next phase 

of development and, ultimately, release from test to manufacture.  If reliability assessment 

concludes that reliability growth is not satisfactory then additional testing may be required to 

prove the design and uncover faults that may still lurk within the design or else provide 

evidence that the strength of the design is likely to exceed stresses beyond those to be 

experienced in use.   

 

However the cost of changes to the product, and so the plan, should also be taken into account 

so that decisions made are both effective and efficient.  In principle the decision will be 
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influenced by the likelihood of faults existing in the design and their cost of occurrence if not 

corrected relative to the cost of corrective actions. 

 

Figure 1 summarises our perspective that focuses on decisions to be taken at design reviews 

during the development phase, in particular we are interested in supporting the decision maker 

choose whether or not to continue test.   To assess whether reliability targets have been met or 

whether additional testing is required, and if so how much, the decision maker must be able to 

evaluate the costs and benefits associated with further testing compared with progressing the 

design through the development process.  The model described in the following section aims 

to provide a framework to support this decision.  

 

FIGURE 1 

 

Model Formation to Support Cost-Benefit Analysis 

The cost model developed in this section aims to support informed decisions about the 

continuance or stoppage of tests by providing a framework in which the consequences of 

different test times can be analysed and the optimal length of test time to minimise expected 

total costs can be determined.   

 

A diagrammatic representation of the model formulation is shown in Figure 2.  After stating 

the assumptions underpinning this formulation we shall show the derivation of the key results. 

 

FIGURE 2 
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Assumptions 

It is assumed that a period of testing, , has been conducted.  This may equal 0 if no testing 

has been conducted and events on test are assumed to occur at times 1 2 3, , ...x x x
 

 

The testing costs comprise the fixed cost of running the test (e.g. test facilities and staff) and 

the cost of correcting faults detected on test which will vary depending on the fault and when 

it is found. 

 

The cost of running the test is assumed deterministic charged at £C per unit of time.  Costs 

incurred prior to release from test are accumulated at an assumed constant rate  to assess 

their present value at test time units.   Therefore the accumulated present value of running 

the test at test time  is 

 

0

1
Expected cost of running test = y e

C e dy C

 




 
  

 
  

 

The variable cost of fixing faults detected on test is assumed to be £V and using the same 

constant interest rate , the present value at of the cost associated with correcting the fault 

detected at test time 1x is 1( )£ xVe   .  Clearly, this cost is a random variable dependent upon 

the time in which a fault is realised.  Moreover, the total costs associated with testing will be 

dependent not only on the detection time but the number of faults detect.  As such, we require 

information about the inherent model of reliability growth during development testing. 
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Given our earlier comments about the availability of some register of likely faults we 

advocate a Bayesian reliability growth model since the data captured in the risk register may 

be combined to form a prior distribution for the number of faults present in the design and the 

chance they might result in failure in operation (Quigley and Walls
6
).  Therefore we assume 

that the design contains a fixed number of faults and that the time to realise these faults is 

independently and identically distributed. 

 

Therefore the variable costs accumulated at the end of testing are given by 

 

where  

X(i) is the time of the i
th

 fault detected on test 

N() is the number of faults detected by  hours of test 

 

The number of faults detected on test and the times of these realisations are the only random 

variables regarding costs associated with testing.  The expected variable cost of testing is 

derived in the following. 

 

  
 

   

 
  

 

1

1

Expected variable cost of testing = 
i

i

i

N
X

i

N
X

XN
i

VE e

VE E e N


 


 












 
 
 

 


  





 

 

 
  ( )

1

Total variable cost of testing =
i

N
X

i

V e


 



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Conditioning on the number of faults that occur during  hours of testing we can treat the 

failure times as independent and identically distributed random variables with the distribution 

truncated at time , allowing us to ignore the complications of the order statistics.   

 

   
 

 

   
 

   

1

1

Expected variable cost of testing i

i

N

X

XN
i

N

N X
i

X

Ve E E e N

Ve E L

Ve L E N









 









 







   



   



  

 

where 

 

 
 

 

-

0

x

X

e dF x

L
F












 

 

is the Laplace Transform of the truncated distribution evaluated at the interest rate and  

 

   
0



  F dF x  

 

is the probability that a fault is realised within the interval (0, of testing. 

 

In order to derive the expectation of N() we first define an indicator variable Yi as the 

following 
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1,  if 

0,  if 

i

i

i

X
Y

X






 


 

 

We assume that the times of fault realisation are i.i.d. with the number of expected faults 

detected after an infinite number of hours test, i.e. N(), being .  Therefore, 

 

     

 

 

   
 

     

 

1

1

1

..

F

N

N

Y Y iN
i

N

iN
i

N

E N E E E Y N

E E Y N

E N F





 















 
     

  

    

   





  

 

 

Combining the expected costs of running the test with those of detecting faults we obtain the 

expected total costs of testing  

 

   
1

Expected Total Costs of Testing  F L
X

e
C Ve





  



 
  

 
 

 

We assume that manufacture does not introduce faults and so once operational it is assumed 

the product will fail J times at times t1, t2, …, tJ, respectively.  The cost to the manufacturer at 

the time of each failure is £P.  However, the present value of this penalty, evaluated at the 

time of releasing the item to market is Pe
-t

 for each failure, where  is a measure of the 

interest rate of the value of money. 
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Therefore the total cost associated with the in-service failures of the item, evaluated at the 

time of releasing the item to market is 

  

-

1

Total In-service Cost = i

J
t

i

P e




  

 

Taking the expectation we obtain 

 

 

-

1

Expected Total In-service Cost Given J = 

 

i

J
t

i

T

P E e

PJL







 
 




 

 

where LT() is the Laplace Transformation of the assumed distribution of the time to realise a 

fault in operation, evaluated at the continuous rate of interest .   

 

Again we assume the prior distribution on the number of faults that may be realised as failures 

is a Poisson distribution with mean and if we release the item from test then the expected 

number of faults remaining in the design that is released to operation will be (1-F()).   

 

Consequently the expectation of the total in-service costs with respect to J is given by: 

 

    Expected Total In-service Cost  =  1-TPL F    
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Cost model 

 

Following the above assumptions, the total costs, TC, resulting from test and operation is 

given by 

 

        
1

 =  1-TX

e
TC C Ve F L PL F





     



 
  

 
    (1) 

 

By differentiating (1) with respect to test time  we obtain  

 

         
  

  - TX

TC
Ce Ve F L V f PL f 


        




  


    (2) 

 

Setting (2) to 0 and re-arranging we obtain 

 

       TX
e C V F L f PL V


           

 

 

This can be interpreted as equating the marginal costs of testing one more unit of time with 

the expected marginal benefit associated with fault detection at time  

 

Alternatively, we can write this as a decision rule whereby testing is stopped if the intensity 

function (or rate of occurrence of faults detected) falls below a critical level. 

 



 13 

 
   

 

X

T

e C V F L
f

PL V




  

 


 
 


 

 

There are two possible local extrema obtained through this approach.  To examine the 

optimatisation properties we consider the second partial derivative with respect to .   

 

        
 2

2

2

 
  - TX

dfTC
C e Ve F L V f V PL

d

 




        

 


   


 

 

Therefore, we will have obtained a local minimum if the following condition is met 

 

        
 2 - 0 




        


   TX

df
C e Ve F L V f V PL

d
   (3) 

 

Re-arranging (3) we obtain the following. 

 

       

  

2 

-

 


      

  

 


X

T

C e Ve F L V fdf

d V PL
      (4) 

 

If the variable cost of testing, V, are greater than the present value of the penalty associate 

with detecting the fault during operation then clearly no testing would be done.  As such, we 

consider the right hand side of (4) must be negative.  This implies that the local extrema will 

be a cost minimisation if the rate of change of the intensity function is decreasing at a suitably 

fast rate.  In short, from the two possible roots of the first order conditions, the test time that 

minimises cost will typically be the greater test time.  
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Illustrative Example 

Statement of problem 

As an example consider the use of the cost model based on a reconstruction of a real 

reliability growth development test programme. The test regime is essentially test, analyse 

and fix, whereby the item is tested until it fails.  The failure is investigated, appropriate 

corrective action and the resultant reliability growth modelled and assessed.  The decision-

maker is the project manager who wants to determine test duration for a prototype item 

manufactured to build standard at the specified stress level given the expected costs of test 

and future failures in relation to the potential benefits gained in terms of reliability growth.  

The original project plan allocated 1000 hours to test, however now that the detailed design is 

complete and information is available about the engineers concerns about potential 

weaknesses, the project manager wishes to re-assess the test plan duration. 

 

Data selection and validity of assumptions 

A Poisson distribution with mean, , equal to 7 was found to be an adequate description of for 

the prior distribution of the concerns of engineers about potential faults that was elicited prior 

to the start of test.  Reflections on the process used to elicit this prior are reported in Hodge et 

al
12

.   

 

In the absence of test data, we assume that the distribution function of the time to realise 

failures on the proposed test can be approximated by an estimated distribution function for 

data from a nominally identical test of an earlier generation of the design. This data set 
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comprises 12 failures and a total test time of 41183 hours.  The best fit model is an 

exponential distribution with mean time to failure of  = 3432 hours.  Therefore, 

 

   1 exp
3432 3424

F



 

  
 

 

 

We use an empirical Bayes approach to re-scale this model in the light of the prior 

distribution elicited for the proposed test.  The posterior distribution is given by 

 

     / ,x L x      

 

where a prior of ignorance is assumed setting   1   and giving a Gamma posterior 

distribution 

 

 
 

13 12 4118341183
/

13

e
x


 






 

 

which is shown in Figure 3 for a selection of values of the hazard rate,  .    Hence the 

predictive distribution is 

 

     

 

0

13

13

/ /

41183
1

41183

F F x x d    







 



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The corresponding intensity function is given by 

 

 
 

 

13

14

13 41183

41183
z








 

  

As might be expected this function exhibits an exponential decay in the rate of fault 

realisation during the reliability growth test. 

 

FIGURE 3 

 

The general form of the Laplace transform of this predictive distribution is messy and as we 

simply illustrate it as a function of test time as shown in Figure 4. This was calculated using 

Maple 7 for an assumed interest rate 0.05p.a.  .   

 

FIGURE 4 

 

We know the cost of running a test is C = £500 per hour and the cost associated with fixing 

faults on test are estimated to be roughly V = £50000 on average. 

 

The penalty associated with realising faults in operation are much harder to cost and so we 

may want to think about the magnitude of these costs in relation to the cost of fixing the fault 

during development.  This leads us to define P = kV where k is a constant multiplier.  It is of 

interest to examine what values of k lead to a switch in decisions between continuing and 

stopping test. 
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The final input data required is the net present value of costs incurred fixing faults in 

operation. Assuming the same interest rate of 0.05p.a.   and using field failure time data 

for a variant product already in service which has a exponential distribution with mean time 

between failure of 30000 hours, we find  0.05 0.84TL  .  The project manager estimates that 

the cost of realising a fault in the field will be at least ten times the cost of detecting a fault in 

test, therefore we use k = 10.  That is, the ratio of penalty associated with realising a fault in 

operation (P) to the cost of fixing a fault detected during test (V). 

 

Model implementation and interpretation 

Figure 5 shows that prior to about 1500 hours it is better to continue testing as the net benefits 

of testing outweigh the costs of finding faults in the field.  However after about 1500 hours 

then testing is no longer efficient and should be stopped.  Therefore it would appear that the 

plan to terminate test at 1000 hours may be premature. 

 

FIGURE 5 

 

For this design, the planned duration of the test is worthwhile if the cost of testing is less than 

7 times that of the costs of detecting a fault within operation.  If this is not acceptable to the 

project manager then again it reinforces the need for longer test. 

 

Most uncertainty in specifying parameter values for such a cost model will be in estimating 

the penalty of faults being realised in use, even when it is expressed as a multiple (k) of the 

cost of detecting a fault on test. Table 1 also shows the relationship between total costs, the 
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optimal test time and the multiple k for increments of k when the expected number of faults in 

the system ( is 7, the costs associated with an hour of test (C) is £500, the cost of correcting 

a fault during test (V) is £50000, and the mean time to realise a fault during operation is 

30000 hours.  Constructing such a table of information for given test parameters should assist 

decision-making because it permits the project manager to assess the sensitivity of the total 

cost to relative costs of realising failures in the field. 

 

TABLE 1 

 

The relationships between test time and the multiple k on total costs can be explored more 

generally through Figure 6.  This shows that a flatter cost profile for small values of k 

compared with larger values where clear minima are exhibited.  This is intuitive as small 

differentials in the costs of faults being realised on test or field would imply that testing has 

little value.  Whereas larger values of k imply longer test durations are economic.   

 

FIGURE 6 

 

The sensitivity associated with the inputs can be assessed through Table 2.  If the cost of 

testing, i.e. C, were halved to £250 per hour the optimal test time would be about 2.5 times 

greater than at the assumed input values for other parameters, while an increase of 50% to 

£750 per hour would result in a 83% reduction in planned testing.  These are illustrated in 

Figure 2a.   
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Figures 2b and 2c illustrate the sensitivity associated with test time and costs for variations in 

the cost associated with the detection of a fault during test, i.e. V, and the expected number of 

faults within the design, i.e.  respectively.  It is worth noting that the cost of detecting a fault 

in operation is expressed as being proportional to V through k.  The optimal length of testing 

is much more sensitive to underestimates in V, in so far as reducing V by 50% resulted in no 

testing, while an increase by 50% resulted in 80% more planned testing.  Not surprisingly, 

decreasing the expected number of faults reduces the optimal test time while increasing 

reverses this effect.  Changes in the mean time to detection of a fault in operation had little 

effect on the optimal test time, where a mean time of 15000 hours resulted in a 20% increase 

in planned test, while an increase to 45000 hours resulted in a 12% decrease in planned 

testing. 

 

TABLE 2 

 

Discussion on Use of Model and Conclusions 

We have presented a simple expected present value model to evaluate the financial benefits of 

reliability growth testing.  We accept that the decision to terminate testing will be based upon 

criteria in addition to costs.  In this section we highlight and discuss some shortcomings of the 

proposed model and discuss how these might be overcome. 

 

We do not consider severity of failures within the model.  The faults that we are addressing 

are ones, which can exist within an item that we release into operation.  Catastrophic faults 

can be identified in two ways during development.  Firstly, relevant experts can anticipate 

them during an elicitation exercise.  Secondly, they can be exposed during testing.  For those 
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faults that are identified during the first situation we propose that this framework would be 

applied to support decisions concerning which test is likely to expose these faults with the 

minimal costs.  The decision would not be when to stop testing as this would be decided once 

the probability of safety critical faults existing within the item being below a threshold, 

however, the sequencing and durations of various reliability tests must be decided and costs 

will be a consideration.    

 

We have assumed that the cost associated with detecting a fault within operation is fixed, 

known and applies to all faults.  We could extend this model to make the costs a random 

variable, but a more effective manner to address this issue would be through categorising 

types of faults following the elicitation process.  Following from this, we could group the 

possible faults, which are similar in penalties if exposed and similar in lifetime characteristics. 

 

We have assumed that the cost of testing is constant per unit of time.  The model can be 

extended to support a more complex expression for the costs associated with testing.  For 

example, the costs associated with diagnostics once a fault has been exposed increases the 

total costs as personnel are moved from one job to devote time to the item under test.   

 

We have assumed that the manufacturer is risk neutral and hence their utility towards risk can 

be measured through total costs.  Future research in this area would investigate and develop a 

loss function, capturing vital characteristics of the risk aversion inherent in a company for the 

release of particular items with the possible existence of identified faults. 

 



 21 

Finally, although the model has been proposed for use within the development phase when 

conducting test, the same principles underpin cost-benefit modelling during design.  Currently 

we are working with industrial partners to operationalise the modelling framework in this 

broader context. 
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Figure 1  Decision points during development process 
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Figure 2   Cost model formulation  
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Figure 3 Posterior distribution of hazard rate 
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Figure 4  Laplace transform of truncated distribution at 5% p.a. interest rate as function of test 

time 
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Figure 5  Comparison on intensity function (solid) and cost ratio (dashed) for k =10 
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Figure 6 Total cost plane as a function of test time and k 
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Table 1 Minimum Total Costs and Optimal Test Time as a function of k 

 

Ratio of Cost of Detecting a Fault in 

Operation to 

Cost of Detecting a Fault on Test (k) 

Optimal Test 

Time (hrs) 

Minimum Total 

Costs (£M) 

5 0 1.5 

7.5 458 2.2 

10 1443 2.7 

12.5 2195 3.1 

15 2806 3.5 

17.5 3322 3.8 

20 3769 4.0 

22.5 4164 4.3 

25 4518 4.5 
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Table 2a Optimal costs for variations on cost of testing C 

C £250/hr £750/hr 

Ratio of Cost of Detecting a Fault in 

Operation to 

Cost of Detecting a Fault on Test (k) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs (£M) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs (£M) 

5 1008 1.4 0 1.5 

7.5 2523 1.8 0 2.2 

10 3556 2.1 250 2.9 

12.5 4345 2.4 982 3.5 

15 4985 2.5 1576 4.0 

17.5 5526 2.7 2078 4.4 

20 5995 2.8 2512 4.8 

22.5 6409 2.9 2896 5.1 

25 6780 3.1 3240 5.4 

 

Table 2b Optimal costs for variations on cost of detecting a fault on test V 

V £25,000 £75,000 

Ratio of Cost of Detecting a Fault in 

Operation to 

Cost of Detecting a Fault on Test (k) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs (£M) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs (£M) 

5 0 0.7 170 2.2 

7.5 0 1.1 1655 3.0 

10 0 1.5 2668 3.6 

12.5 140 1.8 3441 4.0 

15 723 2.2 4070 4.4 

17.5 1215 2.4 4600 4.7 

20 1641 2.7 5060 4.9 

22.5 2017 2.9 5465 5.2 

25 2355 3.1 5829 5.4 

 

Table 2c Optimal costs for variations on expected number of faults 

 5 9 

Ratio of Cost of Detecting a Fault in 

Operation to 

Cost of Detecting a Fault on Test (k) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs (£M) 

Optimal 

Test 

Time (hrs) 

Minimum 

Total 

Costs 

(£M) 

5 0 1.1 0 1.9 

7.5 0 1.6 1196 2.7 

10 450 2.1 2198 3.3 

12.5 1185 2.5 2964 3.7 

15 1783 2.8 3586 4.0 

17.5 2287 3.1 4110 4.3 

20 2724 3.3 4565 4.6 

22.5 3110 3.6 4967 4.8 

25 3455 3.8 5327 5.0 

 


